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Non-coding RNAs (ncRNAs) have emerged as critical components of gene regulatory
networks across a plethora of plant species. In particular, the 20–30 nucleotide small
ncRNAs (sRNAs) play important roles in mediating both developmental processes and
responses to biotic stresses. Based on variation in their biogenesis pathways, a number
of different sRNA classes have been identified, and their specific functions have begun
to be characterized. Here, we review the current knowledge of the biogenesis of
the primary sRNA classes, microRNA (miRNA) and small nuclear RNA (snRNA), and
their respective secondary classes, and discuss the roles of sRNAs in plant–pathogen
interactions. sRNA mobility between species is also discussed along with potential
applications of sRNA–plant–pathogen interactions in crop improvement technologies.
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INTRODUCTION

Over the past decade, non-coding RNAs (ncRNAs) have taken the scientific community by storm.
Defined as RNAs that are transcribed from DNA but not translated into proteins, ncRNAs have
been implicated in a host of different epigenetic regulatory mechanisms and have been shown
to exert regulatory effects primarily through complementary base pair matching with messenger
RNAs (mRNAs) (Phillips, 2008). However, until recently, ncRNA research has been largely limited
by a lack of high-throughput experimental studies, and owing to their small size, ncRNAs within
genomic samples were often misidentified as background noise or junk DNA (Grobhans and
Filipowicz, 2008; Kawaji and Hayashizaki, 2008; Budak and Zhang, 2017). Thus, the details of
the scope and diversity of ncRNAs are only just beginning to emerge following the development
of efficient next-generation sequencing (NGS) technologies (Eddy, 2001; Shimoni et al., 2007).
When used in combination with homology-based and/or experimental approaches, these NGS-
based methods can be particularly worthwhile, because in addition to providing insight into the
presence of ncRNAs, they can predict target gene annotations, and thereby reveal genetic circuits
that are possibly influenced by ncRNAs (Alptekin et al., 2017).

In the time since their initial discovery, ncRNAs have been segregated based on their biogenesis
pathways into a number of different classes, many of which have distinct, yet overlapping, functions
(Bonnet et al., 2006). The most diverse range of ncRNAs can be found in the category of small
ncRNAs (sRNAs), which are 20–30 nucleotides long and include the widely described small
interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs) (Borges
and Martienssen, 2015; Budak and Akpinar, 2015). However, numerous smaller classes of sRNAs
are beginning to emerge, some of which are conserved only among closely related species. Together,
these sRNAs play myriad important roles in plant gene regulation through targeted degradation
and/or translational silencing of mRNAs at the post-transcriptional level, collectively termed RNA
interference (RNAi) (Pattanayak et al., 2012).
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In addition to influencing key developmental processes, RNAi
has been shown to have significant impacts on a wide range
of stress responses, of which disease resistance is possibly the
most vital (Kantar et al., 2011; Budak et al., 2015). Plants are
continuously engaged in co-evolutionary battles with invading
pathogens, in which the plant and pathogen compete to gain
dominance (Dodds and Rathjen, 2010). Furthermore, plant
pests and pathogens are considered a major constraint to crop
productivity across the globe; in 2016 alone, it was reported
that even with current disease management practices in place,
10–16% of global harvests were lost to plant pathogens (Kandan
et al., 2016). This included significant losses from many socio-
economically crucial crop species, such as wheat (Triticum
aestivum) and rice (Oryza sativa; Fischer et al., 2014; Vary et al.,
2015). Moreover, with future climate change currently predicted
to favor the invaders, the incidence of disease and infestation is
expected to surge (Boyd et al., 2013; Gautam et al., 2013). RNAi
could therefore have an important role in the upcoming mêlée,
particularly as it has been shown not only to impact resistance
gene regulation within a host, but also to target and silence
genes within an attacking pathogen or pest (Ghag, 2017; Islam
et al., 2018). Observation of this process, termed host-induced
gene silencing (HIGS), revealed a plethora of new paths for crop
disease management, and highlighted the potential for movement
of sRNAs between species (Baulcombe, 2015).

This review article provides an overview of the biogenesis and
specific modes of action of four classes of sRNAs: siRNA, miRNA,
small nuclear RNA (snRNA, also referred to as U-RNA), small
nucleolar RNA (snoRNA), and tasiRNA (trans-acting siRNA).
A particular focus is placed on the roles of sRNAs in plant–
pathogen interactions, including sRNA mobility between species
and the applications of HIGS. Finally, future perspectives are
explored.

