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Abstract. An important research topic related to the theory and application of the interval-valued 
intuitionistic fuzzy weighted aggregation operators is how to determine their associated weights. 
In this paper, we propose a precise weight-determined (PWD) method of the monotonicity and 
scale-invariance, just based on the new score and accuracy functions of interval-valued intuitionistic 
fuzzy number (IIFN). Since the monotonicity and scale-invariance, the PWD method may be a 
precise and objective approach to calculate the weights of IIFN and interval-valued intuitionistic 
fuzzy aggregation operator, and a more suitable approach to distinguish different decision makers 
(DMs) and experts in group decision making. Based on the PWD method, we develop two new 
interval-valued intuitionistic fuzzy aggregation operators, i.e. interval-valued intuitionistic fuzzy 
ordered precise weighted averaging (IIFOPWA) operator and interval-valued intuitionistic fuzzy 
ordered precise weighted geometric (IIFOPWG) operator, and study their desirable properties in 
detail. Finally, we provide an illustrative example.

Keywords: multi-attribute group decision making, interval-valued intuitionistic fuzzy number, 
precise weight-determined method, monotonicity, scale-invariance.

JEL Classification: C02, D71, D81.

Introduction

Atanassov (1986) introduced the concept of intuitionistic fuzzy set (IFS), which is an extended 
and generalized definition of fuzzy set (FS) by Zadeh (1965), and is a powerful tool to deal with 
vagueness and uncertainty. Since its appearance, IFS has received more and more attention 
and applied to many fields (Vlachos, Sergiadis 2007; Xu, Yager 2008; Khatibi, Gholam 2009; 
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Kharal 2009; Ye 2010; Xu 2011; Zavadskas, Turskis 2011). However, decision making often 
occurs under the situation where there are time pressure and lack of data, and experts may 
not be able to express their preference between decisions with precise reasons. By combining 
FS and IFS, Atanassov and Gargov (1989) further proposed the concept of interval-valued 
intuitionistic fuzzy number (IIFN), which is characterized by a membership function and 
a non-membership function whose values are intervals rather than real numbers. Thus, the 
interval-valued intuitionistic fuzzy set has the virtue of complementing FS and IFS, which is 
more flexible and practical then FS and IFS in coping with fuzziness and uncertainty. After 
that, the interval-valued intuitionistic fuzzy set (IIFS) has received more and more attention 
from researchers (Deschrijver, Kerre 2003; Xu 2007a; John et al. 2009; Xu, Yager 2009; Li 
2010a; Cabrerizoa et al. 2010; Ertugrul 2011), and obtained some research results (Park et al. 
2009; Liu 2009; Li 2010b; Chen et al. 2011; Yue 2011; Zhou, He 2012).

For convenient aggregation and calculation the interval-valued intuitionistic fuzzy set, based 
on the weighted means and the ordered weighted averaging (OWA) functions (Yager 1988), Xu 
(2007b) investigated and proposed some interval-valued intuitionistic fuzzy aggregation oper-
ators, such as the interval-valued intuitionistic fuzzy weighted arithmetic aggregation (IIFWA) 
operator, the interval- valued intuitionistic fuzzy ordered weighted aggregation (IIFOWA) 
operator, and the interval-valued intuitionistic fuzzy hybrid aggregation (IIFHA) operator. 
Based on the GOWA operator (Yager 2004a) and intuitionistic fuzzy geometric aggregation 
operator (Xu, Yager 2006), Xu and Chen (2007a) proposed the interval-valued intuitionistic 
fuzzy ordered weighted geometric (IIFOWG) operator and the interval-valued intuitionistic 
fuzzy hybrid geometric (IIFHG) operator. Their analytical properties were explored by Wei and 
Wang (2007), and Xu and Chen (2007b). Moreover, Xu and Cai (2009) studied the incomplete 
interval-valued intuitionistic fuzzy preference relations and given an approach to decision 
making based on the incomplete interval-valued intuitionistic fuzzy preference relation. Xu 
(2010b) investigated the Choquet integrals of weighted intuitionistic fuzzy information. Base 
on the distance measure for interval-valued intuitionistic fuzzy value, Xu (2010c) further 
proposed some relations and operations of interval-valued intuitionistic fuzzy values. Xu 
and Chen (2011) proposed a Bonferroni means based on interval-valued intuitionistic fuzz 
value, and so on.

An important issue related to the theory and application of the above interval-valued 
intuitionistic fuzzy aggregation operators and other weighted aggregation operator is how to 
determine their weights (Yager 2004b). O’Hagan (1988) suggested a maximum entropy ap-
proach, which is called maximum entropy weights. Their properties were investigated by Filev 
and Yager (1995). Filev and Yager (1998) brought forward an exponential smoothing weighted 
method, which produces the so-called exponential OWA operator and operator weights. 
Other approaches include the genetic algorithm weighted method (Nettleton, Torra 2001), 
the minimum variance weighted method (Fuller, Majlender 2003), the parametric geometric 
weighted method (Liu, Chen 2004), the mini-max disparity weighted method (Wang, Parkan 
2005), the maximal Renyi entropy weighted method (Majlender 2005), the preemptive goal 
programming weighted method (Wang, Parkan 2007), the deviation entropy weight method 
(Han, Liu 2011), and the distance measure weighted method (Yue 2011).
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However, there are still two puzzles to obtain interval-valued intuitionistic fuzzy aggreg-
ation operator weights by the above weight-determined methods. First, the weighted object 
of these approaches is the intuitionistic fuzzy value or the fuzzy value which is different 
from the interval-valued intuitionistic fuzzy number. Second, it seems that there is no 
investigation on the monotonous and scale-invariant properties of the weight-determined 
method, which is decisive for aggregation and calculation of interval-valued intuitionistic 
fuzzy values in group decision making. Therefore, how to calculate weights of the mono-
tonicity and scale-invariance under the interval-valued intuitionistic fuzzy information 
environment is an important research topic that needs to be addressed in the process of 
multi-attribute group decision making, which is also the focus of this paper. To do this, we 
propose a precise weight-determined (PWD) method to obtain interval-valued intuition-
istic fuzzy aggregation operator weights, based on the new score and accuracy functions 
of IIFN. Since the monotonicity and scale-invariance, the PWD method may be a precise 
and objective approach to calculate the weights of IIFN and interval-valued intuitionistic 
fuzzy aggregation operator, and a more suitable approach to distinguish different DMs and 
experts in group decision making. Then, based on the precise weight-determined method, 
we develop the interval-valued intuitionistic fuzzy ordered precise weighted averaging (II-
FOPWA) operator and geometric (IIFOPWG) operator, and explore their desired properties 
in detail. At last, a practical example is provided to demonstrate the application of the new 
weighted method and two aggregation operators.

The reminder of this paper is organized as follows. We briefly review some basic concepts 
and operations in Section 1. Section 2 proposes the precise weight-determined method. 
Section 3 develops the IIFOPWA and IIFOPWG operators, and investigates their desired 
properties. A practical example is provided in Section 4. The paper ends in final section with 
concluding remarks.

1. Preliminaries

In the following, we introduce the basic concepts and operations about IIFN (Xu 2007b), 
which is the basic element of IIFS (Atanassov, Gargov 1989).

Definition 1 (Atanassov, Gargov 1989). Let = 1 2( , , , )nX x x x  be fixed. An interval-valued 
intuitionistic fuzzy set (IIFS) A  in X can be defined as:

 
( ){ }= µ ν ∈, ( ), ( )A AA x x x x X , (1)

where µ ⊂( ) [0,1]A x  and ν ⊂( ) [0,1]A x  satisfy µ + ν ≤sup ( ) sup ( ) 1A Ax x . 
Definition 2 (Xu 2007b). Let ( ){ }= µ ν ∈, ( ), ( )A AA x x x x X  be an IIFS, the pair 

( )µ ν( ), ( )A Ax x  is called an interval-valued intuitionistic fuzzy number (IIFN).
For computational convenience, an IIFN can be denoted by ([a, b], [c, d]), with the con-

dition that ⊂[ , ] [0,1]a b , ⊂[ , ] [0,1]c d , and + ≤1b d . Based on the operations of intuitionistic 
fuzzy values (Atanasov 1986; De et al. 2000), Xu (2007b) defined some operations of IIFNs 
as follows.
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Definition 3 (Xu 2007b). Let ( )α = [ , ],[ , ]a b c d , ( )α =1 1 1 1 1[ , ],[ , ]a b c d  and 
 ( )α =2 2 2 2 2[ , ],[ , ]a b c d  be three IIFNs, then following operational laws are valid:
1) ( )α ⊕ α = + − + −1 2 1 2 1 2 1 2 1 2 1 2 1 2[ , ],[ , ]a a a a b b b b c c d d ;

2) ( )α ⊗ α = + − + −1 2 1 2 1 2 1 2 1 2 1 2 1 2[ , ],[ , ]a a b b c c c c d d d d ;

3) ( )λ λ λ λλα = − − − −[1 (1 ) ,1 (1 ) ,],[ , ]a b c d , λ > 0 ;

4) ( )λ λ λ λ λα = − − − −[ , ],[1 (1 ) ,1 (1 ) ]a b c d , λ > 0 .

