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Abstract

Background/Aims: Gastric cancer (GC) is one of the most prevalent digestive malignancies.
MicroRNAs (miRNAs) are involved in multiple cellular processes, including oncogenesis, and
miR-592 itself participates in many malignancies; however, its role in GC remains unknown.
In this study, we investigated the expression and molecular mechanisms of miR-592 in
GC. Methods: Quantitative real-time PCR and immunohistochemistry were performed to
determine the expression of miR-592 and its putative targets in human tissues and cell lines.
Proliferation, migration, and invasion were evaluated by Cell Counting Kit-8, population
doubling time, colony formation, Transwell, and wound-healing assays in transfected GC cells
in vitro. A dual-luciferase reporter assay was used to determine whether miR-592 could directly
bind its target. A tumorigenesis assay was used to study whether miR-592 affected GC growth
in vivo. Proteins involved in signaling pathways and the epithelial-mesenchymal transition
(EMT) were detected with western blot. Results: The ectopic expression of miR-592 promoted
GC proliferation, migration, and invasion in vitro and facilitated tumorigenesis in vivo. Spry2
was a direct target of miR-592 and Spry2 overexpression partially counteracted the effects of
miR-592. miR-592 induced the EMT and promoted its progression in GC via the PI3K/AKT and
MAPK/ERK signaling pathways by inhibiting Spry2. Conclusions: Overexpression of miR-592
promotes GC proliferation, migration, and invasion and induces the EMT via the PI3K/AKT and
MAPK/ERK signaling pathways by inhibiting Spry2, suggesting a potential therapeutic target

for GC. © 2018 The Author(s)
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Introduction

Gastric cancer (GC) is one of the most prevalent digestive malignancies, the fourth most
frequent malignancy, and the third leading cause of cancer-associated death worldwide
[1]. In China, with 679, 100 new cases and 498, 000 deaths in 2015, both its morbidity
and mortality rank second only to lung cancer [2]. Despite advances in early diagnosis and
surgical techniques, patients with advanced GC still have a poor prognosis with a 5-year
overall survival below 25% [3]. Because multiple factors, including heredity and genetics,
contribute to the intricate process of gastric carcinogenesis [4], identification of promising
strategies aimed at revealing the molecular mechanisms underlying GC is an urgent issue.

MicroRNAs are endogenous, highly conserved, small noncoding RNAs of approximately
19-24 nucleotides in length [5]. They negatively exert a vital role in regulating gene
expression, mainly by binding to the 3’ untranslated region (3'UTR) of target mRNA at
the post-transcriptional level, causing its degradation or translational suppression [6, 7].
miRNAs participate in various biological activities in cells, such as proliferation, migration,
invasion, and apoptosis [8]. Many lines of evidence suggest that aberrant expression of
miRNA also plays a role in cancer progression by affecting exclusive oncogenes or tumor
suppressors [9-11].

According to The Cancer Genome Atlas (TCGA) database, miR-592 is abnormally
overexpressed in GC tissues compared with adjacent normal tissues. miR-592 is also
dysregulated in diverse human cancers [12-16], acting as an oncogene in cancers such as
colorectal [12, 13] and prostate [14]. In contrast, miR-592 serves as a tumor suppressor
in hepatocellular carcinoma [15, 16]. Nevertheless, the potential roles and molecular
mechanisms of miR-592 in GC need further investigation.

Sprouty, which was first discovered in Drosophila, is a potent antagonist of the FGFR-
induced Ras/MAPK signal pathway [17, 18]. As one of four mammalian isoforms, Sprouty?2
manifests the highest evolutionary conservation and its loss or dysregulation has been linked
to ovarian carcinoma [19], renal carcinoma [20], and lung cancer [21]. However, Spry2 also
serves as an oncogene driving the epithelial-mesenchymal transition (EMT) in colorectal
cancer [22]. In addition, Spry2 plays a suppressive role in GC [23].

In this study, we investigated the role of miR-592 in GC and hypothesized that Spry2
might be one of the putative direct targets of miR-592 through bioinformatics predictions
and experimental validation. Our results indicated that miR-592 overexpression could
promote the progression and development of GC by targeting Spry2 through the PI3K/AKT
and MAPK/ERK signaling pathways in vitro and in vivo. More importantly, these findings may
indicate a therapeutic target for GC.

Materials and Methods

Human tissue samples

Human GCtissuesand paired adjacentnormal tissues were acquired from 70 GC patients who underwent
radical gastrectomy at the Department of General Surgery, The First Affiliated Hospital of Nanjing Medical
University, China. After resection, all specimens were immediately stored in liquid nitrogen and the relevant
histopathology was confirmed by pathologists. This study was approved by the First Affiliated Hospital of
Nanjing Medical University Ethics Committees and all patients or relatives signed informed consent.

