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Cholinergic neurotransmission has a pivotal function in the caudate-putamen, and is

highly associated with the pathophysiology of Parkinson’s disease. Here, we investigated

long-term changes in the densities of the muscarinic receptor subtypes M1, M2,

M3 (mAchRs) and the nicotinic receptor subtype α4β2 (nAchRs) in the striatum of

the 6-OHDA-induced hemiparkinsonian (hemi-PD) rat model using quantitative in vitro

receptor autoradiography. Hemi-PD rats exhibited an ipsilateral decrease in striatal

mAchR densities between 6 and 16%. Moreover, a massive and constant decrease

in striatal nAchR density by 57% was found. A second goal of the study was to

disclose receptor-related mechanisms for the positive motor effect of intrastriatally

injected Botulinum neurotoxin-A (BoNT-A) in hemi-PD rats in the apomorphine rotation

test. Therefore, the effect of intrastriatally injected BoNT-A in control and hemi-PD rats

on mAchR and nAchR densities was analyzed and compared to control animals or

vehicle-injected hemi-PD rats. BoNT-A administration slightly reduced interhemispheric

differences of mAchR and nAchR densities in hemi-PD rats. Importantly, the BoNT-A

effect on striatal nAchRs significantly correlated with behavioral testing after apomorphine

application. This study gives novel insights of 6-OHDA-induced effects on striatal mAchR

and nAchR densities, and partly explains the therapeutic effect of BoNT-A in hemi-PD rats

on a cellular level.

Keywords: receptors, acetylcholine, hemiparkinsonian rat model, Botulinum neurotoxin-A, basal ganglia,

Parkinson’s disease

INTRODUCTION

Acetylcholine (Ach) effects are mediated via metabotropic G-protein coupled muscarinic receptors
(mAchRs) and ionotropic nicotinic receptors (nAchRs). They are important for cognitive functions
such as working, episodic and spatial memory, or attention (Hefco et al., 2004; Newman
et al., 2012). In the striatum (caudate-putamen, CPu), complex bidirectional interactions of
the cholinergic and dopaminergic systems are fundamental for normal functioning (Calabresi
et al., 2000; Cragg, 2006; Goldberg et al., 2012). Both nAchRs (Giorguieff et al., 1976; Rapier
et al., 1988; Grady et al., 1992; El-Bizri and Clarke, 1994; Sharples et al., 2000; Wonnacott
et al., 2000; Zhou et al., 2001) and mAchRs (Westfall, 1974; Zhang et al., 2002; Zhang and
Sulzer, 2004; Threlfell et al., 2010) modulate dopamine (DA) release from synaptic terminals.
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The nAChRs (such as the α4β2 subtype) as well as mAChRs
(M1-M5 subtypes) interact in a complex manner to modulate
synaptic plasticity in the striatum. M1 receptors presynaptically
located on medium spiny neurons (MSNs) inhibit GABA release
(Sugita et al., 1991). To a lesser degree, glutamate release from
glutamatergic terminals is also inhibited by activation of other
muscarinic presynaptic receptors. Since the effect on GABA
release dominates, the netto effect of M1 receptor activation is
increased excitability (Sugita et al., 1991). M2 and M3 receptors
both regulate glutamatergic release from cortical nerve terminals
(Calabresi et al., 1998; Pakhotin and Bracci, 2007). Activation of
M4 receptors, which often form heterodimers with the excitatory
D1 receptor on MSNs (Ince et al., 1997) results in the inhibition
of these neurons. Presynaptic M2 and M4 receptors modulate
glutamate release from corticostriatal afferents and GABA release
from GABAergic interneurons (Benarroch, 2012). Moreover,
M2 and M4 receptors were both found as autoreceptors on
cholinergic interneurons in the striatum (Zhou et al., 2003).
Also nAChRs are expressed on cholinergic interneurons as well
as on corticostriatal and nigrostriatal terminals. They modulate
glutamate release (Zhou et al., 2003). However, the precise
functions of nAChRs and mAChRs subtypes are still subject of
ongoing research.