Biogenesis Differs for Different Classes
of sRNAs
In sRNA biogenesis, four key steps are conserved across all
classes: (1) as for all coding mRNAs, sRNA transcription is
induced by double-stranded RNA (dsRNA), and transcription of
the corresponding gene is driven by an RNA polymerase (RNAP);
(2) dsRNA is then processed to a length of 18–25 nucleotides;
(3) methylation occurs at the 3′ end of the sRNAs; and (4) the
sRNAs are incorporated into effector complexes that allow them
to recognize, and interact with, their target sites (Voinnet, 2009;
Budak and Akpinar, 2015).

For miRNAs, the first step of biogenesis depends on the
transcriptional coactivator MEDIATOR, which recognizes the
transcription factor-binding sites in miRNA promoters and
directs DNA-dependent RNAP II (RNAPII) (Chen, 2005; Budak
and Akpinar, 2015). Once transcribed, a single-stranded primary
miRNA transcript is formed, known as a pri-miRNA, which
consists of an imperfect stem-like structure 100–120 nucleotides
long. In plants, pri-miRNAs are then processed in the nucleus
by the RNase III enzyme Dicer-like protein 1 (DCL1) in
combination with a number of different molecules, including a
dsRNA-binding protein (HYL1), a nuclear cap-binding complex

(CBC), and a C2H2-type zinc finger (SE) (Fang and Spector,
2007; Zhu, 2008; Axtell and Meyers, 2018). This DCL1
complex first cleaves approximately 15 nucleotides from the
base of the stem to form a precursor miRNA (pre-miRNA)
approximately 70 nucleotides long with two to three nucleotide
overhangs. A second cleavage then occurs 20–24 nucleotides
from the first cleavage site, releasing the miRNA/miRNA∗ (guide
strand/passenger strand) duplex from the stem (Rogers and
Chen, 2012, 2013). This duplex is protected from degradation by
the small RNA degrading nuclease (SDN) class of endonucleases
via methylation by HEN1, before the miRNA guide strand is
incorporated into an Argonaut (AGO)-containing RNA-induced
silencing complex (RISC) (Voinnet, 2009; Axtell et al., 2011).
Previously it was assumed that exportation into the cytoplasm
could occur either before or after RISC assembly (Achkar et al.,
2016). However, recent research by Bologna et al. (2018) strongly
supports the hypothesis that movement into the cytoplasm occurs
post-incorporation into RISCs.

To add another layer of complexity to the process of sRNA
biogenesis, tasiRNAs are initially formed from primary tasiRNAs
(pri-tasiRNA) via miRNA-guided cleavage, which creates TAS
transcripts (Chen et al., 2010). Three miRNAs (miR173, miR390,
and miR828) specifically function as processing guides for
primary transcripts to form the TAS1 and TAS2 (miR173), TAS3
(miR390), and TAS4 (miR828) families, respectively (Howell
et al., 2007). These precursor transcripts are then stabilized by
SUPPRESSOR OF GENE SILENCING 3 (SGS3), which facilitates
dsRNA formation by RNAPII. The dsRNAs are then processed
by DCL4, yielding phased siRNAs that are 21 nucleotides long,
which, like miRNAs, are methylated by HEN1 and loaded
into AGO-containing RISCs (Brodersen and Voinnet, 2006).
tasiRNAs are also similar to miRNAs in function, as they guide
the cleavage and degradation of mRNAs. Together, miRNAs and
tasiRNAs regulate numerous biological processes, of which auxin
production is one of the most researched (Marin et al., 2010).

However, in general, biogenesis of siRNAs is much more
diverse than miRNAs, and can differ greatly between siRNA
classes. Initially, most siRNAs are conceived from pre-formed
dsRNAs. This includes, but is not limited to, those transcribed by
RNA-dependent RNAPs (RDRs) (Khraiwesh et al., 2012). siRNA
formation can also utilize a number of different DCL proteins
(DCL1–4), opposed to just one, which cleave the dsRNAs to
form the different classes of siRNA, defined by size (21–24
nucleotides). However, some similarities have been observed as
like miRNAs, siRNAs are also loaded into AGO-containing RISCs
for targeted post-transcriptional regulation (Matzke and Mosher,
2014; Martínez de Alba et al., 2015).