Cell lines

Human GC cell lines (SGC7901, BGC823, MGC803, and AGS) and human normal gastric mucous
epithelium cells (GES-1) were purchased from the American Type Culture Collection (Manassas, VA, USA).
They were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS; Wisent Inc.,
St. Bruno, Canada) and 1% antibiotics (100 U/ml penicillin G and 100 pg/ml streptomycin). The cells were
incubated in a humidified atmosphere containing 5% CO, at 37°C.
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RNA extraction and quantitative real-time PCR

Total RNA, including miRNA and mRNA, was extracted from cells and tissues with Trizol reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Subsequently, we applied
PrimeScript RT Reagent (Takara, Japan) to synthesize cDNA for human Spry2. To detect miRNA expression,
a poly(A) polymerase was used to polyadenylate and elongate the miRNA, and then an Oligo-dT adaptor
with a universal tag sequence on its 5’ end was mixed with the decorated RNA. The sequence of the Oligo-dT
adaptor was as follows: 5’-GCGAGCACAG AATTAATACG ACTCACTATA GG(T)18-3". Finally, the cDNA of miR-
592 was acquired by using a ReverAid Transcriptase Kit (Thermo Scientific, Waltham, MA, USA). Quantitative
real-time PCR (qRT-PCR) was performed on a 7500 Real-time PCR System (Applied Biosystems, Carlsbad,
CA, USA) with a SYBR Premix Ex Taq Kit (Vazyme, Nanjing, China) to determine the relative expression
of miR-592 and SPRY2. U6 snRNA and B-actin were used as the internal controls for miR-592 and Spry2,
respectively. The specific primers were as follows: has-miR-592, forward: 5’-TTGTGTCAAT ATGCGATGAT GT-
3’; Universal: 5’-GCGAGCACAG AATTAATACG AC-3’; U6, forward: 5’-CTCGCTTCGG CAGCACA-3’; U6, reverse:
5’-AACGCTTCAC GAATTTGCGT-3’; has-Spry2, forward: 5’-CTCGGCCCAG AACGTGATT-3’, hsa-Spry2, reverse:
5-GGCAAAAAGA GGGACATGAC AC-3’; B-actin, forward: 5’-GCATCGTCAC CAACTGGGAC-3’, B-actin, reverse:
5-ACCTGGCCGT CAGGCAGCTC-3". All procedures were performed in triplicate and the relative expression
was calculated by means of the 24" method.

Western blot assay

Total protein was extracted using RIPA lysis buffer (Beyotime, Shanghai, China) supplemented with
protease inhibitor, phosphatase inhibitor, and phenylmethanesulfonyl fluoride. After scraping, oscillation,
and centrifugation at 14, 000 rpm for 15 min at 4°C, the supernatant was collected and mixed with sodium
dodecyl sulfate loading buffer. The solution was boiled for 5 min and stored at -20°C. Isolated proteins
from cells and tissues were then electrophoresed on 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis and transferred to a polyvinylidene fluoride membrane (Bio-Rad, CA, USA). Afterward,
the membrane was blocked by 5% non-fat milk at room temperature for 2 h and incubated with specific
primary antibodies (1:1, 000) at 4°C overnight. The next day, after recycling antibodies, the membrane was
washed three times with Tris-buffered saline with Tween-20 (TBST) for 15 min each and then incubated
with secondary antibodies (1:10, 000) at room temperature for 2 h. After three more washes with TBST, the
relative expression levels of the protein were detected via an enhanced chemiluminescence detection system.
The primary antibodies were as follows: Spry2 (1:1, 000, Abcam, Cambridge, UK); E-cadherin, vimentin,
N-cadherin, ERK, p-ERK, AKT, and p-AKT (1:1, 000, Cell Signaling Technology, Danvers, MA, USA); GAPDH
as internal control; (1:1, 000, Cell Signaling Technology). The experiments were performed in triplicate and
the relative protein expressions were quantified and compared via grayscale analysis using Image].

Lentivirus construction and cell transfection

To overexpress or knockdown miR-592 in GC cells, commercially available LV2-has-miR-592-mimics
vector (miR-592-mimics) and LV2-has-miR-592 inhibitor vector (miR-592-inhibitor) were constructed
(GenePharma, Shanghai, China). The LV2 empty vector construct (miR-NC) functioned as a negative control.
In brief, pri-miR-592 sequences were synthesized and cloned into the PgLV2-U6-Puro Vector (LV2); all
vectors were verified by DNA sequencing. 293T cells were cotransfected with the lentiviral expression
construct and packing plasmids and then viral particles were collected and the titer determined before the
infection of target cells. When the GC cell lines SGC7901 and BGC823 reached 40-50% confluence, they
were infected with the lentiviral vectors at the appropriate multiplicity of infection: 20 for SGC7901 cells
and 50 for BGC823 cells. Stably transfected cell lines were acquired by using 5 pg/ml puromycin (Sigma,
USA) for 1 week. Lentiviral vector containing Spry2 coding sequence (LV-Spry2) and the corresponding
negative control (vector) were also made by GenePharma Biotech (Shanghai, China). The synthesized
coding sequence of Spry2 was cloned into the vector and used to generate the stable cell lines by the above
methods.

