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Abstract. Measuring workers’ performance and the level of motivation is of paramount importance as the productivity 
of workers at a workplace primarily depends upon their level of motivation. However, measuring the level of workers’ 
motivation at workplace is not always straightforward because the workers’ motivation is a function of various personal 
and external factors. This paper proposes a fuzzy rule-based model for evaluating the motivation level of construction 
workers using their working patterns. The motivation level evaluated using the fuzzy rule-based model was compared 
with motivational levels determined by the traditional Vroom’s expectancy theory or Expectancy-Instrumentality-Va-
lence (EIV) method. EIV method used questionnaire surveys and interviews to determine workers’ motivation. The 
results of fuzzy rule-based models aligned closely with the EIV model, especially for the middle range of motivation 
levels. Compared to traditional EIV model, the fuzzy rule-based system is simple to implement and found to be very 
pragmatic in construction field settings.
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Introduction

The construction industry is an important industrial sec-
tor that plays a vital role in the national economy in-
cluding Canada and the rest of North America due to 
the usage of its end products such as roads, buildings, 
dams etc. However, decline of construction productivity 
in North America has been reported by many researchers 
over the past decades (Choy, Ruwanpura 2006; Hewage, 
Ruwanpura 2006, 2009; Song, AbouRizk 2008). There 
are many factors which contribute to the decline in con-
struction productivity including low worker motivation, 
inadequate communication, unclear instructions, worker 
fatigue, poor materials and tools management standards, 
poor relations between workers and management, poorly 
organized projects, unfair work assignments, incomplete 
design/engineering work, lack of cooperation among dif-
ferent crafts, poor supervision, rework, no worker par-
ticipation in the decision-making process, restrictive and 
burdensome procedures, and so on (Hewage 2007).

A major portion of construction budget, about 25–
40% of the project capital cost, is allocated to labour 
expenses (Nasirzadeh, Nojedehi 2012; Ng et al. 2004). 
Many recent researches emphasize on the fact that labour 
force plays a crucial role in the construction process, thus 
there is a need to maximize the productivity of labour re-

sources (Jergeas, Ruwanpura 2009; Nasirzadeh, Nojedehi 
2012; Ng et al. 2004). Therefore, it is very important to 
find solutions for declining construction productivity in 
terms of labour issues that may save billions of dollars 
and make construction an attractive business.

Productivity has many definitions based on selected 
performance factors such as production rate, unit person 
hour rate, etc. In the context of construction, however, 
project managers and construction professionals recog-
nize productivity as an in-place value divided by inputs, 
such as work hours (Hanna et al. 2005; Nasirzadeh, No-
jedehi 2012). High productivity refers to the intensive 
and/or efficient use of scarce resources converting inputs 
into outputs, which ultimately lead to more profit (Arditi 
1985; Dai et al. 2009). Some argue that the productivity 
can be achieved/increased by working harder, faster, or 
longer. However, in the real world, productivity cannot be 
achieved by only speed and hard work without adopting 
the best management and work practices (Banik 1999). 
Even with the advent of more sophisticated technology, 
the construction industry continues to be predominantly 
labour-intensive, suggesting for the need to give proper 
emphasis to such matters like communications, participa-
tion, and motivation (Hwang, Liu 2010; Mansfield, Odeh 
1991).
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1. Background
1.1. Motivation as a tool for improving productivity
Motivation has a wide variety of definitions. According 
to Jenkins et al. (1982), motivation is intangible: a hy-
pothetical construct that is used to explain human be-
haviour. Motivation can be either intrinsic or extrinsic. 
Intrinsic motivation is generated by a factor that comes 
from within the subject (self-actualisation, satisfaction, 
more individual control). Extrinsic motivation is gener-
ated by a factor that comes from the exterior (e.g. pay 
increase, promotion, quality awards, etc.).

Recently, Westover et al. (2010) conducted a re-
search to explore 17 key work domains that impact work-
ers’ productivity and motivation. Both recent and earlier 
researches in the construction industry have revealed that 
productivity and motivation are interdependent (Rose, 
Manley 2011; Warren 1989).

The imperative need of discovering, comprehend-
ing, and implementing employee motivation has been a 
principal concern for organizations, managers, and even 
first line supervisors because employee motivation has 
been and will be the deciding factor in work performance 
which lead to the success or failure of an organization 
(Dongho 2006). Consequently, considerable research has 
been reported on the relationship between motivation and 
productivity in the construction industry over the last 40 
years (Edwards et al. 2007; Hewage 2007; Love et al. 
2005; Olomolaiye, Price 1998; Zhou 2004).

In an earlier research Maloney and McFillen (1987) 
conducted a comprehensive research study on construc-
tion labourers’ motivational patterns, which focused on 
the importance attached to various job-related factors and 
their satisfaction over each factor. Further, they said that 
the motivation has a direct impact on the work perfor-
mance, and it can be positively influenced or managed by 
external factors, such as incentives and rewards.