Then, Xu (2007b) introduced the score function α = − + −( ) ( ) / 2s a c b d  and the accuracy 
function α = + + +( ) ( ) / 2h a b c d  to calculate the score value and accuracy degree of IIFN 
α = ([ , ],[ , ])a b c d , and gave an order relation between two IIFNs α1  and α2  as follows.

If α < α1 2( ) ( )s s , then α < α1 2 .

If α = α1 2( ) ( )s s , then:
i) if α < α1 2( ) ( )h h , then α < α1 2 ;
ii) if α = α1 2( ) ( )h h , then α α1 2~ ;
iii) if α > α1 2( ) ( )h h , then α > α1 2 .
It should be noted that the score function α( )s  is between –1 and 1, and the accuracy 

function α( )h  is between 0 and 2. In order to facilitate the following study about operator 
weights, we respectively introduce new score function and accuracy function as follows:

 α = + − + −2( ) (2 ( )) / 4s a c b d ; (2)

 α = + + +2( ) ( ) / 4h a c b d . (3)

Since ⊂[ , ] [0,1]a b , ⊂[ , ] [0,1]c d , and + ≤1b d , we can easily get ≤ α ≤20 ( ) 1s  and 
≤ α ≤20 ( ) 1h . Compare α( )s  and α2( )s , we can drive, if α > α1 2( ) ( )s s  (or α ≤ α1 2( ) ( )s s ), 

then α > α2 1 2 2( ) ( )s s  (or α ≤ α2 1 2 2( ) ( )s s ); on the other hand, if α > α2 1 2 2( ) ( )s s  (or 
α ≤ α2 1 2 2( ) ( )s s ), then α > α1 2( ) ( )s s  (or α ≤ α1 2( ) ( )s s ). Likewise, we can get the same con-

clusions by comparing α( )h  and α2( )h . Therefore, if we replace α( )s  and α( )h  by α2( )s  
and α2( )h , the order relation between two IIFNs α1  and α2  introduced by Xu (2007b) are 
also valid.

Based on the above concepts and operations, Xu (2007b) proposed the following inter-
val-valued intuitionistic fuzzy ordered weighted averaging (IIFOWA) operator and inter-
val-valued intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator to aggregate 
interval-valued intuitionistic fuzzy information.

Definition 4 (Xu 2007b). Let ( )α = [ , ],[ , ]i i i i ia b c d  ( )= 1,2, ,i n  be a collection of IIFNs, 
with the condition that ⊂[ , ] [0,1]i ia b , ⊂[ , ] [0,1]i ic d  and + ≤1i ib d , IIFOWA operator and 
IIFOWG operator are defined as:

 
σ σ σ

σ σ σ σ= = = =

α α α α ⊕ α ⊕ ⊕ α =

    − − − −        ∏ ∏ ∏ ∏

 1 2 1 (1) 2 (2) ( )

( ) ( ) ( ) ( )1 1 1 1

IIFOWA( , , , )=

1 (1 ) ,1 (1 ) , ,i i i i

n n n

n n n nw w w w
i i i ii i i i

w w w

a b c d
; (4)

 
σ σ σ

σ σ σ σ= = = =

α α α α ⊗ α ⊗ ⊗ α =

    − − − −        ∏ ∏ ∏ ∏

 

1 2
1 2 (1) (2) ( )

( ) ( ) ( ) ( )1 1 1 1

IIFOWG( , , , )=

, , 1 (1 ) ,1 (1 )

n

i i i i

ww w
n n

n n n nw w w w
i i i ii i i ia b c d

, (5)
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where 1 2=( , , , )nw w w w  is the weight vector of αi , with ∈[0,1]iw  and = =∑ 1 1n
ii w , and 

σ σ σα α α(1) (2) ( )( , , , )n  is a permutation of α α α1 2( , , , )n  such that σ − σα ≥ α( 1) ( )i i  for 
= 2,3, ,i n .

2. The precise weight-determined method under IIFN environment

In this section, we shall propose a precise weight-determined method (PWD) for calculating 
interval-valued intuitionistic fuzzy aggregation operator weights. A prominent characteristic 
of PWD method is that put accuracy and precise weights into different IIFNs according to their 
score value and accuracy degree, and keep weights of the monotonicity and scale-invariance.

Definition 5. Let ( )α = [ , ],[ , ]i i i i ia b c d  = ( 1,2, , )i n  be a collection of IIFNs, and 
( )σ σ σα α α(1) (2) ( ), , , n  is a permutation of ( )α α α1 2, , , n  such that σ − σα ≥ α( 1) ( )i i , a pre-
cise weight vector σ σ σ(1) (2) ( )=( , , , )nw w w w  of αi , is defined as follows:

 

σ
σ

σ

=
∑

( )
( )

( )

i
i n

ii

P
w

P
, (6)

where

 σ σ σ σ σ= α ⋅ α ⋅ α ⋅ α( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i iP S H L R , = 1,2, ,i n ; (7)

 σ σα = α( ) 2 ( )( ) ( )i iS s ; (8)

 
−

σ σ=
α = α∏ 1

( ) ( )1( ) ( )i
i jjL l , = 2,3, ,i n ; (9)

 σ σ= +
α = α∏( ) ( )1( ) ( )n

i jj iR r , = −1,2, , 1i n ; (10)

 

( )σ σ σ= ≠
σ

 α       α − α =α = 
                

∏2 ( ) 2 ( ) 2 ( )1,
( )

( ), ( ) ( ) 0
( )

1 ,

n
i i jj j i

i
h if s s

H
else

; (11)

σ σ − σ σ σ +

σ

α     α − α =     α − α >


α =                       
 = −   

2 ( ) 2 ( 1) 2 ( ) 2 ( ) 2 ( 1)

( )

( ), ( ) ( ) 0 ( ) ( ) 0
( ) 1 ,

2,3, , 1

j j j j j

j

h if s s and s s
l else

j n
; (12)

σ σ − σ σ σ +

σ

α      α − α >     α − α =


α =                   
 = −    

2 ( ) 2 ( 1) 2 ( ) 2 ( ) 2 ( 1)

( )

( ) , ( ) ( ) 0 ( ) ( ) 0
( ) 1 ,

2,3, , 1

j j j j j

j

h if s s and s s
r else

j n
, (13)

with σ σ σ σα = α = α = α =(1) ( ) (1) ( )( ) ( ) ( ) ( ) 1n nl l r r , σα =(1)( ) 1L , σ σ −α = α( ) ( 1)( ) ( )n nR R .

By Definition 5, we can obtain σ≤ ≤( )0 1iw  and σ= =∑ ( )1 1n
ii w .

The above equations (Eqs (6)–(13)) are named precise weight-determined (PWD) method 
of obtaining the interval-valued intuitionistic fuzzy aggregation operator weights. In the 
following, we discuss its two desired properties.
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Theorem 1. (Monotonicity) Let α = ([ , ],[ , ])i i i i ia b c d  = ( 1,2, , )i n  be a collection of 
IIFNs, σ σ σα α α(1) (2) ( )( , , , )n  is a permutation of α α α1 2( , , , )n  such that σ − σα ≥ α( 1) ( )i i , 

σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of σα ( )i . Let σα ( 1)t  and σα ( 2)t  <( 1 2)t t  be 
any two IIFNs in σα ( )i , then

(1) if σ σα > α( 1) ( 2)t t , then σ σ>( 1) ( 2)t tw w ; (2) if σ σα α( 1) ( 2)~t t , then σ σ=( 1) ( 2)t tw w .
Proof. (1) If σ σα > α( 1) ( 2)t t , we can distinguish eight following cases:

σ σα > α2 ( 1) 2 ( 2)( ) ( )t ts s , σα =( 1)( ) 1tH , and σα =( 2)( ) 1tH ;

σ σα > α2 ( 1) 2 ( 2)( ) ( )t ts s , σα <( 1)( ) 1tH , and σα =( 2)( ) 1tH ;