Dual-luciferase reporter assay

To determine whether Spry2 is a direct target of miR-592, the 3'UTR sequence of Spry2 mRNA with
its full length of 782 nucleotides including wild-type or mutated miR-592 binding sites was synthesized
by GeneScript (Nanjing, China). The wild-type 3'UTR including putative binding sites (5" AUACUACAUG

KARGER

1467


http://dx.doi.org/10.1159%2F000490839

Cellular Physiology Cell Physiol Biochem 2018;47:1465-1481

DOL © 2018 The Author(s). Published by S. Karger AG, Basel

and BlOChemiStry Published online: June 25,2018 www.karger.com/cpb

He et al.: MiR-592 Promotes PI3K/AKT and MAPK/ERK Signaling by Inhibiting Spry2 in
GC

GCACAGACAC AAA 3’ [position: 404-426]) and corresponding mutated sites (5’ AUACUACAUG GCACAGCAGU
CAA 3") was cloned into the Fsel and Xbal restriction sites of the pGL3 luciferase control reporter vector
(Promega, Madison, WI, USA) to obtain the Spry2 3’UTR reporter constructs (pGL3-WT-Spry2 and pGL3-
MUT-Spry2).SGC7901 and BGC823 cells were seeded in 24-well plates at 5 x 10* cells per well and incubated
for 24 h. The cells were cotransfected were 120 ng pGL3-WT-Spry2 or PGL3-MUT-Spry2 accompanied
by 40 nM miR-592 mimics or negative control using Lipofectamine 2000 (Invitrogen). Then, 48 h after
transfection, Firefly and Renilla luciferase activities were measured using the dual-luciferase reporter assay
system (E1910, Promega) according to the manufacturer’s protocol. Renilla luciferase expression plasmid
(10 ng) was also transfected into the cells to act as the internal reference. This assay was performed in
triplicate and the results are expressed in the form of a ratio of firefly fluorescence to Renilla fluorescence.

Immunohistochemistry

All tissue samples were fixed in 4% formalin, dehydrated by graded ethanol, and then embedded in
paraffin. Sections (4 pm thick) were cut on a histotome, dewaxed in dimethylbenzene, and rehydrated,
then steeped in sodium citrate and 3% hydrogen peroxide for antigen retrieval and to quench endogenous
peroxidase activity. Sections were incubated overnight at 4°C with primary antibody. After being washed
with phosphate buffered saline (PBS), the slices were incubated with horseradish peroxidase polymer-
conjugated secondary antibody at 37°C for 1 h, and then stained with 3, 3-diaminobenzidine solution for 3
min to visualize the staining. Hematoxylin was used to counterstain nuclei.

Cell proliferation assay

To examine the proliferation of GC cells, 1 x 103 cells/well were seeded in 96-well plates and cultured
in RPMI-1640 medium supplemented with 10% FBS for 6 days. At a set time point every day, the medium
was exchanged with a solution containing 10 pl Cell Counting Kit-8 (CCK8; Beyotime) according to the
manufacturer’s instructions with 100 pl RPMI-1640 and incubated at 37°C for 2 h. Absorbance was then
measured at 450 nm, which obtains the appropriate OD value for evaluating cell numbers.

Population doubling time determination

When cell density reached approximately 70-90%, the cells were trypsinized and seeded in 96-well
plates with 1 x 102 cells per well in five replicates. Cells were incubated in 100 pl medium for 6 days and the
absorbance was measured at a set point every day. Cell proliferation was determined via characterization of
the logarithmic phase of growth with the population doubling time (PDT): PDT = (log2 x (t, - t,))/(logN, -
logN,), where N, is the number of cells harvested at the end of the growth period, N, indicates the initial cell
number, and (t, - t,) means the counting time interval. The average PDT was calculated for the five replicates
and the experiments were performed in triplicate.

Colony formation assay

Stably transfected GC cells were seeded in 6-well plates (500 cells/well) and cultured in an incubator
with 5% CO, at 37°C for about 2 weeks. When clear colonies formed, the cells were washed with PBS and
fixed by 70% ethanol for 3 min. Then, the plates were stained with 1% crystal violet (Beyotime) for 30 min.
When a colony containing 50 cells or more was found under the microscope, the number of colonies was
counted.