Zhou (2004) conducted a research on motivating 
construction management professionals and indicated 
that motivation, when it is combined with work experi-
ence and education, is an important factor in improving 
performance and thus productivity. Hewage (2007) stud-
ied fifty one factors affecting productivity and prioritized 
those factors into nine categories. In that research moti-
vation ranked the second important factor affecting the 
workers’ productivity. Accordingly, motivators should be 
of a great concern to managers in construction organiza-
tions, as the proper implementation of motivational pro-
grammes can encourage employees to act in the desired 
way to accomplish the organization’s goals at the same 
time as they meet their own personal objectives or mo-
tives (Mansfield, Odeh 1991).

Theories of motivation are not discussed in detail in 
this paper, as such information already available in liter-
ature. Hewage (2007) provided one such review, which 
clearly outlined the origins of motivation theories that 
applied to study construction workers. Hewage (2007) 
explained several theories available to present the con-

cept of motivation. The list includes Maslow’s Hierarchy 
of Needs Theory (Huitt 2004; Maslow 1943), Herzberg 
Motivational Theory (Herzberg et al. 1959), Mcgregor’s 
theories X and Y (McGregor 1960), Adams’ Equity The-
ory (Adams 1963), Vroom’s expectancy theory (Vroom 
1964), Brehm’s Reactance theory (Brehm 1966), Locke’s 
Goal theory (Locke 1968), Reinforcement Theory (Skin-
ner 1969), Alderfer’s ERG Theory (Alderfer 1969), and 
Ouchi’s theory of Z (Ouchi 1981). Detailed definitions, 
background information, and other related issues of these 
theories can be also found in Jang et al. (1997), Latham 
and Pinder (2005).

This research mainly aims to demonstrate the ap-
plication of the expectancy theory of Vroom (1964) to 
quantify motivation in the construction industry. Several 
new researches used and improved the expectancy theory 
in different management extents. Chiang and Jang (2008) 
applied a modified expectancy theory with five compo-
nents to investigate employee motivation in the hotel 
setting and confirmed the validity of expectancy theory. 
Gorges and Kandler (2012) examined the applicability 
of expectancy-value theory to adults’ learning motiva-
tion. Kominis and Emmanuel (2007) investigated the 
relationship between managerial perceptions of elements 
of the performance measurement, evaluation and reward 
system, and motivation. They developed an extended 
version of the traditional expectancy–valence model to 
conceptualise the process of motivation at the middle 
management level. 

There is a strong history of researchers who ex-
plored motivational expectancy theories in a wide vari-
ety of formats, including case studies. Yet, too few have 
focused their work specifically on construction work-
ers. Among formerly researches Maloney and McFillen 
(1986, 1987) conducted a research to study operational 
construction employee motivation amongst union mem-
bers in America. They determined that the expectancy 
theory is a workable conceptual base for understanding 
the motivation of construction workers (Maloney, Mc-
Fillen 1986). They conclude that application of expec-
tancy theory principles to construction work pinpoints 
significant areas for action if construction workers are 
motivated towards higher productivity (Maloney, McFil-
len 1986).

In more recent works Lam and Tang (2003) review 
key motivation concepts, and describes how to apply the 
theory into practice in construction projects. The authors 
offered a viewpoint with both short-term and long-term 
motivation schemes. Price et al. (2004) presented em-
powerment as the key tool to motivate the workforce. 
The researchers suggested that culture, training, and 
knowledge management lead to workers empowerment 
through incentive, thus motivate the workforce, and ulti-
mately improve construction performance.

Hewage and Ruwanpura (2006), Hewage (2007) ap-
plied Vroom’s expectancy theory as the bases to quantify 
construction worker motivation. They investigated work-
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er motivation and productivity, which are under human 
issues. They overcame the challenge of quantification of 
motivation by using Vroom’s motivational expectancy 
theory with other “construction” applicable theories such 
as equity theory, Herzberg’s hygiene theory, and rein-
forcement theory. The background information on expec-
tancy theory is provided below.

The expectancy theory of motivation (also called the 
Expectancy-Instrumentality-Valence (EIV) model) is a 
theory explaining the process of individuals’ decisions on 
various behavioural alternatives. To relate performance 
to motivation in a mathematical form, Vroom (1964) de-
fined the performance (P) as a function of the product 
of motivational force (M) and workers’ ability (A), i.e., 
P = f (M.A). Expectancy theory suggests that motivation 
depends on individuals’ expectations on their ability to 
perform tasks and receive desired rewards. Expectancy 
theory can be expressed using following equation:

 Motivation ( ) ( )= → × → ×∑f E P P O V , (1)

where: E → P – Effort to performance expectancy (Ex-
pectancy); P → O – Performance to outcome expectancy 
(Instrumentality); and V – Valence.

Effort to Performance expectancy (E → P) is the 
belief that effort leads to a desired performance level. 
In other words, workers tend to perform more if they 
believe in and feel confident about their efforts. Perfor-
mance to Outcome expectancy (P → O) is the belief that 
performance will be followed by the desired outcome. 
Valence is the preference or appreciation of the outcomes 
or end results.