In Parkinson’s disease (PD) the primary neuropathological
characteristic is the dopaminergic denervation of the CPu
caused by progressive dopaminergic cell death in the substantia
nigra pars compacta (SNpc) (Hornykiewicz, 1963; Bernheimer
et al., 1973). The resulting DA deficit triggers its cardinal
clinical symptoms including tremor, rigidity, bradykinesia and
postural instability (Cutson et al., 1995). Further, the absent
inhibition of tonically active cholinergic interneurons by DA
results in relative hypercholinism (Spehlmann and Stahl, 1976;
Aosaki et al., 2010), which additionally worsens the pathological
motor manifestations (Marti et al., 1999; Pisani et al., 2003;
Ding et al., 2006). Consequently, disturbances in cholinergic
neurotransmission are associated with symptoms of PD (Lester
et al., 2010).

Symptomatic pharmacological treatments of PD are DA
replacement therapy with L-Dopa (Carlsson et al., 1957;
Duvoisin, 1967; Volpato et al., 2016), administration of
DA receptor agonists, of catecholamine-O-methyl transferase
inhibitors, and of anticholinergics drugs including mAchR
antagonists (Horstink et al., 2006a,b; Langmead et al., 2008).
Anticholinergic substances have anti-parkinsonian effects on
motor dysfunction (Brooks, 1998; Lees, 2005). The systemic
administration of anticholinergica is, however, accompanied by

Abbreviations: 6-OHDA, 6-hydroxydopamine; Ach, acetylcholine; BoNT-
A, botulinum neurotoxin-A; BSA, bovine serum albumin; CPu, caudate-
putamen, DA, dopamine; DSP-4, N-2-chloroethyl-N-ethyl-2-bromobenzylamine;
EGP, externus globus pallidus; hemi-PD, hemiparkinsonian; M1, acetylcholine
muscarinic M1 receptor, M2, acetylcholine muscarinic M2 receptor, M3,
acetylcholine muscarinic M3 receptor; MFB, medial forebrain bundle; MSN,
striatal medium spiny neuron; mAchRs, muscarinic acetylcholine receptors;
nAchRs, nicotinic acetylcholine receptors; PBS, phosphate-buffered saline, PD,
Parkinson’s disease; ROI, region of interest; SNpc, substantia nigra pars
compacta; SNpr, substantia nigra pars reticulate, SNAP25, synaptosome-associated
glycoprotein of 25-kDa.

massive side effects (Katzenschlager and Lees, 2002; Fernandez,
2012). We recently demonstrated that the local injection of the
anticholinergic Botulinum neurotoxin-A (BoNT-A) into the CPu
is a potent new experimental therapy in 6-hydroxdopamine (6-
OHDA)-induced hemiparkinsonian (hemi-PD) rats. Peripheral
and central side effects of systemically applied anticholinergica
are avoided in this approach (Wree et al., 2011; Antipova et al.,
2013; Wedekind et al., 2018).

Experimental animal models that mimic aspects of PD by
destruction of the nigrostriatal pathway are frequently used in
PD’s research and therapy testing. One is the hemi-PD rat model,
which is generated by unilateral stereotaxic injection of the
neurotoxin 6-OHDA into the medial forebrain bundle (MFB)
(Ungerstedt, 1968; Ungerstedt and Arbuthnott, 1970; Schwarting
and Huston, 1996; Blandini et al., 2000; Duty and Jenner, 2011;
Tieu, 2011). The resulting dopaminergic depletion in hemi-
PD rats affects motor behavior as seen in the apomorphine-
induced rotation test (Ungerstedt et al., 1969). We previously
demonstrated that apomorphine-induced contralateral rotations
of hemi-PD rats are abolished by ipsilateral injection of BoNT-
A up to 6 months (Wree et al., 2011; Antipova et al., 2013, 2017;
Mann et al., 2018a,b). Moreover, BoNT-A does not have cytotoxic
effects in the rat brain (Mehlan et al., 2016), and does not impair
cognition but reduces anxiety in naïve rats (Holzmann et al.,
2012). BoNT-A inhibits Ach release from presynaptic terminals
by cleavage of the synaptosome-associated glycoprotein of 25-
kDa (SNAP25), and thus prevents cholinergic hyperactivity
(Coffield et al., 1994; Caleo et al., 2009). However, the
molecular and cellular mechanisms of the observed behavioral
effects of BoNT-A on hemi-PD rats have not yet been fully
examined.