In comparison, little is known about the specifics of snRNA
biogenesis in plants, as most research has been conducted in
mammalian cells and the process varies depending on the
specific snRNA being transcribed (Will and Lührmann, 2011;
Ohtani, 2018). Generally, like miRNAs, snRNAs are transcribed
by RDR2, but are primarily confined to the nucleus (Vaucheret,
2006). During their biogenesis, snRNAs briefly move into
the cytoplasm of the cell before returning to the nucleus.
Following transcription, snRNAs form protein complexes with
specific snRNA-associated proteins to shape small nuclear

Frontiers in Plant Science | www.frontiersin.org 2 July 2018 | Volume 9 | Article 1038

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01038 July 18, 2018 Time: 16:17 # 3

Brant and Budak ncRNAs in Biotic Stresses

ribonucleoproteins (snRNPs) (Matera and Wang, 2014). These
snRNPs have corresponding functional spliceosomal roles in
pre-mRNA splicing (Hanley and Schuler, 1991).

Another major group of snRNAs is involved in regulating
RNA metabolism. Within this group, one sub-class, known as
scaRNAs (small Cajal body-specific RNAs), directs a group of
snRNPs known as the scaRNPs (small Cajal body-specific RNPs),
which have been implicated in pre-ribosomal RNA (pre-rRNA)
modification and processing in the Cajal bodies. A second sub-
class, the snoRNAs, is mainly located in the nucleolus and form
snoRNPs, which are involved in regulating and modifying other
spliceosomal snRNAs (Chen et al., 2003; Kim et al., 2010; Bassett,
2012; Ohtani, 2018). The current consensus is that the post-
transcriptional modifications made to snRNAs by snoRNAs and
scaRNAs convey their binding affinity to pre-mRNAs, and that
this process is conserved among most eukaryotes, including plant
species. However, little research has been conducted in plants to
confirm this (Lorković and Barta, 2008; Ohtani, 2018). snRNAs
play a pivotal role in mRNA metabolism, as the removal of
ncRNA (introns) from pre-mRNA is crucial to the formation of
mature mRNAs, although little research has examined their role
in plant–pathogen interactions (Lorković et al., 2000; Monaghan
et al., 2009).

sRNAs Regulate Plant–Pathogen
Interactions
Plant immune systems consist mainly of two different modes
of defense, pathogen-associated molecular pattern (PAMP)-
triggered immunity (PTI) and effector-triggered immunity (ETI)
(Boller and He, 2009; Fei et al., 2016). In most cases, PTI acts as
the first line of defense against invading pathogens, with pattern
recognition receptors (PRR) on the plant cell surface recognizing
PAMPs present on the pathogen, such as flg22 found on
Pseudomonas aeruginosa (Jones and Dangl, 2006). This pathway
can initiate a number of different responses, including stomatal
closure and activation of reactive oxygen species (Stael et al.,
2015). However, the bulk of plant innate immunity is managed by
ETI, which recognizes effector molecules secreted by pathogens.
Most, if not all, immune responses elicited are mediated by
nucleotide-binding leucine-rich repeat (NB-LRR) proteins, also
known as NB-LRR or NLR proteins, encoded by NLR genes,
which are commonly referred to as resistance genes (R-genes)
(Ellis et al., 2000). It is routinely acknowledged that RNAi plays
a large role in R-gene regulation in plants. As R-gene activation is
required only in the presence of an invading pathogen, regulation
is the key for efficient management of plant resources, allowing
sufficient energy to be directed toward relevant processes at
any given time (Zhai et al., 2011). Furthermore, unregulated
expression of R-genes has been known to trigger autoimmunity
and further inhibit plant growth, showcasing the impact of
inadequate energy trade-off (Li et al., 2012). In particular,
miRNAs, and the subsequent tasiRNAs, have major impacts on
R-gene regulation, with research predicting R-gene targets for
miRNAs in numerous plant species, including wheat, tobacco
(Nicotiana tabacum), and cotton (Gossypium hirsutum; Gupta
et al., 2012; Li et al., 2012; Yin et al., 2012; Budak et al., 2015).