σ σα > α2 ( 1) 2 ( 2)( ) ( )t ts s , σα =( 1)( ) 1tH , and σα <( 2)( ) 1tH ;

σ σα > α2 ( 1) 2 ( 2)( ) ( )t ts s , σα <( 1)( ) 1tH , and σα <( 2)( ) 1tH ;

σ σα = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ σα > α2 ( 1) 2 ( 2)( ) ( )t th h , σα =( 1)( ) 1tH , and σα =( 2)( ) 1tH ;

σ σα = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ σα > α2 ( 1) 2 ( 2)( ) ( )t th h , σα <( 1)( ) 1tH , and σα =( 2)( ) 1tH ;

σ σα = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ σα > α2 ( 1) 2 ( 2)( ) ( )t th h , σα =( 1)( ) 1tH , and σα <( 2)( ) 1tH ;

σ σα = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ σα > α2 ( 1) 2 ( 2)( ) ( )t th h , σα <( 1)( ) 1tH , and σα <( 2)( ) 1tH .
Here we only prove two cases, and the others can be obtained similarly.
Case 1: σ σα > α2 ( 1) 2 ( 2)( ) ( )t ts s , σα =( 1)( ) 1tH , and σα =( 2)( ) 1tH .
In this case, we have:

 σ − σ σ +α > α > α( 1 1) ( 1) ( 1 1)( ) ( ) ( )t t tS S S ; (14)

 σ − σ σ +α > α > α( 2 1) ( 2) ( 2 1)( ) ( ) ( )t t tS S S ; (15)

 σ σ σ σα = α = α = α =( 1) ( 2) ( 1) ( 2)( ) ( ) ( ) ( ) 1t t t tl l r r  (16)

and

 

σ σ
− −

σ σ σ σ σ
= = + = = + = +

α ⋅ α =

α ⋅ α = α ⋅ α ⋅ α∏ ∏ ∏ ∏ ∏

( 1) ( 1)
1 1 1 1 2

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 2 1

( ) ( )

( ) ( ) ( ) ( ) ( )

t t
t n t t n

j j j j j
j j t j j t j t

L R

l r l r r
; (17)

 
σ σ

− − −

σ σ σ σ σ
= = + = = = +

α ⋅ α =

α ⋅ α  = α ⋅ α ⋅ α∏ ∏ ∏ ∏ ∏

( 2) ( 2)
2 1 1 1 2 1

( ) ( ) ( ) ( ) ( )
1 2 1 1 1 2 1

( ) ( )

( ) ( ) ( ) ( ) ( )

t t
t n t t n

j j j j j
j j t j j t j t

L R

l r l l r
; (18)

i) if 2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s sσ σ + σα > α > > α , then

 
2 2 1

( ) ( )1 1 1( ) ( ) 1t t
j jj t j tr l−

σ σ= + =
α = α =∏ ∏ ; (19)

 ( 1) ( 1) ( 2) ( 2)( ) ( ) ( ) ( )t t t tR L R Lσ σ σ σα ⋅ α = α ⋅ α . (20)

Hence, ( 1) ( 2)t tP Pσ σ>  and ( 1) ( 2)
( 1) ( 2)

( ) ( )

t t
t tn n

i ii i

P P
w w

P P
σ σ

σ σ
σ σ

= > =
∑ ∑

;

ii) if 2 ( 1) 2 ( 1 ) 2 ( 1 ) 2 ( 2)( ) ( ) ( ) ( )t t p t q ts s s sσ σ + σ + σα > > α = = α > > α   , then

 2 ( 1 ) 2 ( 1 1) 2 ( 1 )( ) ( ) ( )t p t p t qh h hσ + σ + + σ +α ≥ α ≥ ≥ α  (21)
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and

 
σ + σ + − σ +

σ + + σ

σ σ += +

σ +

α = × × × α ×

× ×  = α

∏ 



( 1 1) ( 1 1) ( 1 )

( 1 1) ( 2)

2
( ) 2 ( 1 )1 1

2 ( 1 )

( ) 1 1 ( )

1 1 ( );
t t p t p

t p t

t
j a a t p aj t

a a t p

r h

h  (22)

 

( 1) ( 1 1) ( 1 )

( 1 1) ( 2 1)

2 1
( ) 2 ( 1 )1

2 ( 1 )

( ) 1 1 ( )

1 1 ( ).
t t q t q

t q t

t
j a a t q aj t

a a t q

l h

h
σ σ + − σ +

σ + + σ −

−
σ σ +=

σ +

α = × × × α ×

× × = α

∏ 

  (23)

Therefore, −
σ σ= + =

α ≥ α∏ ∏2 2 1
( ) ( )1 1 1( ) ( )t t

j jj t j tr l , σ σ>( 1) ( 2)t tP P  and

 

σ σ
σ σ

σ σ

= > =
∑ ∑

( 1) ( 2)
( 1) ( 2)

( ) ( )

t t
t tn n

i ii i

P P
w w

P P
. (24)

Similarly, we could prove the more general case, i.e.

 2 ( 1) 2 ( 1 1) 2 ( 1 2) 2 ( 1 )

2 ( 1 ) 2 ( 1 1) 2 ( 1 2) 2 ( 2)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).

t t k t k t p

t q t m t m t

s s s s
s s s

σ σ + σ + σ +

σ + σ + σ + σ

α > > α = = α > > α = =

α > > α = = α > > α

   

  

 
(25)

Case 2: 2 ( 1) 2 ( 2)( ) ( )t ts sσ σα > α , ( 1)( ) 1tH σα < , and ( 2)( ) 1tH σα = .
In this case, we have:

 σ − σ σ +α = = α = = α 2 ( 1 1) 2 ( 1) 2 ( 1 2)( ) ( ) ( )t g t t gs s s ; (26)

 σ − σ σ +α ≥ ≥ α ≥ ≥ α 2 ( 1 1) 2 ( 1) 2 ( 1 2)( ) ( ) ( )t g t t gh h h ; (27)

 σ − σ σ +α > α > α2 ( 2 1) 2 ( 2) 2 ( 2 1)( ) ( ) ( )t t ts s s , (28)

then

 

−

σ σ σ σ σ σ
= = +

−

σ σ σ σ
= = + = +

α α α = α ⋅ α ⋅ α =

α α ⋅ α ⋅ α

∏ ∏

∏ ∏ ∏

1 1

( 1) ( 1) ( 1) 2 ( 1) ( ) ( )
1 1 1

1 1 2

2 ( 1) ( ) ( ) ( )
1 1 1 2 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( );

t n

t t t t j j
j j t

t t n

t j j j
j j t j t

H L R h l r

h l r r  (29)

 

−
σσ σ σ σ= = +

− −
σ σ σ= = = +

α α α = α ⋅ α =

α ⋅ α ⋅ α

∏ ∏
∏ ∏ ∏

2 1
( )( 2) ( 2) ( 2) ( )1 2 1

1 1 2 1
( ) ( ) ( )1 1 2 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( );

t n
jt t t jj j t

t t n
j j jj j t j t

H L R l r

l l r  (30)

i) if σ − σ σ + σ + + σα = α = = α > α > > α 2 ( 1 1) 2 ( 1) 2 ( 1 2) 2 ( 1 2 1) 2 ( 2)( ) ( ) ( ) ( ) ( )t g t t g t g ts s s s s , we 
have:

 
σ= +

α =∏ 2
( )1 1 ( ) 1t

jj t r ; (31)

 
−

σ σ + σ + σ +=
α = α = α∏ 2 1

( ) 2 ( 1 2) ( 1 2) 2 ( 1 2)1 ( ) ( ) ( )t
j t g t g t gj t l h h . (32)
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Since σ σ +α ≥ α2 ( 1) 2 ( 1 2)( ) ( )t t gh h , then

 σ σ σ σ σ σα ⋅ α ⋅ α ≥ α ⋅ α ⋅ α( 1) ( 1) ( 1) ( 2) ( 2) ( 2)( ) ( ) ( ) ( ) ( ) ( )t t t t t tH L R H L R ; (33)

 σ σ
σ σ

σ σ

= > =
∑ ∑

( 1) ( 2)
( 1) ( 2)

( ) ( )

;t t
t tn n

i ii i

P P
w w

P P
 (34)

ii) if σ − σ + σ + σ + σα = = α > > α = = α > > α   2 ( 1 1) 2 ( 1 2) 2 ( 1 ) 2 ( 1 ) 2 ( 2)( ) ( ) ( ) ( ) ( )t g t g t p t q ts s s s s ,  
we have:

 σ + σ +α ≥ ≥ α2 ( 1 ) ( 1 )( ) ... ( )t p t qh  (35)

and

 
σ + σ + −

σ + σ + + σ

σ= +

σ + σ +

α = × × ×

α × × × = α

∏ 



( 1 1) ( 1 1)

( 1 ) ( 1 1) ( 2)

2
( )1 1

2 ( 1 ) 2 ( 1 )

( ) 1 1

( ) 1 1 ( );
t t p

t p t p t

t
j a aj t

t p a a a t p

r

h h  (36)

 

σ σ + σ + σ + +

σ + − σ + σ + + σ −

−
σ σ +=

σ + σ + σ +

α = × × × α × × ×

 × α × × × = α ⋅ α

∏  



( 1) ( 1 g2-1) ( 1 g2) ( 1 2 1)

( 1 1) ( 1 ) ( 1 1) ( 2 1)

2 1
( ) 2 ( 1 g2)1

2 ( 1 ) 2 ( 1 g2) 2 ( 1 )

( ) 1 1 ( ) 1

1 ( ) 1 1 ( ) ( ).
t t t t g

t q t q t q t

t
j a a t a aj t

a t q a a a t t q

l h

h h h
 (37)

Hence, −
σ σ σ σ σ= + =

α ⋅ α ≥ α >∏ ∏2 2 1
2 ( 1) ( ) ( ) ( 1) ( 2)1 1 1( ) ( ) ( ), ,t t

t j j t tj t j th r l P P  and

 

σ σ
σ σ

σ σ

= > =
∑ ∑

( 1) ( 2)
( 1) ( 2)

( ) ( )

t t
t tn n

i ii i

P P
w w

P P
. (38)

Similarly, we could prove the more general case, i.e.

 

σ − σ σ + σ +

σ + σ + σ + σ +

σ + σ

α = = α = = α > > α =

= α > > α = = α >  > α =

= α > > α

  

   

 

2 ( 1 1) 2 ( 1) 2 ( 1 2) 2 ( 1 1)

2 ( 1 2) 2 ( 1 ) 2 ( 1 ) 2 ( 1 1)

2 ( 1 2) 2 ( 2)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( );

t g t t g t k

t k t p t q t m

t m t

s s s s
s s s s
s s

 
 (39)

(2) If σ σα α( 1) ( 2)~t t , then

 σ σ + σα α α( 1) ( 1 1) ( 2)~ ~ ~t t t ; (40)

 σ σ + σα = α = = α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s ; (41)

 σ σ + σα = α = = α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t th h h  (42)

and

 σ σα = α( 1) ( 2)( ) ( )t tS S ; (43)

 σ σ σ σα = α = α = α( 1) 2 ( 1) ( 2) 2 ( 2)( ) ( ) ( ) ( )t t t tH h H h ; (44)

Since σ σ + σα = α = = α( 1) ( 1 1) ( 2)t t t  and σ σ + σα = α = = α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , we  have
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 σ σ + σ −α = α = = α =( 1) ( 1 1) ( 2 1)( ) ( ) ( ) 1t t tl l l ; (45)

 σ + σ + σα = α = = α =( 1 1) ( 1 2) ( 2)( ) ( ) ( ) 1t t tr r r , (46)

then

 
− − −

σ σ σ σ σ= = =
α = α = α ⋅ α = α∏ ∏ ∏2 1 1 1 2 1

( 2) ( ) ( ) ( ) ( 1)1 1 1( ) ( ) ( ) ( ) ( )t t t
t j j j tj j j tL l l l L ; (47)

 σ σ σ σ σ= + = + = +
α = α = α ⋅ α = α∏ ∏ ∏2

( 1) ( ) ( ) ( ) ( 2)1 1 1 1 2 1( ) ( ) ( ) ( ) ( )n t n
t j j j tj t j t j tR r r r R . (48)

Hence, σ σ=( 1) ( 2)t tP P  and σ σ
σ σ

σ σ

= = =
∑ ∑

( 1) ( 2)
( 1) ( 2)

( ) ( )

t t
t tn n

i ii i

P P
w w

P P
.

Thus the proof is completed.
Theorem 1 indicates that the PWD method could put different weights into different IIFNs, 

just based on their score value and accuracy degree, which also demonstrates the monotonicity.
Theorem 2. (Scale-invariance) Assume that α = ([ , ],[ , ])i i i i ia b c d  (i = 1, 2, …, n) is a col-

lection of IIFNs, σα ( )i  is a permutation of iα  such that σ − σα ≥ α( 1) ( )i i , σα ( 1)t  and σα ( 2)t  
(t1<t2) are any two IIFNs in σα ( )i , σ σ σ= (1) (2) ( )( , , , )nw w w w  is precise weight vector of 
IIFNs σα ( )i , and , { 1, 1 1, , 2}ti tj t t t ∈ +  , then

(1) if σ σ + σα > α > > α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , then σ σ

σ σ

α
=

α
( ) 2 ( )

( ) 2 ( )

( )
( )

ti ti

tj tj

w s
w s

;

(2) if σ σ + σα = α = = α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , then σ σ

σ σ

α
=

α
( ) 2 ( )

( ) 2 ( )

( )
( )

ti ti

tj tj

w h
w h

.

Proof. For any IIFNs σα ( )ti  and ( )tjσα , we proof (1) and (2) as follows:

(1) If σ σ + σα > α > > α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , σ − σα > α2 ( 1 1) 2 ( 1)( ) ( )t ts s , and 
σ σ +α > α2 ( 2) 2 ( 2 1)( ) ( )t ts s , we have:

 σ σ + σα = α = = α =( 1) ( 1 1) ( 2)( ) ( ) ( ) 1t t tH H H ; (49)

 
−

σ σ + σ σ=
α = α = = α = α∏

1 1
( 1) ( 1 1) ( 2) ( )1( ) ( ) ( ) ( )t
t t t jjL L L l ; (50)

 σ σ + σ σ= +
α = α = = α = α∏( 1) ( 1 1) ( 2) ( )2 1( ) ( ) ( ) ( )n

t t t jj tR R R r , (51)

then

 

σ σ σ

σ σ σ

α
= =

α
( ) ( ) 2 ( )

( ) ( ) 2 ( )

( )
( )

ti ti ti

tj tj tj

w P s
w P s

, i, j = t1, t1+1, …, t2 . (52)

If σ σ + σα > α > > α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , σ − σα > α2 ( 1 1) 2 ( 1)( ) ( )t ts s , 
σ σ +α = α2 ( 2) 2 ( 2 1)( ) ( )t ts s , we have:

 σ σ + σ −α = α = = α =( 1) ( 1 1) ( 2 1)( ) ( ) ( ) 1t t tH H H ; (53)

 σ σα = α( 2) 2 ( 2)( ) ( )t tH h ; (54)
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−

σ σ + σ σ=
α = α = = α = α∏

1 1
( 1) ( 1 1) ( 2) ( )1( ) ( ) ( ) ( )t
t t t jjL L L l ; (55)

 σ σ + σ − σ σ= +
α = α = = α = α ⋅ α∏( 1) ( 1 1) ( 2 1) 2 ( 2) ( )2 1( ) ( ) ( ) ( ) ( )n

t t t t jj tR R R h r ; (56)

 σ σ= +
α = α∏( 2) ( )2 1( ) ( )n

t jj tR r , (57)

then

 

σ σ σ

σ σ σ

α
= =

α
( ) ( ) 2 ( )

( ) ( ) 2 ( )

( )
( )

ti ti ti

tj tj tj

w P s
w P s

, i, j = t1, t1+1, …, t2 . (58)

We could similarly prove other two cases, such as:

i) 2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s sσ σ + σα > α > > α , σ − σα = α2 ( 1 1) 2 ( 1)( ) ( )t ts s , and 

σ − σα > α2 ( 1 1) 2 ( 1)( ) ( )t ts s ;

ii) σ σ + σα > α > > α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , σ − σα = α2 ( 1 1) 2 ( 1)( ) ( )t ts s , and 

σ − σα = α2 ( 1 1) 2 ( 1)( ) ( )t ts s .