To explore the role of cholinergic receptors and its changes
after DA deprivation and following BoNT-A injection, we
comprehensively examined striatal receptor densities of
mAchRs (M1, M2, M3, M4 subtypes) and nAchRs (α4β2
subtype) up to a survival time of 9 months using quantitative
in vitro receptor autoradiography. First, we analyzed time-
dependent changes in receptor densities in 6-OHDA-induced
hemi-PD rats relative to controls. Then the long-term
effects of intrastriatal BoNT-A injections in naïve rats were
investigated. To our knowledge, this is the first study analyzing
long-term effects of 6-OHDA and intrastriatal BoNT-A
injections.

MATERIALS AND METHODS

Animals
One hundred and twenty-eight male Wistar rats (strain Crl:WI
BR) aged 3 months and weighing 250–280 g were obtained
from Charles River WIGA (Sulzfeld, Germany). Animals were
housed in a temperature-controlled room (22 ± 2◦C) under
a fixed 12 h light/12 h dark cycle and had free access to food
and water 24 h a day. Animal treatment was in line with legal
obligations of the animal welfare act and all animal experiments
were approved by the state Animal Research Committee of
Mecklenburg-Western Pomerania (LALLF M-V/TSD/7221.3-
1.1-003/13).
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Stereotactic Interventions
Anesthesia was performed via intraperitoneal (i.p.) injection of
a mixture of ketamine (50 mg/kg body weight) and xylazine (4
mg/kg body weight). Rats were operated under aseptic conditions
at a weight of 285–305 g. Animals were fixed in a rat stereotactic
apparatus (Kopf, Tujunga, CA, USA) and 6-OHDA solution was
injected evenly over 4min via a 26 gauge 5 µl Hamilton syringe
into the right MFB. The coordinates of the 6-OHDA injection
with reference to bregma were: anterior-posterior = −2.3mm,
lateral=−1.5mm and ventral=−9.0mm (Paxinos andWatson,
2007). Hemi-PD was induced by the unilateral injection of
4 µl of 6-OHDA (24 µg) (Sigma-Aldrich, St. Louis, MO)
dissolved in 0.1M citrate buffer. Application of BoNT-A (lot
No. 13028A1A; List, Campbell, CA; purchased via Quadratech,
Surrey, UK) or of vehicle was carried out 6 weeks after 6-
OHDA lesion. BoNT-A was handled and stored according to
the precautions given by the manufacturer. The coordinates of
the two BoNT-A or vehicle injections with reference to bregma
were: anterior-posterior = +1.3 mm/−0.4mm, lateral = −2.6
mm/−3.6mm and ventral = −5.5 mm/−5.5mm (right CPu)
(Paxinos and Watson, 2007). For details of the different control
and experimental groups see Table 1.

Apomorphine Rotation Test
Successful 6-OHDA lesion as well as the effect of BoNT-
A on motoric behavior were verified by the drug-induced
apomorphine rotation test (Ungerstedt and Arbuthnott, 1970).
All animals were examined in the apomorphine rotation test
1 month post 6-OHDA lesioning and repetitively over a time
period of up to 9 months. Animals were placed in a self-
constructed rotometer device modified according to Ungerstedt
and Arbuthnott (1970) 5min after apomorphine injection (0.25
mg/kg, i. p.). Full rotations of 360◦ were counted over 40min and
the mean rotation per minute was calculated (anti-clockwise: +,
clockwise: –).

Tissue Processing
For tissue processing brains were dissected, frozen in isopentane
(−80◦C) and cut in frontal sections (20µm) on a cryostat (Leica
Mikrosystems, Wetzlar, Germany). Mounting was performed on
gelatin-coated and pre-cooled (−20◦C) glass slides followed by
a drying procedure (20–30min, +35◦C). Sections were obtained
from 7 predefined levels, which were selected to cover the entire
rostro-caudal extent of the CPu. The coordinates with reference
to bregma were: level 1: +1.56mm, level 2: −0.36mm, level
3: −0.84mm, level 4: −2.16mm, level 5: −2.52mm, level 6:
−3.60mm, and level 7: −5.20mm (Paxinos and Watson, 2007).
Each level consisted of immediately adjacent sections used for the
visualization of the different receptor types, or of cell bodies.