Vroom’s expectancy theory has been selected for 
this study because (i) this theory is based on the rela-
tionship between the individual’s effort, individual’s 
performance, and the desirability of outcomes associ-
ated with high performance, (ii) this theory provides a 
general framework for assessing, interpreting, and evalu-
ating employee behaviour in learning, decision-making, 
attitude formation, and motivation, (iii) this theory has 
been rigorously tested and has received strong support 
(Fudge, Schlacter 1999), and (iv) this theory would seem 
most applicable to the construction work in which mo-
tivation level of employees depends on either they want 
the reward on offer for doing a good job or if they believe 
more effort will lead to that reward (Hewage, Ruwanpura 
2006).

1.2. Fuzzy rule-based model (FRBM) for evaluating 
motivational force

Subjective (asking workers about their perceptions of 
motivation and what influences it) or objective measures 
(directly observing factors such as timeliness, or checking 
attendance records) have been widely used to measure 
the performance and the level of employees’ motivation 
(Bennett et al. 2001). Questionnaire and interview sur-

vey techniques are also frequently used in the construc-
tion management field (Lyons, Skitmore 2004; Mangione 
1995). However, the questionnaire and interview survey 
techniques have limitations. The major limitation of the 
survey method is that it relies on a self-reporting method 
of data collection. Intentional deception, poor memory, or 
misunderstanding of the questions, all can contribute to 
inaccuracies in the data (Trochim, Donnelly 2007). Ques-
tionnaires usually have low response rates, require lon-
ger time periods, and are more affected by self-selection, 
lack of interviewer involvement, and lack of open-ended 
questions. Similarly, interviews are labour-intensive, 
time-consuming and expensive, and it requires trained 
interviewers. Collecting data through survey methods is 
also an imposition if it does not benefit the individual 
surveyed. Likert scales are widely used in these survey 
questions to elicit preferences or evaluations (Gob et al. 
2007; Tsaur et al. 2000). However, due to intangible and 
subjective information often appearing in the evaluation 
process, crisp values in traditional Likert scale are inad-
equate to present the evaluation ratings of interviewees 
(Hu et al. 2010; Lalla et al. 2004). Some of the problems 
associated with the Likert scale method include: (1) so-
cial desirability bias, i.e. tendency to provide responses 
that the respondent believes are those which make him or 
her “look good”; (2) acquiescence bias, i.e. the tendency 
to agree rather than disagree with any statement; (3) cen-
tral tendency bias, i.e. the tendency to respond towards 
the center of the response scale (Lalla et al. 2004).

Fuzzy logic model, also known as fuzzy inference 
system or fuzzy rule-based model, is a logical-mathe-
matical procedure based on fuzzy set theory (Zadeh 
1965) that is considered suitable for dealing with many 
real world problems, characterized by complexities, un-
certainties, and a lack of knowledge of the governing 
physical laws (Kumar et al. 2007). Fuzzy logic extends 
the general form of Boolean logic, true and false to 
handle the concept of vagueness and uncertainty. This 
approach takes a value between 1 (full belongingness) 
and 0 (no belongingness), rather than a crisp value. The 
degree of belongingness is called the membership func-
tion (Erinawati, Fenton 2004). This characteristic allows 
capturing the uncertainty inherent to real data.

A typical fuzzy logic system consists of three major 
components: fuzzification, fuzzy inference, and defuzzifi-
cation. Fuzzification comprises the process of transform-
ing crisp values into grades of membership for linguistic 
terms of fuzzy sets. The membership function is used to 
associate a grade to each linguistic term (Kramer et al. 
2009). The shape of membership functions of fuzzy sets 
can be triangular, trapezoidal, bell-shaped, sigmoidal, or 
another appropriate form, depending on the nature of the 
system being studied (Sadiq et al. 2004). Among them, 
triangular and trapezoidal shaped membership functions 
are predominant in current applications of fuzzy set the-
ory, due to their simplicity in both design and implemen-
tation based on little information (Rihani et al. 2009).
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The second step, fuzzy inference is a process of for-
mulating a mapping from inputs to output using fuzzy 
logic. A fuzzy inference system is composed of fuzzy 
if-then rules relating different fuzzy sets (linguistic con-
stants), which are stored in a knowledge-base, and an 
inference engine that performs approximate reasoning 
(Ross 2004). Finally, in defuzzification, the linguistic re-
sults obtained from the fuzzy inference are translated into 
a real crisp value (Ross 1995). This phase is responsible 
for transforming the fuzzy results from the fuzzy system 
into crisp values (Kusan et al. 2010). There are several 
defuzzification methods, such as the max-membership, 
center of gravity, weighted average, mean-of-maxima 
membership, center of sums, center of the largest area, 
and first or last of maxima methods (Ross 1995). Among 
all these methods, center of area method is used in most 
of the applications.