(2) If σ σ + σα = α = = α2 ( 1) 2 ( 1 1) 2 ( 2)( ) ( ) ( )t t ts s s , σ − σα > α2 ( 1 1) 2 ( 1)( ) ( )t ts s , and 

2 ( 2) 2 ( 2 1)( ) ( )t ts sσ σ +α > α , we have:

 σ σα = α( ) 2 ( )( ) ( )i iH h , i = t1, t1+1, …, t2 ; (59)

 
−

σ σ + σ σ σ=
α = α = = α = α ⋅ α∏

1 1
( 1) ( 1 1) ( 2) 2 ( 1) ( )1( ) ( ) ( ) ( ) ( )t
t t t t jjL L L h l ; (60)

 σ σ + σ σ σ= +
α = α = = α = α ⋅ α∏( 1) ( 1 1) ( 2) 2 ( 2) ( )2 1( ) ( ) ( ) ( ) ( )n

t t t t jj tR R R h r , (61)

then

 

σ σ σ

σ σ σ

α
= =

α
( ) ( ) 2 ( )

( ) ( ) 2 ( )

( )
( )

ti ti ti

tj tj tj

w P h
w P h

, i, j = t1, t1+1, …, t2 .. (62)

We could similarly prove other three cases, i.e.

i)  σ σα = = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ − σα > α2 ( 1 1) 2 ( 1)( ) ( )t ts s , σ σ +α = α2 ( 2) 2 ( 2 1)( ) ( )t ts s ;

ii)  σ σα = = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ − σα = α2 ( 1 1) 2 ( 1)( ) ( )t ts s , σ σ +α = α2 ( 2) 2 ( 2 1)( ) ( )t ts s ;

iii)  σ σα = = α2 ( 1) 2 ( 2)( ) ( )t ts s , σ − σα = α2 ( 1 1) 2 ( 1)( ) ( )t ts s , σ σ +α > α2 ( 2) 2 ( 2 1)( ) ( )t ts s .

Thus the proof is completed.

Example 1. Let α =1 ([0.1,0.8],[0.1,0.2]), α =2 ([0.1,0.7],[0.1,0.2]),   α =  3 ([0.3,0.6],[0.2,0.3]),
α =4 ([0.2,0.6],[0.1,0.3])  and α =5 ([0.2,0.5],[0.1,0.4])  be five interval-valued intuitionistic 
fuzzy numbers (IIFNs) expressed by five DMs (decision makers). To aggregate these attribute 
values and reflect DMs’ preference, we calculate DMs’ weights used the prioritized weighted 
(Xu, Sun 2011) and PWD methods respectively as follows.

According to Eqs (2) and (3), we have:

 α =2 1( ) 0.65s , α =2 1( ) 0.30h , α =2 2( ) 0.625s , α =2 2( ) 0.275h , α =2 3( ) 0.60s ;
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 α =2 3( ) 0.35h , α =2 4( ) 0.60s , α =2 4( ) 0.30h , α =2 5( ) 0.55s , α =2 5( ) 0.30h ,

then α > α > α = α > α2 1 2 2 2 3 2 4 2 5( ) ( ) ( ) ( ) ( )s s s s s  and α α α α α   1 2 3 4 5 .

1. If we use the prioritized weighted method to calculate, then we have:

 0 1V = , = α =1 2 1( ) 0.65V s , = α =2 2 4( ) 0.60V s ; 

 = α =3 2 3( ) 0.60V s , = α =4 2 4( ) 0.60V s , = α =5 2 5( ) 0.55V s .

Therefore,

 1 0T 1V= = , σ σ=
= = =∏1

2 ( ) (1)1T 0.65kk V V , σ=
= =∏2

3 ( )1T 0.39kk V ; 

 σ=
= =∏3

4 ( )1T 0.234kk V , σ=
= =∏4

5 ( )1T 0.1278kk V

and 
σ

=

α =
∑

1
1 (1) 5

1

T
( )= 0.4148

Tii

w , σ

=

α =
∑

2
1 (2) 5

1

T
( )= 0.2696

Tii

w , σ

=

α =
∑

3
1 (3) 5

1

T
( )= 0.1618

Tii

w ; 

 
σ

=

α =
∑

4
1 (4) 5

1

T
( )= 0.1008

Tii

w , σ

=

α =
∑

5
1 (5) 5

1

T
( )= 0.0530

Tii

w .

Thus,

( ) ( )σ σ σ σ σα α α α α1 (1) 1 (2) 1 (3) 1 (4) 1 (5)( ), ( ), ( ), ( ), ( ) = 0.4148,0.2696,0.1618,0.1008,0.0530w w w w w

Furthermore, we have σ σ σ σ σα α α α α1 (1) 1 (2) 1 (3) 1 (4) 1 (5)( )> ( )> ( )> ( )> ( )w w w w w  which reflects 
the monotonicity and DMs’ preference, but the scale-invariance.

2. If we use the PWD method to calculate, then we have
( ) ( )σ σ σ σ σα α α α α         (1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 0.65, 0.625, 0.60, 0.60, 0.55S S S S S ;

( ) ( )σ σ σ σ σα  α  α  α  α         (1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 1.00, 1.00, 0.35, 0.30, 1.00H H H H H ;

( ) ( )σ σ σ σ σα α α α α         (1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 1.00, 1.00, 1.00, 1.00, 0.30L L L L L ;

( ) ( )σ σ σ σ σα α α α α         (1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 0.35, 0.35, 1.00, 1.00, 1.00R R R R R .

Therefore,
( ) ( )σ σ σ σ σα α α α α(1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 0.2275,0.2188,0.2100,0.1800,0.1650P P P P P ;

( ) ( )σ σ σ σ σα α α α α(1) (2) (3) (4) (5)( ), ( ), ( ), ( ), ( ) = 0.2272,0.2185,0.2097,0.1798,0.1648w w w w w

Furthermore, we have σ σ σ σ σα α α α α(1) (2) (3) (4) (5)( )> ( )> ( )> ( )> ( )w w w w w  and

 

σ σ

σ σ

α α
= =

α α
(1) 2 (1)

(2) 2 (2)

( ) ( )
1.0400

( ) ( )
w s
w s

, σ σ

σ σ

α α
= =

α α
(3) 2 (3)

(4) 2 (4)

( ) ( )
1.667

( ) ( )
w h
w h

,

which reflects the monotonicity, DMs’ preference and scale-invariance. For the third property, 
the calculation weight of size and proportion by PWD method is similar to that by IIFN this also 
is the advantage in comparison to prioritized weighted method and other weighted methods.

.

.
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3. Interval-valued intuitionistic fuzzy ordered precise weighted aggregation 
operators

Based on Definition 4, we give the definitions of IIFOPWA and IIFOPWG as follows:
Definition 6. Let ([ , ],[ , ])i i i i ia b c d=α  = ( 1,2, , )i n  be a collection of IIFNs, inter-

val-valued intuitionistic fuzzy order precise weighted averaging (IIFOPWA) operator and the 
interval-valued intuitionistic fuzzy order precise weighted geometric (IIFOPWG) operator 
are defined as follows:

 σ σ σ σ σ σα α α α ⊕ α ⊕ ⊕ α 1 2 (1) (1) (2) (2) ( ) ( )IIFOPWA( , , , )=n n nw w w ; (63)

 
σ σ σ

σ σ σα α α α ⊗ α ⊗ ⊗ α 

(1) (2) ( )
1 2 (1) (2) ( )IIFOPWG( , , , )= nw w w

n n , (64)

where σ σ σα α α(1) (2) ( )( , , , )n  is a permutation of α α α1 2( , , , )n  such that σ − σα ≥ α( 1) ( )i i , 
and σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi .

In the following, we discuss the relationships and properties of two developed inter-
val-valued intuitionistic fuzzy aggregation operators.

Theorem 3 .  Let α = ([ , ],[ , ])i i i i ia b c d  ( 1, 2, , )i n=   be a collection of IIFNs, 
σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi , and 1 2=( , , , )nw w w w  is a reduction 

permutation of σ σ σ(1) (2) ( )( , , , )nw w w , then

 α α α = α α α 1 2 1 2IIFOPWA( , , , ) IIFWA( , , , )n n ; (65)

 α α α   Ι α α α 1 2 1 2IIFOPWG( , , , ) = IFWG( , , , )n n . (66)

Proof. σ σ σα α α(1) (2) ( )( , , , )n  is a permutation of α α α1 2( , , , )n , based on Theorem 1, 
we have σ σ σ(1) (2) ( )( , , , )nw w w  is a permutation of 1 2( , , , )nw w w  such that σ − σ≥( 1) ( )i iw w  
for 2,3, ,i n=  . Thus, σ σ σ σ σ σα α α(1) (1) (1) (2) (1) ( )( , , , )nw w w  is also a permutation of 

α α α1 1 2 2( , , , )n nw w w  such that σ − σ − σ σα ≥ α( 1) ( 1) ( ) ( )i i i iw w , then

σ σ σ σ σ σα ⊕ α ⊕ ⊕ α = α ⊕ α ⊕ ⊕ α (1) (1) (2) (2) ( ) ( ) 1 1 2 2n n n nw w w w w w . (67)

Therefore, 

 α α α = α α α 1 2 1 2IIFOPWA( , , , ) IIFWA( , , , )n n . (68)

Similarly, we have:

 α α α  α α α 1 2 1 2IIFOPWG( , , , ) =IIFWG( , , , )n n . (69)
Thus the proof is completed.