Receptor Autoradiography
Autoradiography was performed according to published
protocols (Zilles et al., 1991a,b,c, 2002a,b). The M1 receptor
was labeled with [3H]pirenzepine (M1 antagonist), the agonistic
binding site of the M2 receptor with [3H]oxotremorine-M,
and its antagonistic binding site with [3H]AF-DX 384. The
antagonistic ligand [3H]AF-DX 384 binds not only to M2

receptors, but also to M4 receptors in a regional specific manner
(Valuskova et al., 2018). In the mouse striatum, almost 80% of
this binding is to M4 receptors. The M3 receptor was labeled with
[3H]4-DAMP (M3 antagonist) and the α4β2 nicotinic receptor
with [3H]epibatidine (α4β2 agonist). All ligands were purchased
from Perkin Elmer (Rodgau, Germany). Autoradiographic
processing of the sections was performed in 3 main steps:
rehydration and elimination of endogenous ligands, incubation
with the respective tritiated ligand in the absence (total binding)
or presence (nonspecific binding) of a specific non-radioactive
ligand as displacer, and a final washing step to remove non-
bound ligand and buffer salts. Sections were then dried and
co-exposed with different plastic standards (representing
different radioactivity concentrations) against ß-sensitive films
(Kodak, PerkinElmer LAS GmbH, Germany) for 9 weeks
([3H]AF-DX 384, [3H]4-DAMP), 12 weeks ([3H]pirenzepine)
or 15 weeks ([3H]epibatidine, [3H]oxotremorine-M). Resulting
autoradiographs were developed using a Hyperprocessor
(Amersham Biosciences, Amersham, UK; now: GE Healthcare
Europe GmbH, Freiburg, Germany) and digitized with a CCD-
camera (Zeiss, Carl Zeiss MikroImaging GmbH, Göttingen,
Germany). Details of autoradiographic processing for each
receptor are shown in Table 2.

Histology
Alternating sections were processed for the visualization of cell
bodies. These sections were postfixed in 3.7% paraformaldehyde
(20–45min). Staining of cell bodies was performed with
0.1% cresyl-violet solution (7–12min, 60◦C; cresyl-violet
acetate SIGMA C1791-5G). These sections were used as
histological reference during the delineation of the CPu in the
autoradiographs.

Image Processing
The software MCID Analysis v7.0 (InterFocus imaging
Ltd, Linton, UK) (http://www.mcid.co.uk/) was used for
measurement of receptor densities. Digitized autoradiographs
were loaded and regions of interest (ROIs) were definedmanually
by comparison with the neighbouting cell-body stained sections.
For each ROI, the average and background-corrected gray values
were extracted. For densitometric analysis the gray values of all
processed sections were transformed into receptor densities (in
fmol/mg protein) by means of standard curves derived from
the co-exposed plastic standards. In the ensuing linearized
autoradiographs, which can be color coded for visualization
purposes, the receptor density in fmol/mg protein of each pixel
can be calculated according to:

Cb =
R

E · B ·Wb · Sa
·
KD + L

L
(1)

where R is the radioactivity concentration in counts per minute
[cpm], Cb is Bmax and thus the binding site concentration in
fmol/mg, E is the efficiency of the scintillation counter (depends
on the actual counter), B is a constant representing the number of
decays per unit of time and radioactivity [Ci/min],Wb the known
equivalent protein weight of a standard [mg], Sa the specific
activity of the ligand [Ci/mmol], KD the dissociation constant
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TABLE 1 | Details of the different control and experimental groups and their survival times.