Fuzzy logic has been successfully applied in vir-
tually all areas of engineering and computer sciences, 
as well as in areas of decision making, optimization, 
management, and operations research (Klir, Yuan 1995). 
Some advantages of fuzzy logic and fuzzy inference 
system recently stressed in different research areas (e.g., 
Hajkowicz, Collins 2007; Islam et al. 2013; Jaramillo, 
González 2009; Lermontov, Yokoyama 2009). These 
advantages include, but not limited to: (1) developing a 
clear mathematical model; (2) describing nonlinear rela-
tionships using simple rules; (3) formalizing the reason-
ing process of human language using fuzzy logic; and (4) 
incorporating expert opinions with real data (Chang et al. 
2001; Islam et al. 2013).

According to Fayek and Flores (2010), fuzzy logic 
has been used in construction industry for risk assess-
ment (Tah, Carr 2000; Nasirzadeh et al. 2008), range 
estimating (Shaheen et al. 2007), predicting and diag-
nosing construction performance (Dissanayake, Fayek 
2008), assessing working conditions (de Vries, Steins 
2008), contractor selection (Bendaña et al. 2008), and 
determining cost estimating relationships (Mason, Kahn 
1997). However, there are limited studies on the use of 
fuzzy logic to predict and evaluate the performance and 
motivational levels of workers in construction industry.

This paper aims to indicate the application of fuzzy 
rule-based model, with observed working patterns of 
workers, as a tool to evaluate the motivation levels of 
workers in the construction industry. In addition, this 
research also involves the following sub-objectives: 
(i) evaluation of motivation of the construction work-
ers using the expectancy theory based on the survey re-
search method (questionnaire survey) and (ii) application 
of fuzzy-Likert scale to quantify and analyse question-
naire survey data collected by traditional Likert method 
to improve the evaluation of workers’ motivation using 
expectancy theory.

2. Research methodology

This section provides a brief overview of the methodolog-
ical consideration and approach of the study. It describes 

the data collection methods and outlines the expectancy 
theory and fuzzy inference methods of evaluating moti-
vation and productivity of construction workers.

2.1. Evaluation of worker motivation using 
expectancy theory (EIV model)
2.1.1. Questionnaire survey
A questionnaire survey was used to collect data for eval-
uating motivation of construction workers using the EIV 
model. The questionnaire surveys were anonymous. The 
researcher assigned a number to each worker and asked 
the project coordinator to pick a number. Neither the 
worker nor the coordinator were aware of the assigned 
numbers to individual workers. Workers (research sub-
jects) were selected for interviews and questionnaire sur-
veys on a random and voluntary basis. An “anonymous” 
questionnaire was given to the selected participant after 
a short interview.

Observation of a given worker were conducted 
on the same day after the project coordinator picked a 
number (worker). Worker was not aware of individual 
“observation”. However, all the workers were informed 
(in general) of potential “observations”, in the given re-
search period, in a particular construction project. Ob-
servations were used to verify the views expressed in 
the interview against the observed working patterns. The 
format settled for observation was a 30 minute observa-
tion in the morning, followed by the interview conducted 
after the morning coffee break (usually at 9:45 am), and 
then 30 minutes of observation of the same worker in 
an afternoon of a different day. As mentioned above, the 
research subjects were not aware of individual observa-
tion focuses of a given time. In addition, the observation 
was conducted from a distant location to minimize the 
disturbances to construction workers.

A total of 101 workers from four projects were in-
terviewed, observed, and then invited for participating in 
the survey (information regarding sample size validity 
has been provided in Appendix). The authors had several 
discussions with social science research methods experts 
(professors) and psychology doctoral students to verify 
the face validity of the intended research tools (interview 
and observation). Face validity was based on the rational 
judgment of the researchers and experts (whether or not 
an object is truthful about what is saying and/or behav-
ing) to indicate the appropriateness of a measurement 
instrument to measure a given phenomenon. The re-
searchers were well satisfied with the methods employed 
during the direct observation and interview conducted to 
measure the intended phenomena. All participants of the 
survey were allowed to take questionnaire home for com-
pletion and return later. Answering to the questionnaire 
survey was optional and on a voluntary basis in order to 
assure the truthfulness of the survey responses.

Out of 101 interviewed and observed workers, 39 
workers returned the responses, representing 39% re-
sponse rate. Of the 39 returned responses, one was not 



usable due to substantial missing information. Thus, re-
maining 38 responses were used for the analysis. The 
construction workers who participated in the survey 
included carpenters, carpentry foremen, and carpentry 
helpers working in various construction activities includ-
ing formwork, false work (the supporting structure for 
formwork such as jacks and props), and columns. The 
background information of participants in the question-
naire survey is summarized in Table 1. Detailed informa-
tion on the type and nature of survey questions and the 
background information of participants in the question-
naire survey were presented in Hewage (2007).

The questions of the survey were divided into three 
sections: two questions designed to measure the worker’s 
beliefs about the possibility of certain outcomes when 
working in the construction; 23 questions related to 
instrumentality designed to measure the possibility of 
getting certain rewards attainable while working in the 
construction site; and 23 questions related to valence de-
signed to measure the importance of each outcome that 
might result from working in construction site. These 
questions were answered on a seven-point Likert scale 
ranging from 1 = strongly disagree to 7 = strongly agree 
as shown in Table 2.