Transwell assay

Transwells with an 8-um pore size (Corning Costar Corp., Corning, NY, USA) were used to test the
migratory and invasive abilities of treated cells. Briefly, 2 x 10* cells were placed in the top chamber in 200 pl
serum-free medium, and 500 pl complete culture medium (with 10% FBS) was added to the lower chamber
to act as a chemoattractant. Twenty-four hours after incubation, the cells were fixed and then stained with
1% crystal violet for 20 min. The cells on the upper layer of the chambers that could not migrate to the
opposite surface were carefully removed with a cotton swab, whereas the cells on the lower surface were
imaged and counted under an inverted microscope (Olympus Corp., Tokyo, Japan) at 200x magnification
with five random fields for each membrane. This approach was mainly used to determine migratory ability.
To investigate the invasive ability of cells, 0.1 ml Matrigel (50 pg/ml, BD Biosciences, San Jose, CA, USA) was
added onto the plate surface and the cells were incubated for 2 h and then assessed as indicated above.
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Wound-healing assay

SGC7901 and BGC823 cells (5 x 10°) were incubated in 6-well plates until they reached confluency.
Linear scratch wounds were created in the center of each well with a 200-pl sterile pipette tip. Cells in
suspension were washed several times in PBS and adherent cells were cultured in serum-free medium. After
0 h, 24 h, and 48 h, images were taken to observe the wounds at the same fields under the microscope and
the separation distance between wound sides was calculated. The experiments were performed in triplicate.

In vivo tumorigenicity

Forty 4-week-old BALB/c nude mice were purchased from the Animal Centre of Nanjing Medical
University. All animal experiments were approved and consistent with the Institutional Animal Care and
Use Committee of Nanjing Medical University. The mice were randomly divided into six groups. Stably
transfected GC cells (SGC7901-miR-592-mimics, SGC7901-miR-592-inhibitor, and SGC7901-NC; BGC823-
miR-592-mimics, BGC823-miR-592-inhibitor, and BGC823-NC) were suspended in PBS and inoculated
subcutaneously into two flanks of the mice at a density of 1 x 10 cells/100 pl PBS. The tumor volumes were
measured with Vernier calipers every 4 days for 3 weeks until the mice were euthanized and the relative
tumor volume doubling time was determined using the PDT formula introduced above. The implanted
tumor volumes were calculated as volume = (L x W?)/2, where L is the tumor length and W is the tumor
width.

Statistical analysis

Data from three independent experiments are shown as the mean * standard deviation. Using SPSS
software version 19.0, differences between two groups were determined by a two-tailed Student’s t test.
Clinicopathological features were compared by Pearson x? tests. Analysis of variance was used to compare
treated and control groups. P < 0.05 was considered statistically significant.

Results

miR-592 is upregulated in GC tissues and cells

According to the TCGA database, which includes 413 primary GC tissues and 43 adjacent
normal tissues, miR-592 expression was significantly higher in GC tissues (Fig. 1A). To
verify whether miR-592 was dysregulated in GC tissues, 70 pairs of GC tissues and adjacent
normal tissues were collected to determine the relative expression of miR-592 using qRT-
PCR. As shown in Fig. 1B and C, the expression of miR-592 was upregulated in GC tissues.
Specifically, when data were normalized to Log2, the miR-592 expression of GC tissues was
increased in 51 of the paired cases and decreased in the remaining 19 pairs compared with
the corresponding adjacent tissues. In addition, the expression of miR-592 in normal GES-1
and GC cell lines (SGC7901, MGC803, BGC823, and AGS) was further examined with qRT-
PCR. As shown in Fig. 1D, the expression of miR-592 was markedly higher in GC cells. Our
results were consistent with the data in TCGA and indicated that the expression of miR-592
was upregulated in both GC tissues and cells.

Next, we analyzed the correlation between miR-592 expression and clinicopathologic
features. GC patients (n = 70) were divided into two groups based on the relative expression
of miR-592 (whether higher or not than the mean expression): the high miR-592 expression
group (n = 33) and the low miR-592 expression group (n = 37). As shown in Table 1, high
miR-592 expression was associated with tumor size, histological type, and lymph node
metastasis. The analytical data indicated that miR-592 had considerable influence on the
development and progression of GC.

miR-592 facilitates the proliferation of GC

We postulated that miR-592 would play an important role in GC due to its high
expression in both GC tissues and cells. To confirm this hypothesis, we selected SGC7901 and
BGC823 cells for biological function experiments in line with the miR-592 expression results
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in various GC cells determined with qRT-PCR (relatively low in SGC7901 and relatively high
in BGC823). In addition, the two cell lines were stably transfected with miR-592-mimics or
-inhibitor lentivirus and the efficacy was determined using qRT-PCR. As shown in Fig. 1E,
the relative expression of miR-592 was markedly increased and decreased in SGC7901 cells
transfected with miR-592-mimics and -inhibitor, respectively, versus the negative control
groups. The same results were achieved in the BGC823 cell line.