An example of this is the miRNA family miR482, which is known
to target a class of NB-LRR proteins in a number of different
species (Shivaprasad et al., 2012). In potato (Solanum tuberosum)
specifically, members of the miR482 family have been shown
to be downregulated upon infection with the fungal pathogen
Verticillium dahliae (Yang et al., 2013). Furthermore, mutant
plants that overexpress miR482e also exhibit hypersensitivity to
V. dahliae due to production of miR482-derived tasiRNAs (Yang
et al., 2015).

Small RNAs have also been shown to indirectly regulate
R-gene expression by targeting genes related to co-expression
of R-genes, and thereby contributing to negative-feedback loops
(Yang and Huang, 2014). For instance, mutant Arabidopsis plants
defective in small RNA biogenesis (such as ago1-36 and dcl4-1)
have elevated levels of SNC1 transcript, whose overexpression
triggers downregulation of R-genes in the RPP5 locus via co-
suppression (Yi and Richards, 2007). This suggests that SNC1 is
most likely repressed by a small RNA pathway during pathogen
infection, which enables expression of the relevant R-genes (Yi
and Richards, 2007).

Furthermore, targeting of NB-LRRs by miRNAs has been
shown to trigger production of phased secondary siRNAs
(phasiRNAs) from their target mRNA cleavage site (Allen et al.,
2005). These are mainly formed by miRNAs 22 nucleotides in
length, of which one of the most frequent is miR393, which
is involved in auxin signaling and is commonly conserved
across species. The biogenesis of phasiRNAs is similar to that
of tasiRNAs, and phasiRNAs also have the ability to target
transcripts for degradation, often continuing to target the same
NB-LRR family as the initial miRNA. However, little else is
known about their function (Zhai et al., 2011; Fei et al., 2016).

Besides tasiRNAs and phasiRNAs, a number of other siRNAs
also hold the potential to play important roles in disease
resistance. Some of these roles involve direct interactions with
the pathogen and have already been used to show resistant
phenotypes in mutant plants (Casacuberta et al., 2015; Machado
et al., 2017). An example of this was highlighted by Zrachya
et al. (2007), who used siRNAs derived from an intron-hairpin
RNA (ihpRNA) to target the coat protein (CP) of the Tomato
yellow leaf curl virus (TYLCV) in tobacco and induce resistance.
Additionally, technology has been developed to help analyze the
overall expression patterns of sRNAs in the genome, known as
sRNA high-throughput sequencing. As demonstrated by Guo
et al. (2015) with transgenic anti-Rice stripe virus (RSV) rice
plants, this technology can help pinpoint which sRNAs play
dominant roles when a host is infected, along with a multitude of
other stress-inducing conditions (Luan et al., 2015; Mishra et al.,
2016; Li et al., 2017).

Both in combination and individually, miRNAs and siRNAs
offer myriad opportunities to improve disease-resistant traits in
crops. Knowledge of sRNAs, if successfully amalgamated with
innovative gene editing technologies such as CRISPR, has the
potential to create a new path for crop breeding, allowing targeted
editing at the post-transcriptional level (Liu and Chen, 2010;
Tang and Chu, 2017). This would not only expand knowledge of
gene regulation and function considerably, but also pave the way
for efficient targeted modifications of the epigenome (Basak and
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Nithin, 2015; Zhou et al., 2017). However, the application of these
sRNAs in crop improvement has yet to be sufficiently explored,
as reliable high-throughput data on miRNA-target pairs in many
crop species are unavailable, and only a few small-scale studies
have been completed (Jacobs et al., 2015; Zhao et al., 2016; Zhou
et al., 2017). This does, however, highlight a possible route for
future exploration (Tang and Chu, 2017).

As snRNAs are primarily involved in splicing activities in the
nucleus, little research has attempted to solidify their associations
with plant–pathogen interactions. However, Monaghan et al.
(2009) reported a suspected interaction of snRNP proteins
with the MOS4-associated complex (MAC), which is essential
for suppression of SNC1-mediated autoimmunity. Their study
suggested that snRNPs were required to initiate basal and
R-protein-mediated resistance in Arabidopsis. However, this
reaction has not been quantified, and other associations of
sRNA with plant–pathogen interactions have not been identified,
leaving an open niche for future research.