Table 1. Profile of respondents

Profile
Total number = 38

N %
Gender 
Male 38 100
Education
Primary School/Intern 2 5.3
High school degree 12 31.6
Completed some college 4 10.5
Technical College or university 13 34.2
No response 7 18.4
Department
Carpenters 18 47.4
Foremen/Surveyors 11 28.9
Labours 3 7.9
No response 6 15.8
Year of experience
10 years and below 13 34.2
11–20 years 12 31.6
20 years and above 6 15.8
No response 7 18.4

2.1.2. EIV model and data analysis
The motivation (M) of the construction workers using 
expectancy theory is evaluated by using Eqn (2):

                            = × ×∑M E I V ,                    (2)

where: M – Motivation, E – Expectancy, I – Instrumen-
tality and V – Valence.

Because of the limitations of traditional Likert scale 
(crisp value) discussed in the introduction section of this 
paper, both traditional Likert scale and fuzzy-Likert scale 
were used for the questionnaire data in the EIV model. 
First, each crisp Likert scale was normalized within the 
range of 1/7 to 1 as shown in Table 2. Then the fuzzy-
Likert scales were obtained by transforming every ele-
ment of the discrete normalized Likert scale to a Fuzzy 
set using Eqn (3). Triangular fuzzy membership was used 
for simplicity although the selected shape should be jus-
tified by available information (Guyonnet et al. 1999):

 

1
71 7 , if

( , )
0, otherwise

 − − − ≤µ = 


n
N

L x L x
L x , (3)

where: µ (LN, x) – the membership function of the fuzzy-
Likert scale, and LN – normalized crisp Likert scale.

Table 2. Description of Likert scale and assumption of fuzzy 
numbers

Linguistic Variables Likert 
scale

TFN 
representation

Normalized 
TFN values

Strongly disagree / 
Very low 1 [0,0,1] [0,0,1/7]

Disagree / Low 2 [1,2,3] [1/7,2/7,3/7]
Somewhat disagree / 
somewhat low 3 [2,3,4] [2/7,3/7,4/7]

Neutral / Average 4 [3,4,5] [3/7,4/7,5/7]
Somewhat agree / 
Somewhat high 5 [4,5,6] [4/7,5/7,6/7]

Agree / High 6 [5,6,7] [5/7,6/7,1]
Strongly agree / 
Very high 7 [6,7,7] [6/7,1,1]

2.2. Modelling worker motivation using FRBM
The proposed fuzzy rule-based model used observation 
data (working time distribution) to evaluate the motiva-
tion level of workers in construction industry. In this 
study, all 38 workers who returned the questionnaires 
were continuously observed twice: 30 minutes in the 
morning shift and 30 minutes in the afternoon shift, to 
measure working time (tool time) and other time spent 
on different activities. During the observation data col-
lection, the time spent for construction activities by each 
worker was divided into two main categories: working 
(tool time) and non-working time. The non-working time 
is further divided into seven sub-categories: materials 
searching time, tools searching time, socializing time, 
moving time, instructions time, idle, and time for others.

2.2.1. Variable selection
If all these eight time categories were described by three 
linguistic descriptors/constants (i.e., three membership 
functions), then 3^8 = 6561 rules would be required to 
develop a FRBM. According to Gallo et al. (1999) and 
Dubois and Prade (1980), the development of fuzzy in-
ference system characterised by a large number of input 
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variables (more than five or six), appears very difficult 
especially in knowledge engineering in order to specify 
the real input variables, the relative relations, such as the 
consequent complexity of the knowledge base. Bendaña 
et al. (2008) applied fuzzy-logic-based systems for eval-
uating different qualitative and quantitative criteria for 
selecting contractors. They established specific ways to 
facilitate working with higher numbers of input variables.

In construction environment, the amount of working 
time has a direct impact on the Output (Choy, Ruwan-
pura 2006). Choy and Ruwanpura (2006) indicated that 
the relationship between working time and output can be 
expressed as the efficiency, which is the amount of work 
done per unit of the working time, not the total time. 
Accordingly, in the current study, workers’ time spent on 
construction activities were divided into two main cat-
egories: working and non-working time. Non-working 
time consists of activities such as looking for materials 
and tools, idling, socializing, and moving. Table 3 shows 
all the observed time categories.

Table 3. Working patterns of construction workers and 
observational categories

Category Definition
Work (tool) 
time Direct effective working time.

Looking for 
materials

Time spent on searching, waiting, or moving 
materials from another place away from 
individual’s working area.

Looking for 
tools

Time spent on searching, waiting or 
moving tools from another place away from 
individual’s working area.

Socializing Socializing or chatting time on top of the 
assigned breaks.

Moving Moving around the site without performing 
anything related to the given work.

Instructions The time spent for receiving or giving 
instructions.

Idle Time spent in construction site without 
performing anything related to the assigned job.

Other
Moving away from the working/observational 
area, staying near heaters, or something not 
mentioned in above categories.