Groups Characteristics Survival times

1. Controls (C) Unoperated naive rats 300 g body weight + 6 weeks (C) (n = 7)

2. 6-OHDA only (L) Single injection of 24 µg 6-OHDA into the right medial

forebrain bundle

Weeks after 6-OHDA (L3W) (n = 7)

6 weeks after 6-OHDA (L6W) (n = 7)

6 weeks + 1 month after 6-OHDA (L6W1M) (n = 7)

6 weeks + 3 months after 6-OHDA (L6W3M) (n = 6)

6 weeks + 6 months after 6-OHDA (L6W6M) (n = 6)

6 weeks + 9 months after 6-OHDA (L6W9M) (n = 6)

3. BoNT-A only (B) Two injections of 1 ng BoNT-A [solved in

phosphate-buffered saline (PBS) supplemented with

0.1% bovine serum albumin (BSA)], each at different

sites within the right CPu

Weeks after BoNT-A (B2W) (n = 7)

1 month after BoNT-A (B1M) (n = 6)

months after BoNT-A (B3M) (n = 6)

6 months after BoNT-A (B6M) (n = 7)

9 months after BoNT-A (B9M) (n = 7)

4. 6-OHDA + BoNT-A (LB) Single injection of 24 µg 6-OHDA into the right medial

forebrain bundle followed by 2 × 1 ng BoNT-A

6 weeks after 6-OHDA + 1 month after BoNT-A (LB6W1M) (n = 9)

6 weeks after 6-OHDA + 3 months after BoNT-A (LB6W3M) (n = 8)

6 weeks after 6-OHDA + 6 months after BoNT-A (LB6W6M) (n = 8)

6 weeks after 6-OHDA + 9 months after BoNT-A (LB6W9M) (n = 8)

5. 6-OHDA + vehicle (LV) Single injection of 24 µg 6-OHDA into the right medial

forebrain bundle + 2 × 1 µl vehicle (PBS + 0.1% BSA)

6 weeks after 6-OHDA + 1 month after vehicle (LV6W1M) (n = 6)

6 weeks after 6-OHDA + 3 months after vehicle (LV6W1M) (n = 8)

TABLE 2 | List of analyzed receptors with the respective specific ligands, nonradioactive displacers, washing, and incubation details.

Receptor Ligand Displacer Incubation buffer Pre-

incubation

Main

incubation

Final rinsing

M1 [3H]-Pirenzepine

1.0 nM

Pirenzepine

µm

Modified Krebs buffer (pH 7.4),

5.6mM KCl, 30.6mM NaCl, 1.2mM

MgSO4, 1.4mM KH2PO4, 5.6mM

D-Glucose, 5.2mM NaHCO3,

2.5mM CaCl2

15min, 4◦C 60min, 4◦C 1) × 1min, 4◦C

2) 1 s in distilled water,

22◦C

M2 (agonist) [3H]-

Oxotremorine-M

1.7 nM

Carbachol

10µm

20mM HEPES-Tris (pH 7.5), 10 nM

MgCl2, 300 nM Pirenzepine

20min, 22◦C 60min, 22◦C 1) × 2min, 4◦C

2) 1 s in distilled water,

22◦C

M2

(antagonist)

[3H]-AF-DX 384

5 nM

Atropinesulfate

100µm

Modified Krebs buffer (pH 7.4)

4.7mM KCl

120mM NaCl, 1.2mM MgSO4,

1.2mM KH2PO4, 5.6mM D-Glucose,

25mM NaHCO3, 2.5mM CaCl2

15min, 22◦C 60min, 22◦C 1) × 4min, 4◦C

2) 1 s in distilled water,

22◦C

M3 [3H]-DAMP

1nM

Atropinesulfate

10µm

50mM Tris-HCl (pH 7.4), 0.1mM

PMSF,

1mM EDTA

15min, 22◦C 45min, 22◦C 1) × 5min, 4◦C

2) 1 s in distilled water,

22◦C

α4β2 [3H]-Epibatidine

0.5 nM

Nicotine

100µM

15mM Hepes (pH 7.5), 120mM

NaCl, 5.4mM KCl, 0.8mM MgCl2,

1.8mM CaCl2

20min, 22◦C 90min, 22◦C 1) 1 × 5min, 4◦C

2) 1 s in distilled water,

22◦C

of the ligand [nM], and L the free concentration of the ligand
during incubation [nM]. Displayed receptor density values are
the area-weighted means of all ROIs of an animal containing
the CPu. Since the tritiated ligands do not only bind to a single
receptor type, the KD value for each ligand is important to reach
the necessary selectivity for demonstration of a single receptor
type. Therefore, the ligand concentration in the incubation buffer
was set at 50% of the KD value for the dissociation of the ligand-
receptor binding. This results in a high specificity of receptor
labeling.