Theorem 4. Let ( )α = [ , ],[ , ]i i i i ia b c d  ( 1, 2, , )i n=   be a collection of IIFNs, then IIFOPWA 
operator aggregated value is also an IIFN, and

 

σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ= = = =

α α α   α ⊕ α ⊕ ⊕ α =

    − − − −        ∏ ∏ ∏ ∏

 

( ) ( ) ( ) ( )

1 2 (1) (1) (2) (2) ( ) ( )

( ) ( ) ( ) ( )1 1 1 1

IIFOPWA( , , , ) =

1 (1 ) ,1 (1 ) , ,i i i i

n n n

n n n nw w w w
i i i ii i i i

w w w

a b c d , (70)

where (1) (2) ( )( , , , )nw w wσ σ σ  is precise weight vector of αi .

Proof. Based on Theorem 3, we can get:

 α α α = α α α 1 2 1 2IIFOPWA( , , , ) IIFWA( , , , )n n . (71)
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Similar to the proof of IIFWA operator (Xu 2007b), we can get Theorem 4 easily.
Theorem 5. (Boundness) Let ( )α = [ , ],[ , ]i i i i ia b c d  ( 1, 2, , )= i n  be a collection of IIFNs, 

and σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi . If

 
{ } { } { } { }−  α  

 
= [min ,min ],[max ,max ]i i i ii i i i

a b c d ; (72)

 
{ } { } { } { }+  α  

 
= [max ,max ],[min ,min ]i i i ii ii i

a b c d , (73)

then

 
− +α ≤ α α α ≤ α1 2IIFOPWA( , , , )n . (74)

Proof. Since { } { }min maxi i ii i
a a a≤ ≤ , { } { }≤ ≤ min maxi i ii i

b b b , { } { }min maxi i ii i
c c c≤ ≤  

and { } { }≤ ≤ min maxi i ii i
d d d , for all i , then

 

{ }

{ } { }

σ σ

σ=

σ= =
− − ≥ − − =

 − − = 
 

∑

∏ ∏( ) ( )

( )1

( )1 11 (1 ) 1 (1 min )

1 1 min min ;

i i

n
ii

n nw w
i ii i i

w

i ii i

a a

a a  (75)

 
{ } { } { }

σ σ=
σ

σ= =
   ≥ = =   
   

∑
∏ ∏

( ) ( )1
( )

( )1 1 min min min
n

i ii
i

w wn nw
i i i ii i i i i

c c c c . (76)

Similarly, we have:

 
{ }( )

( )1
1 (1 ) maxin w

i ii i
a aσ

σ=
− − ≤∏ ; (77)

 
{ }σ

σ=
≤∏ ( )

( )1 maxin w
i ii i

c c ; (78)

 
{ } { }( )

( )1
min 1 (1 ) maxin w

i i iii i
b b bσ

σ=
≤ − − ≤∏ ; (79)

 
{ } { }σ

σ=
≤ ≤∏ ( )

( )1min maxin w
i i iii i

d d d . (80)

Set ( )α α α α =1 2IIFOPWA( , , , ) = [ , ],[ , ]n a b c d , then we can get:

 

{ } { } { } { }
+

+ − + −
α ≤ = α2 2

2 max min max min
( ) ( )

4

i i i ii ii i
a c b d

s s ; (81)

 

{ } { } { } { }
−

+ − + −
α ≥ = α2 2

2 min max min max
( ) ( )

4

i i i ii ii i
a c b d

s s ; (82)

(1) If +α < α2 2( ) ( )s s  and −α > α2 2( ) ( )s s , we have:

 
− +α < α α α < α1 2IIFOPWA( , , , )n ; (83)

(2) If +α = α2 2( ) ( )s s , we have { }= max ii
a a , { }max ii

b b= , { }= min ii
c c , { }min ii

d d=  and

 
++ + +

α = = α2 2( ) ( )
4

a b c dh h . (84)

Based on the order relation between two IIFNs (Xu, Yager 2006), we have:
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+α α α α1 2IIFOPWA( , , , ) ~n ; (85)

(3) If −α = α2 2( ) ( )s s , we have { }min ii
a a= , { }= min ii

b b , { }max ii
c c= , { }= max ii

d d  and

 
−+ + +

α = = α2 2( ) ( )
4

a b c dh h ; (86)

 
−α α α α1 2IIFOPWA( , , , ) ~n . (87)

From the above three phases, (1) (2) and (3), we have:

 
−α ≤ α α α ≤ α1 2IIFOPWA( , , , )n . (88)

This completes the proof of Theorem 5.
Theorem 6. (Commutativity) Let α = ([ , ],[ , ])i i i i ia b c d ( 1, 2, , )i n=   be a collection of 

IFFNs, and α α α

' ' '
1 2( , , , )n  is any permutation of α α α1 2( , , , )n , then 

 α α α α α α 

' ' '
1 2 1 2IIFOPWA( , , , )=IIFOPWA( , , , )n n . (89)

Proof. For α α α

' ' '
1 2( , , , )n  is a permutation of α α α1 2( , , , )n , we have:

 σ σ σ σ σ σα α α = α α α 

' ' '
(1) (2) ( ) (1) (2) ( )( , , , ) ( , , , )n n , (90)

where σ σ σα α α

' ' '
(1) (2) ( )( , , , )n  is a permutation of ' ' '

1 2( , , , )nα α α  with σ − σα ≥ α' '
( 1) ( )i i , and 

σ σ σα α α(1) (2) ( )( , , , )n  is a permutation of α α α1 2( , , , )n  such that σ − σα > α( 1) ( )i i , for 
2,3, ,i n=  . By Eqs (6)–(13), we have:

 σ σ σ σ σ σ= (1) (2) ( ) (1) (2) ( )( , , , ) ( , , , )n nw w w w w w . (91)

Therefore,

 α α α α α α 

' ' '
1 2 1 2IIFOPWA( , , , )=IIFOPWA( , , , )n n . (92)

This completes the proof of Theorem 6.
Theorem 7. (Idempotency) Let ( )α = [ , ],[ , ]i i i i ia b c d  ( 1, 2, , )i n=   be a collection of 

IIFNs, and σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi . If all αi  ( 1, 2, , )i n=   
are equal, i.e. ( )α = α = [ , ],[ , ]i a b c d , then

 ( )α α α α =1 2IIFOPWA( , , , )= [ , ],[ , ]n a b c d . (93)

Proof. Since ( )α = α = [ , ],[ , ]i a b c d  ( 1, 2, , )i n=  , then by Theorem 2, we have:

 σ σ σ= = =(1) (2) ( )= 1/nw w w n . (94)

Based on Definition 6, we have:

 σ σ σ σα α α   α ⊕ ⊕ α = α 1 2 (1) (1) ( ) ( )IIFOPWA( , , , ) =n n nw w , (95)

which complete the proof of the theorem.
Corollary 1. If ( )[ , ],[ , ]i i i i ia b c dα =  ( 1, 2, , )i n=   is a collection of the largest IIFNs, i.e. 

( )α = α = [1,1],[0,0]i , for all i , and σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi , then

 σ σ σ σα α α   α ⊕ ⊕ α = α = 1 2 (1) (1) ( ) ( )IIFOPWA( , , , ) = ([1,1],[0,0])n n nw w , (96)

which is also the largest IIFN.
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Proof. Similar to the proof of Theorem 7 we can get Corollary easily.
Corollary 2. (Non-compensatory) Assume that ( )α = [ , ],[ , ]i i i i ia b c d  is the smallest IIFN, 

i.e. ([0,0],[1,1])iα = , then

 α α α   α α α 1 2 2 3IIFOPWA( , , , ) = IIFOPWA( , , , )n n , 1i = ; (97)

 − +α α α   α α α α  1 2 1 1 1IIFOPWA( , , , ) = IIFOPWA( , , , , , )n i i n , 2, ,i n=  . (98)

Proof. Since α = ([0,0],[1,1])i , by Definition 5, we have +
σα →( )( ) 0iw , then

 
σ σ

σ σ− = − =( ) ( )
( ) ( )(1 ) (1 ) 1i iw w
i ia b ; (99)

 
σ σ

σ σ= =( ) ( )
( ) ( ) 1i iw w
i ic d ; (100)

σ σ − σ σ + σ σ σ − σ + σ   

' ' ' '
(1) ( 1) ( ) ( 1) ( ) (1) ( 1) ( 1) ( )=( , , , , , , )=( , , ,0, , , )i i i n i i nw w w w w w w w w w , (101)

where σ σ − σ σ + σ (1) ( 1) ( ) ( 1) ( )=( , , , , , , )j j j nw w w w w w  is precise weight vector of αi , and 
σ σ − σ + σ 

' ' ' '
(1) ( 1) ( 1) ( )( , , , , , )j j nw w w w  is precise weight vector of α'

i .