Based on the observation results, the average effect-
ive working time (tool time) of of observed workers was 
47.7%, as shown in Figure 1. This does not mean the 
workers were engaged in non-work related activities for 
the remaining 52.3% of the non-tool time. Non-tool time 
consists of some supporting activities such as material 
handling and instructions. The largest portion of non-tool 
time in Figure 1 is “looking for materials” (definition 
in Table 3). When workers were looking for materials, 
it led to other interruptions such as stopping at sever-
al other places, chatting, and smoking. On many occa-
sions, it was observed that workers and foremen did not 
plan for material requirements based on work progress 
or the work targets of the day. As a result, workers had 

to deal with the immediate demands of issues related to 
materials. “Idling” was the second largest portion of non-
working time. Construction workers spent about 8.2% of 
their “total working time” for socializing. Based on the 
observation results, some workers tend to use working 
time as a socializing time. However, observers couldn’t 
identify any direct relationship between social time and 
motivation level of individual workers.

In this research, four out of eight variables with 
observable effects on lowering/increasing the workers’ 
motivation were selected. A detailed analysis of work-
ing efficiencies and the working patterns of construction 
workers was presented by Hewgae (2007). In addition, 
Choy and Ruwanpura (2006) discussed the impacts of 
non-tool time on other time categories in detail. The four 
selected worker time distributions are tool time, time for 
looking tools, time for looking materials, and idle time. 
The working (tool) time is the direct effective working 
time. It is directly related to worker’s efficiency (perform-
ance) and automatically considered as input variable. The 
effective working (tool time) time of all 38 construction 
workers included in this study is the largest portion of 
the time distribution, as shown in Figure 1. Similarly, 
the time for searching materials that refers to the time 
spent on searching, waiting, or moving materials from 
another place away from individual’s working area was 
the largest portion of non-tool time. Searching for tools 
is the time spent on searching, waiting, or moving tools 
from another place away from individual’s working area. 
The time for searching materials and the time for search-
ing tools were combined together and considered as a 
single input (variable) in the proposed FRBM. Hence, 
three input variables used in fuzzy rule-based models are 
working (tool) time, materials and tools searching time, 
and an idle time.

Other time variables with imprecise observable ef-
fects on motivation, i.e. social time, moving time, and 
instruction times, were eliminated. This means that the 
observers couldn’t identify any distinct relationship 
between these time variables and workers’ motivation. 

Fig. 1. Working time distribution of the 38 construction 
workers
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It is necessary to mention that none of the existing en-
gineering literature reported a behavioral study on con-
struction workers to identify direct or indirect correlation 
between these eliminated time variables and motivation 
of construction workers.

2.2.2. FRBM setup
The Mamdani-type fuzzy inference system was used to 
define the relationships between the inputs and outputs 
using the fuzzy logic toolbox in MATLAB (Mamdani, 
Assilian 1975; Pedrycz 1996). The input and output 
membership functions for this study were constructed 
based on the time distribution data collected in the 
field. Mixed membership functions with three linguistic 
constants were chosen to describe each input variable, 
namely: low (trapezoidal membership function (TzMF)), 
medium (triangular membership function (TMF)), and 
high (trapezoidal membership function (TzMF)). Five 
membership functions, namely very low (TzMF), low 
(TMF), medium (TMF), high (TMF), and very high 
(TzMF) were used to define the output (motivation). The 
membership functions used for the input and output vari-
ables are illustrated in Figures 2 (a)–(d).

The fuzzy operator “minimum” was applied as 
the “AND” function to combine the variables. Table 4 
shows the verbal representation of all 27 (= 3^3) rules 

developed to define the relationships between the inputs/
antecedents (worker distribution time) and the output/
consequent membership functions (motivation).

The rules were inferred from interviews with ex-
perts and construction project management professionals 
including 4 senior academic and project management 
professors, 4 senior construction managers with 10 years 
or more construction management work experience, and 
5 graduate students with 5 years or more field experience 
in construction projects. All the experts had a bachelor 
or master degree in civil engineering and experience of 
working with carpentry labours. The experts were pre-
sented with the antecedents of all 27 rules and they were 
asked to specify the consequent of each rule, by choosing 
one output to each rule among five possible outputs: very 
low, low, medium, high or very high.

The rules were considered independent and no 
weightings were applied, which means no rule was em-
phasized as more important in respect to estimating the 
output. Implication was performed with the minimum 
function, and aggregation was performed with the maxi-
mum function. The centroid method was applied as a 
means of defuzzification of the output membership func-
tions to determine a crisp set.