Statistical Analysis
For all statistical observations, IBM SPSS Statistics version
20.0 was used. Gaussian distribution of receptor density
values was tested with the Kolmogorov-Smirnov test. Then,
data was analyzed with a between-subject Univariate General
Linear Model (post-hoc ANOVA analysis of variance). The
dependent variable was “receptor density” and the covariate
was the respective treatment group separately for the left and
right hemispheres not considering survival time followed by
Bonferroni correction with the factor group [df = 9; (M1
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receptor: F = 1.199; M2 (agonist binding) receptor: F = 1.847,
M2 (antagonist binding) receptor: F = 19.180, M3 receptor:
F = 22.787, nAch receptor: F = 148.214)]. Correlations between
relative receptor density and apomorphine-induced rotations as
well as time-dependent correlations of right-left differences were
analyzed with linear regression followed by a two-sided Pearson
correlation test. Possible significant differences in body weight
between 2 groups were analyzed using factorial ANOVA. p< 0.05
was considered statistically significant.

RESULTS

Quantitative in vitro receptor autoradiography was performed
to analyze the mean densities of mAchRs (M1, M2, M3) and
nAchRs (α4β2) longitudinally between 3weeks and 9months post
lesion in 5 experimental groups (for details see Table 1). Mean
receptor densities and interhemispheric differences) of mAchRs
and nAchRs are presented in Table 3.

6-OHDA Lesion Effect on Rotational
Behavior and Body Weight
The apomorphine-induced rotation test was performed 3 weeks
post 6-OHDA lesion and 1 month post BoNT-A injection
to functionally confirm dopaminergic deafferentiation after 6-
OHDA lesion and the effect of BoNT-A on motoric behavior. All
hemi-PD rats (groups L, LB, LV) demonstrated a contralateral
net rotation of about 8 min−1 before the BoNT-A or vehicle
injections. Intrastriatal BoNT-A injection in hemi-PD rats (group
LB) significantly abolished contralateral rotations for up to 3
months. Vehicle injection in hemi-PD rats (group LV) did
not affect the rotational behavior, as previously shown (Mann
et al., 2018b). TH-immunoreactive staining in the SNpc of
both hemispheres revealed no side differences in control rats, a
distinct loss of TH-positive neurons ipsilateral to the 6-OHDA
lesion, and no additive effect of BoNT-A as previously shown
(Mann et al., 2018b). Body weight was not significantly different
after BoNT-A administration (analyzed in groups LB and LV)
1 month and 3 months post intervention. Results expressed as
weight ± SD were LB6W1M: 414 ± 44 g, LV6W1M: 457 ±

35 g, p = 0.069; LB6W3M: 476 ± 42 g, LV6W3M: 495 ± 52 g,
p= 0.460.

Muscarinic M1 Receptors
In the CPu of control rats (group C), M1 receptors showed
a mean concentration of 5,092 ± 2,331 fmol/mg (mean
± SD) without significant interhemispheric differences
(Figures 1A,C). 6-OHDA lesion (group L) non-significantly
decreased interhemispheric M1 receptor density by about 9%
ipsilateral to the lesion, the contralateral side remained at a level
comparable to that of controls (Figures 1B,C). Notably, the
potential effect of the 6-OHDA lesion on ipsilateral M1 receptors
was more obvious in the first 3 months after 6-OHDA lesion
(L3W−11.2%, L6W−10.2%, L6W1M−13.8%, L6W3M−9.5%,
L6W6M −5.4%, L6W9M −4.1%) (R2 = 0.24083, p = 0.001)
(Figure 1D).

Injection of only BoNT-A (group B) did not result in
interhemispheric differences when densities were averaged over

all analyzed survival times (Figure 1C). Considering the post
injection time course after application of BoNT-A in this group,
there was an ipsilateral reduction of M1 receptor density of
−7.0% 2 weeks after BoNT-A. This reduction significantly
decreased (R2 = 0.71129, p = 0.001) with longer post injection
survival (1 month −5.1%, 3 months −0.3%), and changed into
an increase (6 months+2.4%, 9 months+5.1%) (Figure 1D).