Therefore,

 − +α α α = α α α α  1 2 1 1 1IIFOPWA( , , , ) IIFOPWA( , , , , , )n i i n . (102)

The other case i = 1 can be obtained similarly.
Thus the proof is completed.
Corollary 1 indicates that the alternative or sample could be the best one if every DM thinks 

so and gives the biggest IIFNs ([1,1],[0,0]) , in group decision making. Corollary 2 shows that 
the attributes given the smallest IIFN ([0,0],[1,1]) , by evaluation of DMs, will be overlooked.

Based on IIFOPWA and geometric mean, here we define an interval-valued intuitionistic 
fuzzy precise weighted geometric (IIFOPWG) operator as follows.

Theorem 8. Let ( )α = [ , ],[ , ]i i i i ia b c d  = ( 1,2, , )i n  be a collection of IIFNs, then the 
IIFOPWG operator aggregated value is also an IIFN, and

 σ σ σ

σ σ σ σ

σ σ σ

σ σ σ σ= = = =

α α α   α ⊗ α ⊗ ⊗ α

    − − − −        ∏ ∏ ∏ ∏

 

(1) (2) ( )

( ) ( ) ( ) ( )

1 2 (1) (2) ( )

( ) ( ) ( ) ( )1 1 1 1

IIFOPWG( , , , ) = =

, , 1 (1 ) ,1 (1 ) ,

n

i i i i

w w w
n n

n n n nw w w w
i i i ii i i ia b c d

 
(103)

where σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector.
Proof. The proof of Theorem 8 is similar to Theorem 4.
Theorem 9. (Boundness) Let α = ([ , ],[ , ])i i i i ia b c d  = ( 1,2, , )i n  be a collection of IIFNs, 

and σ σ σ(1) (2) ( )( , , , )nw w w  is precise weight vector of αi . If 

 { } { } { } { }−  α  
 

= [min ,min ],[max ,max ]i i i ii i i i
a b c d ; (104)

 { } { } { } { }+  α  
 

= [max ,max ],[min ,min ]i i i ii ii i
a b c d , (105)

then

 1 2IIFOPWG( , , , )n
− +α ≤ α α α ≤ α . (106)
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Proof. The proof of Theorem 9 is similar to Theorem 5.
Theorem 10. (Commutativity) Let ( )α = [ , ],[ , ]i i i i ia b c d  ( 1, 2, , )i n=   be a collection of 

IIFS, and α α α

' ' '
1 2( , , , )n  is any permutation of α α α1 2( , , , )n , then

 α α α   α α α 

' ' '
1 2 1 2IIFOPWG( , , , ) = IIFOPWG( , , , )n n . (107)

Proof. The proof of Theorem 10 is similar to Theorem 6.
Theorem 11. (Idempotency) Let ( )α = [ , ],[ , ]i i i i ia b c d  = ( 1,2, , )i n  be a collection of 

IIFNs, where (1) (2) ( )( , , , )nw w wσ σ σ  is precise weight vector of αi . If all αi  are equal, i.e. 
( )α = α = [ , ],[ , ]i a b c d , for all i , then

 α α α α =1 2IIFOPWG( , , , )= ([ , ],[ , ])n a b c d . (108)

Proof. The proof of Theorem 11 is similar to Theorem 7.
Corollary 3. (Non-compensatory) If ( )α = =[ , ],[ , ] ([0,0],[1,1])i i i i ia b c d  is a smallest 

IIFN, then

 α α α   Ι α α α 1 2 2 3IIFOPWG( , , , ) = IFOPWG( , , , )n n , ( 1)i = ; (109)

 − +α α α   Ι α α α α  1 2 1 1 1IIFOPWG( , , , ) = IFOPWG( , , , , , )n i i n , ( 2, , )i n=  . (110)

Proof. The proof of Corollary 3 is similar to Corollary 2.

4. An application of IIFOPWA and IIFOPWG to group decision making

The 2nd Youth Olympic Games will be held in Nanjing, during August 16–28, 2014. To propa-
gandize the Olympic spirit and show our national culture, the organization committee wants 
to introduce a chief director of the opening and closing ceremonies. There is a panel with four 
possible alternatives to choose: (1) a1 is the chief director of the Beijing Olympic Games; (2) a2 
is the chief director of the 16th Asian Olympic Games; (3) a3 is a international famous director 
from the United States; and (4) a4 is a famous director from the domestic. The organization 
committee must make a decision according to five attributes: (1) c1 is the morality; (2) c2 is 
the comprehension of Chinese and Nanjing culture; (3) c3 is the international popularity and 
reputation; (4) c4 is the work experience; and (5) c5 is his master work. This introduction has 
been raised great attention from the international Olympic committee and Nanjing municipal 
government and local government official d1, organization committee chairman d2, master 
of Chinese culture d3, and two professional moviemakers d4 and d5 sets up the panel of deci-
sion makers which will take the whole responsibility for this introduction. The four possible 
alternatives ai (i = 1, 2, 3, 4) are to be evaluated using the interval-valued intuitionistic fuzzy 
numbers (IIFNs) by five DMs (decision makers) dk (k = 1, 2, 3, 4, 5). Meanwhile, five attributes 
cj (j = 1, 2, 3, 4, 5) are equal, and the weight vector of five attributes is w = (0.2, 0.2, 0.2, 0.2, 0.2). 
However, the weights of five decision makers are completely unknown. Therefore, we could 
calculate and give a weight vector to five DMs by the precise weight-determined method for 
the larger score value and accuracy degree means the more information and knowledge about 
alternatives. Furthermore, we can set or change all the attributes cj (j = 1, 2, 3, 4, 5) to be the 
benefit type. Then, we construct the following five interval-valued intuitionistic fuzzy decisions 
matrices ×=( ) 4 5( )ij

k kD d  (k = 1, 2, 3, 4, 5) (Tables 1–5).
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Based on PWD method and IIFOPWA operator, the main steps are as follows:
Step 1: Calculate the score values and accuracy degrees of all IIFNs based on 2( )s α  and 

2( )h α , and construct the interval-valued intuitionistic fuzzy score and accuracy matrices, 
( ) 4 5( )ij
k kS s ×=  and ( ) 4 5( ) ( 1,2,3,4,5)ij

k kA k×= α = . Here we only give an interval-valued intu-
itionistic fuzzy score matrix and accuracy matrix (Tables 6 and 7), and others can be calcu-
lated similarly.

Step 2: Calculate precise weight vector 

( ) (1) (2) (3) (4) (5)( ) ( ( ), ( ), ( ), ( ), ( ))ij ij ij ij ij ij
qw d w d w d w d w d w dσ σ σ σ σ σ=

of ( ) (1) (2) (3) (4) (5)( , , , , )ij ij ij ij ij ij
qd d d d d dσ σ σ σ σ σ= , based on Eqs. (6)–(13), we can get:

11
( )( ) (0.2145,0.2133,0.1937,0.1919,0.1865);qw dσ =

  
21

( )( ) (0.2136,0.2018,0.1988,0.1958,0.1899)qw dσ = ;

31
( )( ) (0.2040,0.2040,0.2011,0.1955,0.1955);qw dσ =

 
41

( )( ) (0.2051,0.2022,0.2107,0.1910,0.1910)qw dσ = ;

12
( )( ) (0.2093,0.2064,0.2035,0.1948,0.1860);qw dσ =

 
22

( )( ) (0.2130,0.2071,0.2012,0.1923,0.1864)qw dσ = ;

32
( )( ) (0.2137,0.2051,0.2009,0.1966,0.1838);qw dσ =

 
42

( )( ) (0.2157,0.2126,0.2032,0.2001,0.1685)qw dσ = ;

13
( )( ) (0.2211,0.2180,0.2059,0.1843,0.1707);qw dσ =

 
23

( )( ) (0.2310,0.2202,0.1949,0.1913,0.1625)qw dσ = ;

33
( )( ) (0.2131,0.2045,0.2017,0.1960,0.1847);qw dσ =

  
43

( )( ) (0.2210,0.2138,0.1920,0.1884,0.1848)qw dσ = ;