sRNA Mobility Regulates
Plant–Pathogen Interactions
Another mode by which sRNAs influence plant–pathogen
interactions involves the movement of sRNAs both within and
between organisms. Intercellular movement of sRNAs is still
relatively unexplored, as RNAs were previously assumed to
remain within a single cell due to their vulnerability to nuclease
degradation (Melnyk et al., 2011). However, this view began to
change after short-range cell-to-cell movement was first observed
in plants in 1997 (Palauqui et al., 1997; Voinnet and Baulcombe,
1997). Following this, over the past 20 years, both intra- and inter-
species long-range mobility has now been observed, including
not only plant-to-pathogen transportation but also the reverse
process, where pathogen sRNAs move into plant cells (Knip
et al., 2014). Interestingly, plant sRNAs can also be transported
through a number of different plant species via a parasitic
plant intermediate that infects them all, allowing sRNA mobility
between plant species (Melnyk et al., 2011; Dunoyer et al., 2013).

Within a plant, sRNAs are typically thought to use a symplastic
form of movement to achieve cell-to-cell mobility through the
plasmodesmata as many sRNAs have already been shown to
be present within phloem sap (Zhang et al., 2009). This allows
sRNAs to move from photosynthetic tissues to growing points
and sinks (Himber et al., 2003; Dunoyer et al., 2013; Lewsey
et al., 2016). However, the specifics of this mechanism, and
the exact functions of the sRNAs in the phloem are still very
vague. Ham et al. (2014) showed that in pumpkin (Cucurbita
maxima) a PHLOEM SMALL-RNA BINDING PROTEIN 1
(PSRP1) acts as a major component in the formation of a sRNA
ribonucleoprotein complex (sRNPC), which allows movement of
sRNAs into sink organs. In speculation, this mechanism could
represent a method of RNA silencing-mediated resistance, as it
gives a plant the ability to recover from viral infection. This
may result in the upper regions of a plant exhibiting secondary
resistance to a viral infection, appearing phenotypically disease
free compared to the infected lower regions (Molnar et al., 2011;
Pyott and Molnar, 2015). This is an interesting prospect, as it in

essence implies the existence of an adaptive form of immunity
that would require the sRNAs to be initially present only in
some cells, not all. However, these changes do not appear to be
hereditary and are initiated only in the infected plant, suggesting
that if they arose in crops, a loss of yield would first need to
occur before the crop could gain immunity (Brosnan et al., 2007;
Melnyk et al., 2011).

The ability of sRNAs to move within the plasmodesmata is
also thought to be an important aspect of initial host response
to disease, as some infectious agents, such as phytoplasmas, are
restricted in movement and are commonly localized to the sieve
elements of the phloem tissues (Bertaccini and Duduk, 2009).
It is therefore assumed that the host response must also occur
within the phloem. An example of this was identified in mulberry
(Morus sp.) which, when investigated, highlighted 43 miRNAs,
13 of which were novel, that were differentially expressed upon
infection with yellow dwarf disease phytoplasmas. In particular,
mul-miR482a-5p was shown to hold the ability to move from
scions to rootstock, and was upregulated upon infection (Gai
et al., 2014, 2018).

Many plant sRNA silencing machineries also have the ability
to recognize and process viral dsRNAs, and consequently create
virus-derived siRNAs that combine with RISCs to silence viral
genes in a natural antiviral process (Duan et al., 2012). This
has also been adapted as a molecular tool, known as virus-
induced gene silencing (VIGS). In retaliation, viruses have
evolved mechanisms, such as viral suppressors of RNA silencing
(VSR), that suppress host genes involved in sRNA production
(Dunoyer and Voinnet, 2005). These suppressor proteins may
also inadvertently silence other host regulatory sRNAs (Dunoyer
et al., 2004; Moissiard and Voinnet, 2004). However, more
complex mechanisms and in-depth manipulations have also been
implicated, and many other types of pathogens have recently been
shown to have evolved similar means of reprisal (Chapman et al.,
2004; Yang and Huang, 2014). An example of this, detailed by
Weiberg et al. (2013), is used by the fungal pathogen Botrytis
cinerea, which releases sRNAs into plant cells with the ability to
hijack host AGO proteins and target genes related to immunity.
Some Phytophthora species have also been shown to produce
effector molecules that are able to interfere with host sRNA
silencing (Ye and Ma, 2016). Similarly, plants have a comparable
system for battling other pathogens, known as HIGS (Ghag,
2017). This also facilitates plant sRNAs in targeting genes in
an invading pathogen’s genome. Unlike with viruses, where the
viral genome is freely accessible in the host cell, for HIGS to be
successful, sRNAs need to be transferred between species (Knip
et al., 2014). The specific mechanisms driving this process are
largely under debate, with the mechanisms in bacteria being
the most disputed. Different species likely use a variety of
mechanisms. Two of the most commonly proposed methods are
transfer via vesicular transportation in bacteria and via haustoria
in fungi (Figure 1; An et al., 2006; Nowara et al., 2010; Zhang
et al., 2012; Hua et al., 2018).