A CCKS8 assay was conducted to probe the effect of miR-592 on GC cell proliferation.
Ectopic expression of miR-592 boosted the proliferation rate of both SGC7901 and BGC823
cell lines compared with control groups and the opposite effects were detected in the
cells subjected to miR-592 expression knockdown (Fig. 2ZA). The PDT was calculated and
compared to further verify the effect of miR-592 on GC proliferation (Fig. 2B). Compared
with the control group, the miR-592-mimics group showed a shortened PDT and the miR-
592-inhibitor group had a longer PDT. Additionally, a colony formation assay was carried
out to reflect the population dependence and proliferation capacity of GC cells. The results
were consistent with the CCK8 assay and showed that upregulated expression of miR-592
promoted the colony formation ability of the two chosen cell lines versus the control group
and that downregulated expression reversed the effect (Fig. 2C). These two in vitro studies
indicated that the expression of miR-592 was positively correlated with the proliferation of
GC, which means that overexpressed miR-592 could facilitate the proliferation of GC, with
miR-592 knockdown having the opposite effects.

miR-592 promotes GC migration and invasion

To further validate the oncogenic role of miR-592 in GC cells, wound-healing and
Transwell assays were performed. In the wound-healing assay, overexpression of miR-592
increased the migration rate of both types of cells at two set time points. In contrast, reduced
expression of miR-592 decreased the number of migratory cells (Fig. 2D). In the Transwell
assay, when miR-592 was upregulated, the number of migrated cells was dramatically
increased, and the opposite results were observed when miR-592 was downregulated at
the two time points (Fig. 2E). The number of invasive SGC7901 and BGC823 cells was also
increased when the chamber was coated with Matrigel, compared with the negative control,
and knockdown of miR-592 showed the opposite effect (Fig. 2F). Taken together, these
results demonstrated that miR-592 promotes the migration and invasion of GC cells in vitro.
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miR-592 promotes the growth of GC in vivo

To investigate the effect of miR-592 on proliferation in vivo, cells stably transfected
with miR-592-mimics or miR-592-inhibitor were injected into the flanks of nude mice, with
cells transfected with miR-NC used as a negative control. Four weeks after inoculation, xe-
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miRNAMap ( (https://cm.jefferson.

edu/rna22/Precomputed/) were applied to predict the targets of miR-592. According to the intersection of
the three computational prediction results, we found that Spry2, a known tumor suppressor, was a potential

target of miR-592.

SpryZ2 is downregulated in GC tissues and cells

To explore the relationship between miR-592 and Spry2, we determined the expression
of Spry2 in 70 GC tissues and adjacent normal tissues with qRT-PCR. As shown in Fig. 34,
compared with the paired adjacent normal tissues, the relative expression of miR-592
was clearly reduced in primary tumor tissues. In addition, we examined the Spry2 protein
expression in six paired GC specimens through western blot. As shown in Fig. 3B, the
immunohistochemical expression of Spry2 was lower in GC tissues than in the adjacent
normal tissues. Spry2 expression was consistently downregulated in GC specimens (Fig.
3C). We also found that the miR-592 expression level was negatively correlated with Spry?2
expression (Fig. 3D). We next detected the Spry2 expression in GC and GES-1 cells with qRT-
PCR and western blot. As shown in Fig. 3E and F, the relative expression of Spry2 at both
mRNA and protein levels was distinctly lower in GC cells than in GES-1 cells. In addition, we
conducted a correlation analysis between the Spry2 expressionlevel and the clinicopathologic
characteristics of GC patients (Table 1). Low Spry2 expression was correlated with tumor
size, histological type, and lymph node metastasis. All of these results suggested that Spry?2
might be a target of miR-592 in GC and play a role in tumor inhibition.

Spry2 is a direct target of miR-592 in GC
Dual-luciferase reporter assays were performed to further test whether Spry2 is a
direct target of miR-592 in GC. We cloned wild-type (WT) and mutant-type (MUT) Spry2
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assay was conducted to

confirm whether miR-592 directly bind to the 3’UTR of Spry2. Change of luciferase activity was analyzed in
SGC7901 and BGC823 which were co-transfected with miR-592-mimics or negative control and the pGL3-
WT-Spry2 3’-UTR or pGL3-MUT-Spry2 3’-UTR. (H) Effects of miR-592 alteration on expression level of
spry2 protein in GC cells by western blot. (I) The expression level of spry2 mRNA in GC cells after miR-592
alteration by qRT-PCR. * P <0.05, ** P <0.01, *** P <0.001. The data expressed as the mean+SD.

Table 1. Expression of miR-
592 and Spry2 in human
gastric cancer according to

patients’ clinicopathological
characteristics. *P < 0.05,
**Pp< 0.01 Statistically

significant difference

KARGER

Characteristics Number miR-592 expression p-value Spry2 expression p-value
High group  Low group High group Low group

Age(years)
<60 28 12 16 0.558 11 17 0.622
260 42 21 21 19 23

Gender
Male 38 17 21 0.660 15 23 0.533
Female 32 16 16 15 17

Size(cm)
<3 33 10 23 0.008** 19 14 0.019*
=23 37 23 14 11 26

Histological type
Well-moderately 23 6 17 0.014* 14 9 0.033*
Poorly-signet 47 27 20 16 31

Stage
1/11 31 13 18 0.436 13 18 0.890
/v 39 20 19 17 22

T grade
T1+T2 27 11 16 0.395 14 13 0.228
T3+T4 43 22 21 16 27

Lymph node metastasis
Absent(N0) 29 8 21 0.006** 17 12 0.025*

Present(N1-N3)