14
( )( ) (0.2151,0.2093,0.2006,0.1890,0.1860);qw dσ =

  
24

( )( ) (0.2112,0.2081,0.2050,0.1957,0.1801)qw dσ = ;

34
( )( ) (0.2211,0.2088,0.2058,0.1835,0.1808);qw dσ =

  
44

( )( ) (0.2133,0.2000,0.1967,0.1967,0.1933)qw dσ = ;

15
( )( ) (0.2065,0.2038,0.1984,0.1957,0.1957);qw dσ =

  
25

( )( ) (0.2047,0.2047,0.2018,0.1988,0.1901)qw dσ = ;

35
( )( ) (0.2190,0.2104,0.2075,0.1873,0.1758);qw dσ =

  
45

( )( ) (0.2239,0.2003,0.2003,0.1909,0.1846)qw dσ = .
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Step 3: Utilize the precise weights ( )( )ij
kw dσ  and IIFOPWA operator to aggregate all inter-

val-valued individual intuitionistic fuzzy decision matrices ( ) 4 5( )ij
k kD d ×=  ( 1, 2,3,4,5)k =  

into the collective interval-valued intuitionistic fuzzy decision matrix 4 5( )ijD d ×=  (Table 8).

Step 4: Utilize the IIFWA operator to aggregate all preference values ijd  ( 1, 2,3,4,5)j =  in 
the thi  line of D , and get the overall preference values id  ( 1, 2,3,4)i = , where w = (0.20, 
0.20, 0.20, 0.20, 0.20).

 d 1 = ([0.7863, 0.8837],[0.0000, 0.1127]), d 2 = ([0.7019, 0.8309],[0.0000, 0.1620]), 

 d 3 = ([0.7205, 0.8525],[0.0000, 0.1334]), d 4 = ([0.6784, 0.8030],[0.0000, 0.1759]). 

Step 5: Calculate the score 2 ( )is d  of id  ( 1, 2,3,4)i =  respectively, we can get:

α =2 1( ) 0.8894s , α =2 2( ) 0.8427s , α =2 3( ) 0.8599s , α =2 4( ) 0.8264s .

Then, α > α > α > α2 1 2 3 2 2 2 4( ) ( ) ( ) ( )s s s s , and α α α α  1 3 2 4 .
Based on PWD method and IIFOPWG operator, the main steps are as follows:
Step 1°: See Step 1.
Step 2°: See Step 2.
Step 3°: Utilize the precise weights ( )( )ij

kw dσ  and IIFOPWG operator to aggregate all the in-
terval- valued individual intuitionistic fuzzy decision matrices ( ) 4( )ij

k k kD d ×=  ( 1, 2,3,4,5)k =  
into the collective interval-valued intuitionistic fuzzy decision matrix 4 5( )ijD d ×=  (Table 9).
Table 8. Collective interval-valued intuitionistic fuzzy decision matrix of D

c1 c2

a1 ([0.7765,0.8439],[0.0000,0.1593]) ([0.7486,0.8770],[0.0000,0.1265])

a2 ([0.7782,0.8463],[0.0877,0.1477]) ([0.7241,0.8661],[0.0000,0.1364])

a3 ([0.8059,0.8828],[0.0500,0.1000]) ([0.4193,0.5812],[0.2181,0.4097])

a4 ([0.8276,0.8936],[0.0000,0.0908]) ([0.6825,0.8326],[0.0000,0.1334])

c3 c4

a1 ([0.7644,0.8853],[0.0000,0.1203]) ([0.7333,0.8700],[0.0000,0.0973])

a2 ([0.5655,0.6956],[0.0000,0.2850]) ([0.6636,0.8396],[0.0877,0.1642])

a3 ([0.7618,0.9060],[0.0000,0.0949]) ([0.7103,0.8729],[0.0000,0.1180])

a4 ([0.5316,0.6759],[0.1318,0.2891]) ([0.6076,0.7641],[0.1102,0.2296])

c5

a1 ([0.8739,0.9257],[0.0000,0.0769])

a2 ([0.7367,0.8624],[0.0000,0.1183])

a3 ([0.7807,0.8811],[0.0000,0.0921])

a4 ([0.6579,0.7822],[0.0908,0.2096])
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Table 9. Collective interval-valued intuitionistic fuzzy decision matrix of D

c1 c2

a1 ([0.7650,0.8373],[0.0839,0.1671]) ([0.7301,0.8708],[0.0314 ,0.1331])

a2 ([0.7703,0.8406],[0.0907,0.1518]) ([0.7082,0.8605],[0.0525,0.1422])

a3 ([0.7996,0.8801],[0.0500,0.1000]) ([0.3987,0.5799],[0.2478,0.4106])

a4 ([0.8224,0.8886],[0.0527,0.1028]) ([0.6680,0.8305],[0.0629,0.1430])

c3 c4

a1 ([0.7505,0.8713],[0.0535,0.1339]) ([0.7074,0.8608],[0.0224,0.1152])

a2 ([0.5294,0.6776],[0.1678,0.2958]) ([0.6466,0.8303],[0.0907,0.1736])

a3 ([0.7479,0.8999],[0.0314,0.1010]) ([0.6851,0.8701],[0.0414,0.1207])

a4 ([0.5158,0.6698],[0.1440,0.2924]) ([0.5848,0.7603],[0.1233,0.2313])

c5

a1 ([0.8710,0.9211],[0.0314,0.0814])

a2 ([0.7301,0.8604],[0.0517,0.1211])

a3 ([0.7567,0.8581],[0.0314,0.1259]) 

a4 ([0.6489,0.7805],[0.1028,0.2108])

Step 4°: Utilize the IIFWG operator to aggregate all preference values d ij (j = 1, 2, 3, 4, 5) 
in the i-th line of D, and get the overall preference values d i (i = 1, 2, 3, 4), where w = (0.20, 
0.20, 0.20, 0.20, 0.20).

d 1 = ([0.7628, 0.8718],[0.0448, 0.1266]), d 2 = ([0.6713, 0.8107],[0.0917, 0.1794]),

d 3 = ([0.6583, 0.8073],[0.0846, 0.1819]), d 4 = ([0.6402, 0.7825],[0.0978, 0.1988]).

Step 5°: Calculate the score 2( )is d  of d i (i = 1, 2, 3, 4) respectively, we can get:

α =2 1( ) 0.8658s , α =2 2( ) 0.8027s , α =2 3( ) 0.7998s , α =2 4( ) 0.7815s .

Then, α > α > α > α2 1 2 2 2 3 2 4( ) ( ) ( ) ( )s s s s , and α α α α  1 2 3 4 .
Therefore, the optimal chief director of the opening and closing ceremonies is a1, i.e. the 

chief director of the Beijing Olympic Games.
It is pointed out that the ranking of the alternatives have changed, and the sort result by 

the IIFOPWG operator is different from that by the IIFOPWA operator. The IIFOPWA op-
erator focuses on the impact of overall observed samples and their data, while the IIFOPWG 
operator highlights the role of individual sample and its data. For example, when we sort by 
IIFOPWG operator, several smaller attribute values correlated with the alternative a3, such 
as =32

1 ([0.25,0.60],[0.10,0.4])d  and =32
4 ([0.35,0.55],[0.3,0.45])d  have bigger impact on the 

variation of its position in the sort.
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Concluding remarks

In this paper, for putting larger weights into larger IIFNs while keeping the scale-invariant 
property, we have proposed a precise weight-determined (PWD) method for obtaining IIFN 
weights based on new score function and accuracy function of IIFN. Since the monotonicity 
and scale-invariance, the PWD method may be a precise and objective approach to calculate 
the weights of IIFN and interval-valued intuitionistic fuzzy aggregation operator, and a more 
suitable approach to distinguish different DMs and experts in group decision making. Based 
on the PWD method, we have developed two interval-valued intuitionistic fuzzy ordered 
weighted aggregation operators, i.e. the interval-valued intuitionistic fuzzy ordered precise 
weighted averaging (IIFOPWA) operator and the interval-valued intuitionistic fuzzy ordered 
precise weighted geometric (IIFOPWG) operator. We have investigated various properties of 
PDW method and two new aggregation operators. Finally, an example is given to illustrate 
the proposed precise weight-determined method, the IIFOWPA operator and the IIFOPWG 
operator. The work in this paper develops the theories of the interval-valued intuitionistic 
fuzzy aggregation operators and weight-determined method. It is worth noting that the results 
of this paper can be extended to hesitant fuzzy environment.
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