Fig. 2. Membership functions of input and output variables: (a) working (tool) time, (b) materials and tools searching time,  
(c) idle time, and (d) motivation
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Table 4. A rule set for predicting construction workers’ 
motivation
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1 if L and L and L then M
2 if L and L and M then L
3 if L and L and H then VL
4 if L and M and L then L
5 if L and M and M then L
6 if L and M and H then VL
7 if L and H and L then M
8 if L and H and M then L
9 if L and H and H then L
10 if M and L and L then M
11 if M and L and M then M
12 if M and L and H then L
13 if M and M and L then M
14 if M and M and M then M
15 if M and M and H then L
16 if M and H and L then M
17 if M and H and M then M
18 if M and H and H then L
19 if H and L and L then VH
20 if H and L and M then H
21 if H and L and H then M
22 if H and M and L then H
23 if H and M and M then H
24 if H and M and H then M
25 if H and H and L then VH
26 if H and H and M then H
27 if H and H and H then H

3. Results and discussion

Figure 3 shows the relationship between the motivation 
levels of 38 construction workers evaluated using the 
FRBM and the EIV model. The matching between the 
motivation values predicted by FRBM and the motiva-
tion values obtained from EIV are shown with the line 
of equity (y = x). The figure clearly shows that the data 
from both methods are very close to the line for “me-
dium” motivation ranges, indicating that both FRBM and 
EIV methods are in agreement to predict the motivation 
level of construction workers at and near the medium 
ranges. However, the two models failed to match for few 
construction workers with “extreme” motivation ranges, 
i.e. those with very low and very high motivation levels. 
For lower motivational ranges, the motivational values 
predicted by FRBM are generally higher than the moti-
vational values obtained from EIV method. Contrarily, 
the motivational values predicted by FRBM are consist-

ently lower than the motivational values obtained from 
EIV method for high motivational levels. This discrep-
ancy at extreme ranges is most likely due to the phe-
nomenon called the “extreme response bias” from Likert 
scale which subsequently affected the motivation values 
calculated using the EIV method. Extreme response bias 
refers to the tendency of making disproportionate use of 
the extreme ends of a Likert type response scale (e.g. 
strongly agree or strongly disagree).

Figure 4 shows the relationship between the moti-
vation levels of 38 construction workers evaluated using 
the FRBM and the EIV model calculated using crisp or 
fuzzy-Likert scales. As it can be seen in Figure 4, the use 
of fuzzy-Likert scale for the EIV model slightly improves 
the extreme response bias. The use of truncated triangu-
lar fuzzy membership for extreme Likert scales (for 1 
and 7) coupled with the ability of fuzzy system to capture 
the uncertainty of the workers’ response helped to reduce 
the extreme response bias shown at extreme ranges of 
motivation values estimated using the EIV method.

The expectancy theory (EIV model) can be useful to 
construction managers to find out which rewards are seen 
as valuable by the employees, to create instrumentality 
that the accomplishments of certain tasks will generate 
the rewards valued by the employees, and to ensure that 
the employees have the necessary capabilities to accom-
plish the given task. However, the expectancy theory 

Fig. 3. Scatter plot of workers’ motivation calculated using 
EIV method and fuzzy rule-based model

Fig. 4. Scatter plot of workers’ motivation calculated using 
fuzzy rule-based model and Likert EIV or fuzzy-Likert EIV 
methods
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requires traditional methods of data collection system 
through questionnaire and interview survey techniques 
that are generally considered as labour-intensive, time-
consuming, and expensive.

The fuzzy rule-based model developed using eas-
ily measurable and observable worker time distribution 
data seems very practical and well suited to evaluate the 
overall motivational status of construction workers. The 
FRBM results matched well in the middle motivational 
ranges and gave more plausible results at the extreme 
motivation ranges compared to the traditional EIV esti-
mates. The fuzzy rule-based system is also quite easy to 
develop and to understand compared to the traditional 
EIV model. It may be possible to further improve the 
FRBM performance by incorporating more input vari-
ables (work time distributions) in the expert system, 
changing shape or increasing the number of member-
ship functions of input variables, introducing different 
weighting factors to the fuzzy expert rules, or modify-
ing the relative contribution of the input variables to the 
overall motivation of the construction workers. Further 
research should also explore the effect of increasing data 
set (number of workers) and number of projects so that 
the FRBM model can be adopted for other construction 
disciplines and sectors.

Conclusions

A fuzzy rule-based model is proposed to determine the 
motivation levels of construction workers. The model 
was constructed on the basis of expert knowledge and ob-
served worker time distribution data, i.e. working (tool) 
time (%), searching for tools and materials time (%), and 
idle time (%). The motivational level of workers obtained 
by the fuzzy expert system is compared with the motiva-
tional levels calculated using the traditional expectancy 
theory (EIV) method. The results of fuzzy rule-based 
models were in good agreement with EIV model for the 
middle range motivation values. The fuzzy rule-based 
system is quite easy to develop and easy to understand 
compared to the traditional EIV model commonly used 
in performance evaluation.

Indeed the proposed fuzzy rule-based model used 
for carpentry construction workers can be easily trans-
ferred to analyze the motivational aspects of other work-
ers involved in construction industries. However, in order 
to apply the same motivational evaluation analysis for 
workers of other industries with a very different work 
environment (e.g., Hotel or truism industry), further re-
search will require identifying relevant motivational vari-
ables such as worker time variables.