41

25

16

13

28
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3’'UTR sequences (the former containing the original binging site and the latter containing
site-directed mutations) into the reporter plasmid. miR-592-mimics and the pGL3-WT-
Spry2 3'UTR were cotransfected into SGC7901 and BGC823 cells, with the results indicating
that overexpression of miR-592 could decrease luciferase activity compared with the
control group. However, there was no evident change in luciferase activity in the same cells
cotransfected with pGL3-MUT-Spry2 3’UTR and miR-592-mimics, confirming that Spry2 is a
direct target of miR-592 (Fig. 3G).

miR-592 represses SpryZ2 protein expression via mRNA degradation

To study the explicit mechanism by which miR-592 regulated Spry2, we performed
western blot to analyze Spry2 protein levels. In contrast to the control, Spry2 protein
levels in SGC7901 and BGC823 cells were clearly reduced after transfection with miR-592-
mimics and elevated after transfection with miR-592-inhibitor (Fig. 3H). In addition, after
transfection with miR-592-mimics and miR-592-inhibitor, qRT-PCR was used to determine
whether there was a difference in Spry2 mRNA levels in the two cell lines compared with the
negative control group. As shown in Fig. 3], the relative expression of Spry2 mRNA in cells
transfected with miR-592-mimics was lower than in the control, and the inverse result was
obtained with miR-592-inhibitor. The relative protein expression of Spry2 from xenografted
tumors also confirmed that upregulated miR-592 expression could reduce Spry2 protein
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expression compared with the control group (Fig. 2L). Thus, we concluded that miR-592
represses Spry2 protein expression via mRNA degradation.

miR-592 promotes GC cell proliferation, migration, and invasion by targeting SpryZ2

We have shown that miR-592 overexpression promoted proliferation, migration, and
invasion in GC cells and suppressed Spry2 protein expression by directly binding to the
3’'UTR of Spry2 and triggering its mRNA degradation. In contrast, miR-592 downregulation
had the opposite effects. To further determine whether miR-592 promoted the progression
and development of GC by modulating Spry2, we first upregulated the expression of Spry2 in
SGC7901 and BGC823 cells; the transfection efficacy was verified by western blot (Fig. 4A).
Through CCK8, PDT, colony formation, wound-healing, and Transwell assays, we found that
overexpressed Spry2 could inhibit the proliferation, migration, and invasion of GC cells (Fig.
4B-F). Next, the two cell lines were cotransfected with miR-592-mimics and LV-Spry2. In
conjunction with the above assays, we performed the appropriate rescue experiments and
demonstrated that ectopic expression of Spry2 could reverse the promotion of proliferation,
migration, and invasion induced by miR-592 overexpression in SGC7901 cells. The same
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effects were seen in BGC823 cells (Fig. 5A-E). Spry2 protein expression was confirmed by
western blot in transfected cells (Fig. 5F). These findings verified that restoration of Spry2
expression could counteract the effects of miR-592-mimics, which further demonstrated that
miR-592 promotes proliferation, migration, and invasion in GC cells by directly targeting
Spry2.

Overexpression of miR-592 induces the EMT via Spry2

The EMT is a vital biological process in which malignant cells acquire migratory and
invasive abilities, and we have confirmed that miR-592 promoted migration and invasion
in GC cells by targeting Spry2. Hence, we wondered if miR-592 might play a role in the
EMT of GC cells and thus used western blotting to examine the expression of characteristic
biomarkers of this process, such as E-cadherin, vimentin, and N-cadherin. As shown in Fig.
6A, compared with miR-NC, SGC7901 and BGC823 cells transfected with miR-592-mimics
revealed decreased expression of E-cadherin and increased expression of vimentin and
N-cadherin; this change was partially counteracted by cotransfection with LV-Spry2 (Fig.
6B). This finding indicated that overexpression of miR-592 could induce the EMT via Spry2
in GC cells.

miR-592 promotes the PI3K/AKT and MAPK/ERK signaling pathway in GC cells by

targeting SpryZ2

The classic PI3K/AKT and MAPK/ERK signaling pathways modulate the progression
of various cancers by affecting their proliferation, migration, and invasion [24-26]. Spry2
has also been confirmed to be a suppressive regulator of the PI3K/AKT and/or MAPK/ERK
signaling pathways [27-29]. Therefore, we examined the expression of ERK, p-ERK, AKT, and
p-AKT with western blot to determine whether miR-592 participatesin the activation of PI3K/
AKT and/or MAPK/ERK signaling pathways. As shown in Fig. 6A, miR-592 overexpression
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significantly increased p-ERK and p-AKT in GC cells compared with the control group, with
knockdown of miR-592 showing the opposite effects. No difference was observed in the
expression of ERK and AKT. In addition, this effect was partially blocked by upregulation
of Spry2 expression in cells transfected with miR-592-mimics, which indicated that Spry2
functioned as a suppressor of both the PI3K/AKT and MAPK/ERK signaling pathways (Fig.
6B). All of these results indicated that the mechanism by which miR-592 facilitates the
proliferation, migration, and invasion of GC cells is associated with activation of the PI3K/
AKT and MAPK/ERK signaling pathways via suppression of Spry2.