Mobility has also been observed between larger organisms,
including both insect pests and other plant species (Mao et al.,
2007; Knip et al., 2014). Tomilov et al. (2008) reported that
sRNAs had the ability to move between parasitic plants, such
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FIGURE 1 | A putative representation of different modes of small RNA (sRNA) mobility, including between plant cells and bacteria (vesicular transportation), plant
cells and fungi/parasitic plants (haustoria), and plant cells and insect herbivores (feeding tube).

as Triphysaria versicolor and Orobanche aegyptiaca, and their
corresponding hosts in a similar fashion to fungal pathogens,
via the haustoria (Westwood et al., 2009). For insect pests, the
mode of mobility is slightly different, and usually consists of
sRNAs being taken up during feeding (Figure 1). However,
although this mechanism is efficient in sucking insects and
nematodes, some species of insect, including phloem sap-feeding
hemipterans such as the global crop pest Bemisia tabaci (Luo
et al., 2017), exhibit a low RNAi efficiency due to adaptations
that allow them to degrade dsRNA before it can have an effect
(Whyard et al., 2009; Xue et al., 2012; Scott et al., 2013).
Nonetheless, insect RNAi has already been tested as a tool
for crop improvement with varying levels of success in crop
pests such as Leptinotarsa decemlineata (Colorado potato beetle),
Helicoverpa armigera (cotton bollworm), and Diabrotica virgifera
(Western corn rootworm) (Baum et al., 2007; Mao et al., 2007;
Zhang et al., 2015).

Furthermore, both VIGS and HIGS have been used as
innovative molecular techniques to manage plant pathogens.
These have been evaluated in both dicot and monocot plants, and
work through introducing engineered sRNAs via Agrobacterium
tumefaciens (Holzberg et al., 2002; Yin and Hulbert, 2015).
Following this, RNAi methods have been successfully applied to

induce sRNA silencing of target genes in a number of different
pathogens, including Blumeria graminis and Puccinia striiformis
f. sp. tritici, in a fast, efficient manner. Post-infection, only 3–
4 weeks are needed to attain resistance, and one of the greatest
benefits of using such methods is that, in principle, the only
knowledge needed to target a pathogen or insect gene is the
gene sequence itself (Burch-Smith et al., 2004; Nunes and Dean,
2012).

However, the HIGS and VIGS are both limited in their
applications, as they require efficient plant transformation
protocols, which are not always available for complex crop species
such as wheat. There is also some uncertainty surrounding
the resultants plants status as a genetically modified organism
(GMO), eliciting both public and regulatory concerns. To address
these issues, alternative technologies have also been trialed to
explore other possible pathways for induction of RNAi (Robinson
et al., 2014). One such technology involves the exogenous
application of dsRNA to host plants, which induces temporary
RNAi-mediated defense. This method is in very early stages, and
most research is currently focused on optimizing the delivery
method to increase the length of time resistance is induced
for (Mitter et al., 2017b). To date, the most effective manner
of delivery is combining naked dsRNA with layered double
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hydroxide (LDH) nanosheets, also known as BioClay, which are
then sprayed onto plants. In tobacco plants, this has been shown
to induce resistance for up to 20 days post-spraying (Jiang et al.,
2014; Mitter et al., 2017a).

All three of the methods above, HIGS, VIGS, and naked
dsRNA application, have important implications for crop
breeding efforts, as they not only highlight novel techniques
for potentially improving crop resistance to pathogens, but
also help to shed light on possible mechanisms and genes
that may already be at play, and efficient ways of investigating
them (Lu et al., 2003; Burch-Smith et al., 2004; Nowara
et al., 2010). However, these techniques are still under
development, and need to be developed further before the full

scope of their applications can be appreciated (Kusaba, 2004;
Perrimon et al., 2010; Koch and Kogel, 2014).
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