There are indeed some limitations for different 
uncertainty modeling tools including fuzzy inference 
system. The main reason for selecting fuzzy inference 
system in this study is the measurement efficiency and 
simplicity based on fuzzy logic, comparing to analytical 
propagation methods that require complex mathematical 
expressions. In addition, fuzzy inference system can be 

implemented with limited data to handle different episte-
mic uncertainties (e.g. uncertainty due to subjective and 
objective measures, expert opinions, natural languages), 
in terms of degree of membership. This research de-
signed to indicate and simplify the application of fuzzy 
rule-based model as a complement tool for EIV model 
and motivational analysis in construction industry. Aad-
ditional research, development, and testing can be done 
to make it more comprehensive in addressing a wider 
range of factors and to make it more generalizable in 
nature.
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Appendix

Sample validity and reliability of research tools are key 
pre-requisites in social science research methods. All the 
data analysis and conclusions are dependent on the de-
gree of satisfaction of these concepts. It is possible to 
determine the degree of accuracy of the conclusions for-
mulated with the data from the questionnaire surveys and 
interviews. In this study central limit theorem was used 
for sample size validity.

The central limit theorem in statistics indicates that 
“obtaining large samples (generally sample size >30) 
from any population, the sample mean will follow an 
approximate normal distribution” (Kvanli et al. 2000). 
Welkowitz et al. (2006) presented Eqn (A-1) for sample 
size calculations in social sciences:

 n = [za/2 s/d]2  (A-1)

                     when the n > 30,

where: n – Sample size; d – Desired error margin; 
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1 – a – Probability associated with the error margin; s – 
Standard deviation of results.

In the current study, an initial pilot study1 of 3 months 
with carpentry workers revealed that the standard devia-
tion of working time is 15.4%. Initially the observations 
were planned for an error margin of 3% with 90% certain-
ty. This was based on the level of accuracy experienced 
(variance experienced) during the pilot study observa-
tions where three researchers observed the same subject.

Then:

d = 3%;

1 – a = 90% certainty with the error estimation; 
then a = 0.05 = 15.4%;

Based on the Eqn (A-1), the calculations are as fol-
lows;

n = [z0.05×0.154 /0.03] 2, where z0.05 = 1.645.

Therefore n = 72.

Based on the above analysis, at least 72 observa-
tions were needed to draw conclusions with 90% cer-
tainty. Therefore, it was planned to observe 101 workers 
(more than 72) in actual construction settings, with an 
a.m. observation, an interview, the presentation of the 

1 In this research, initially, a pilot survey was conducted. Two re-
search assistants and one of the authors made the observations. 
During the pilot study, direct and work sampling methods of 
observations were tested. The three observers analysed and dis-
cussed the variations in the collected data. 

Muluken YEHEYIS. Dr Yeheyis worked as the post-doctoral fellow at the University of British Columbia, Okanagan campus. At 
present, Dr. Yeheyis works as a water resources engineer in Hatfield Consultants, Vancouver, Canada. Dr Yeheyis is an expert in 
water resources and environmental modelling.

Bahareh REZA. Dr Reza is a postdoctoral fellow at the University of British Columbia, School of Engineering. Her research 
interests are in sustainability appraisal of infrastructure assets, developing advanced life cycle sustainability assessment approaches 
(e.g. emergy-based LCA), developing low-impact development solutions, multi-criteria decision making (MCDM) in the infrastruc-
ture system, and developing effective and sustainable asset management strategies.

Kasun HEWAGE. Dr Kasun Hewage is an Associate Professor at the School of Engineering, University of British Columbia, 
Okanagan campus. He is a professional engineer with multi-disciplinary project experiences. Dr Hewage has been leading several 
research projects in lifecycle assessment, green construction, construction productivity, and sustainability.

Janaka Y. RUWANPURA. Dr Ruwanpura is the Vice-Provost (International) at the University of Calgary. Prior to this role, he 
has been a Professor and the Canada Research Chair in Project Management Systems in the Schulich School of Engineering at the 
University of Calgary, Canada. He is the Founding Director of the Centre for Project Management Excellence at the University of 
Calgary.

Rehan SADIQ. Dr Sadiq is a Professor at the School of Engineering, University of British Columbia, Okanagan campus. He has 
been involved in research related to drinking water quality modelling, environmental risk assessment and decision-making, and asset 
management of civil infrastructure systems.

questionnaire, a p.m. observation and then collect the 
completed questionnaire at a later date. Answering to the 
questionnaire survey was optional in order to assure the 
truthfulness of the survey responses.

Workers returned 39 questionnaires (out of 101) 
where all the questions were rated on a 1–7 Likert scale 
(48 questions). The average standard deviation of all the 
ratings was 1.28 out of 7. Using above equation:

39 = [z0.05×1.28 /d] 2, where z0.05 = 1.645.

Therefore d = 0.337 out of 7.

The 39 returned questionnaire surveys are statis-
tically valid and the conclusions drawn are valid with 
±0.337 variation with 90% certainty.

In addition, 101 workers were interviewed and some 
of the interview questions were also rated on a 1–7 Likert 
scale. Open-ended questions were another component of 
the interviews. The standard deviation for the responses 
to the questions with a Likert scale was 1.39. Using 
above equation:

101 = [z0.05×1.39 /d]2, where z0.05 = 1.645,

Therefore d = 0.228.

The responses to the Likert scale interview ques-
tions are valid to draw conclusions with ±0.228 variation 
with 90% certainty.
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