Discussion

Dysregulation of miRNAs is involved in the development and progression of various
human malignancies. For example, miR-3151 promotes cell proliferation and decreases
apoptosis in malignant melanoma and papillary thyroid cancer by targeting TP53 [30], miR-
224 promotes tumor progression in non-small cell lung cancer by activating ERK signaling
[31], and miR-584-5p inhibits proliferation in GC by targeting WWP1 [32]. A few studies
have reported that miR-592 is aberrantly expressed and plays bidirectional roles in different
malignancies such as colorectal cancer and hepatocellular carcinoma [12, 13, 15]. However,
the impact of miR-592 on GC and the potential molecular mechanism remained unclear. In
this study, we propose a novel role for miR-592 in GC cells, finding that miR-592 was highly
expressed in both GC cells and clinical specimens, results that were consistent with the
results in TCGA database. According to the cell function experiments, overexpressed miR-
592 promoted proliferation, migration, invasion, and the EMT in vitro and tumorigenicity in
vivo, suggesting that miR-592 may be a valid prognostic indicator for GC patients. In addition,
our research confirmed that miR-592 serves as a tumor facilitator in GC through the PI3K/
AKT and MAPK/ERK signaling pathways.

The potential target of miR-592 was predicted by bioinformatics analysis. Of the putative
targets, Spry2, which has three homologues, drew our attention. The Spry family (spry1-4)
was first identified in Drosophila, where it acts as an inhibitor of fibroblast growth factor in
tracheal branching morphogenesis [17]. [t was also noted for regulating the receptor tyrosine
kinase (RTK)-mediated MAPK/ERK signaling pathway because it has a cysteine-rich domain
carboxyl-terminal that inhibits RTK signaling proteins [33]. Spry2 has been linked to fibrosis,
angiogenesis, and carcinogenesis [33-35]. Spry2 was mainly identified as a suppressor
in various malignances. For example, Spry2 inhibits GC progression by antagonizing the
activation of RAS/ERK [23]. In addition, Spry2 can be targeted and modulated by several
miRNAs. Shukla etal. reported that Spry2 was suppressed by miR-21 and negatively regulated
BCR-mediated MAPK-ERK signaling in chronic lymphocytic leukemia [36]. miR-27b may
promote the migration and invasion of hepatocellular carcinoma cells, at least partially by
suppressing Spry2 expression [37].

In our study, we confirmed the relative expression of Spry2 in GC tissues and cells,
showing that Spry2 expression was much lower in GC tissues than in paired normal tissues
and GES-1 cells. By analyzing clinicopathological characteristics, we determined that Spry2
expression was correlated with tumor size, histological type, and lymph node metastasis. In
addition, dual-luciferase reporter assays showed that miR-592 suppressed Spry2 by directly
binding to its 3'UTR and that overexpressed miR-592 could suppress Spry2 expression by
degrading Spry2 mRNA. In addition, restoration of Spry2 partially counteracted the inductive
effects of miR-592-mimics on proliferation, migration, and invasion. In summary, our study
demonstrated the ability of miR-592 to promote GC in a manner that is modulated by Spry2
inhibition.

The EMT, the biological process by which epithelial cells are transformed into stromal
cells by a specific process, plays a crucial role in cancer progression and metastasis. The
EMT is characterized by a series of reversible molecular and phenotypic alterations and
increased cell motility that promote the biological aggressiveness of malignant cells, such as
invasion and metastasis [38, 39]. Recent accumulating evidence has indicated that miRNAs

KARGER

1477


http://dx.doi.org/10.1159%2F000490839

Cellular Phy5i0|ogy Cell Physiol Biochem 2018;47:1465-1481
DOL

R . : 10000400229 © 2018 The Author(s). Published by S. Karger AG, Basel
and B|ochem|stry Published online: June 25, 2018 | www.karger.com/cpb

He et al.: MiR-592 Promotes PI3K/AKT and MAPK/ERK Signaling by Inhibiting Spry2 in
GC

are implicated in the EMT. Zhang et al. reported that miRNA-148a suppresses the EMT and
metastasis of hepatoma cells by targeting Met/Snail signaling [40]. Chen et al. showed that
miR-1236 regulated hypoxia-induced EMT and inhibited the migratory and invasive activity
of tumor cells by suppressing SENP1 and HDAC3 [41]. In the present study, we determined
that overexpressed miR-592 could promote the EMT by dramatically reducing the expression
of E-cadherin while increasing the levels of N-cadherin and vimentin. This effect was partly
reversed by cotransfection of cells with Spry2 and miR-592-mimics. Together, these findings
indicated that miR-592 induces the EMT by targeting Spry2.

However, the role played by Spry2 in the EMT is controversial. So et al. reported that
overexpression of Spry2 could attenuate the EGF-induced E-cadherin downregulation and
then reduce EGF-induced cell invasion. Moreover, they observed a positive correlation
between Spry2 and E-cadherin protein levels in high-grade serous ovarian carcinoma
tissues [19]. In addition, inhibition of miR-21, which targets Spry2, can attenuate hepatocyte
EMT and Spry2 represses the epithelial phenotype of colon carcinoma cells via upregulation
of ZEB1 mediated by ETS1 and miR-200/miR-150 [34, 35]. Nevertheless, Zhang et al. have
confirmed an atypical role played by sprouty as an oncogene by driving the EMT in colorectal
cancer, which contradicts our findings that overexpressed Spry2 could inhibit the EMT in GC
[22]. Considering the tissue specificity of gene expression, which means that the expression
levels of the same gene are different at the same developmental stages of different tissues
and organs, patterns of expression and regulation could also vary among different tissues.
In addition, because one gene could be regulated by means of DNA methylation and histone
modifications, the combined biological effects are primarily influenced by the specific
genetic background of the types of tumors or cells in which the Spry2 is expressed. Thus, the
seemly distinct functions of Spry2 in different cancer types reflect the intrinsic diversities
and complexities of tumor biology.

The PI3K/AKT and MAPK/ERK signaling pathways are closely associated and participate
in multiple cellular processes, including growth, proliferation, differentiation, migration, and
the EMT [42-46]. Although Spry?2 isknown for its suppressive role in the MAPK/ERK signaling
pathway, FGFR2-induced promotion of progression of GC is antagonized by Spry2 via
inhibition of ERK phosphorylation [23]. Loss of Spry2 can also activate the PI3K/AKT pathway
through interaction with the ErbB system in prostate cancer [47]. How Spry2 can influence
the two signaling pathways could be illustrated by one potential molecular mechanism: Spry
proteins interact with GRB2, which is the SH2/SH3 domain-containing adapter protein, and
can link to and activate the RTK implicated in both pathways. Accordingly, the gain or loss
of Spry2 allows regulation of these two classic oncogenic pathways [27, 48]. In the present
study, miR-592 was shown to modulate the PI3K/AKT and MAPK/ERK signaling pathways
by directly targeting Spry2. Overexpressed miR-592 promoted the phosphorylation and
activation of AKT and ERK while downregulated miR-592 exerted the opposite effect.

Although it seems that the molecular mechanisms exploited by miRNAs are quite
unequivocal, there have been other interesting findings in this field. Adjacent miRNAs could
constitute an miRNA cluster, which regulates the common target and the signaling pathways.
Foxol can be downregulated by the miR-183-96-182 cluster, which promotes T helper 17
cell pathogenicity [49]. Methylation of miRNA promoters can itself also account for the
aberrant expression of miRNA and be associated with cancer susceptibility [50]. In addition,
miR-122 can downregulate the expression of miR-21 by directly binding to the pri-miR-21
sequence, which influences the process of the RNase Il Drosha [51]. Taken together, these
new findings and developments reflect the diversity and complexity of miRNA regulation,
suggesting that the regulation of miR-592 is its diverse and complicated.

Therapies based on miRNAs have gradually moved from the theoretical realm to clinical
application. A mimic of miR-34, which acts as a tumor suppressor, has reached phase I clinical
trials for the treatment of cancer. In addition, anti-miRNAs targeted at miR-122 have reached
phase II trials for hepatitis treatment [52]. All of these advances in this field have increased
our confidence in the potential of miRNA-targeted therapeutics. Nonetheless, validation of
the feasibility and safety of an miR-592-based therapeutic is urgently needed.
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This is the first study to demonstrate that miR-592 functions as an oncogene in GC via
the following new findings: miR-592 is frequently upregulated in GC tissues and cell lines;
miR-592 promotes proliferation, migration, and invasion and induces the EMT through the
PI3K/AKT and MAPK/ERK signaling pathways in GC cells; a downstream target gene of miR-
592 is Spry2; and the effects of miR-592 are counteracted by Spry2 overexpression. However,
we realize that our study has certain limitations and shortcomings. For instance, a single
miRNA may control and target multiple genes and one single gene can also be regulated by
several miRNAs. In addition to the advances in this field mentioned above, we have not ruled
out the potential role of other genes targeted by miR-592 and related signaling pathways
in these processes, which could further explain the potential mechanisms. Thus, protocol
optimization and further study are required.

In summary, our study showed that miR-592 was correlated with tumor size, histological
type, and lymph node metastasis and that it promoted proliferation, migration, invasion, and
the EMT by inhibiting Spry2-mediated PI3K/AKT and MAPK/ERK signaling pathways. These
findings indicate that miR-592 could be a potential therapeutic target in GC.
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