BoNT-A injection in hemi-PD rats (group LB) did not
significantly affect the right-left difference of M1 receptors when
densities were averaged over all survival times (Figure 1C).
Notably, the interhemispheric difference of group LB was
reduced for all analyzed time points (LB6W1M−7.0%, LB6W3M
−3.3%, LB6W6M −2.0% and LB6W9M −1.4%) (R2 = 0.15267,
p = 0.022) (Figure 1D). Vehicle injection in hemi-PD rats
(group LV) did not affect the 6-OHDA-induced imbalance of M1

receptor density (Figures 1C,D) as compared to group L.
To analyze a possible relation between interhemispheric

differences and apomorphine-induced rotations and the effect
of BoNT-A and Sham injection in this context, we correlated
relative M1 receptor density with apomorphine-induced
rotations for groups LB and LV and did not find a significant
correlation (R2 = 0.009983, p= 0.7231).

Muscarinic M2 Receptor (Agonist Binding)
M2 receptor density in the CPu of control rats (group C)
exhibited a mean concentration of 949 ± 95 fmol/mg (mean ±

SD) showing no significant side differences (Figures 2A,C). 6-
OHDA lesioned animals (group L) demonstrated no significant
interhemispheric differences (ipsilateral decrease of 6%) when
the mean effect was calculated over the entire post injection time
(Figures 2B,C). If this interhemispheric difference was analyzed
along the post-injection time course, the right-left difference
after 6-OHDA application was time-dependent (R2 = 0.12267,
p = 0.025): −0.7% (L3W), 2.0% (L6W), −13.0% (L6W1M),
−6.1% (L6W3M), −6.7% (L6W6M), −7.3% (L6W9M)
(Figure 2D).

Striatal M2 agonist binding of rats treated only with
BoNT-A (group B) showed no significant interhemispheric
differences when the mean was calculated over all post-injection
time points (Figure 2C). However, values changed significantly
(R2 = 0.59512, p = 0.001) depending on post-injection times
of BoNT-A starting with an ipsilateral decrease at 2 weeks and
ending with an increase at 9 months: −8% (B2W), −13.8%
(B1M),−0.4% (B3M), 2.7% (B6M), 13.3% (B9M) (Figure 2D).

M2 agonist binding was not significantly altered by post-
treatment of hemi-PD rats with BoNT-A (group LB) or with
vehicle (group LV) when the mean effect was calculated over
all survival times (Figure 2C). Rats of the LB group showed
an interhemispheric compensation of the density reductions
caused by 6-OHDA injections which reduced the difference
in the ipsilateral side over time (R2 = 0.19002, p = 0.010):
(LB6W1M −8.9%, LB6W3M −6.9%, LB6W6M 0.4%, LB6W9M
2.2%) (Figure 2D).

We found no significant correlation (R2 = 0.2559, p= 0.0544)
between the interhemispheric difference of these M2 receptor
binding sites for groups LB and LV and the apomorphine-
induced rotations.
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TABLE 3 | Summary of the mean receptor densities in the CPu for all analyzed receptors in fmol/mg protein ± SD and the interhemispheric difference (mean ± SD) (in %)

for the 5 groups averaged over all post-lesion survival times [controls (C), hemi-PD rats (L), BoNT-A only rats (B), hemi-PD + BoNT-A rats (LB) and hemi-PD + vehicle rats

(LV)].

Receptor Mean

C

Mean

L

Mean

B

Mean

LB

Mean

LV

M1

Left hemisphere

Right hemisphere

Change (relative to left)

5,149 ± 2,335

5,263 ± 2,328

98 ± 1%

5,263 ± 1,190

4,772 ± 2,328

91 ± 5%

5,130 ± 1,414

5,083 ± 1,443

99 ± 6%

5,073 ± 1,328

4,905 ± 1,288

97 ± 6%

4,268 ± 1,591

3,958 ± 1,417

93 ± 5%

M2 (AGONIST BINDING)

Left hemisphere

Right hemisphere

Change (relative to left)

924 ± 82

974 ± 109

105 ± 7%

938 ± 70

887 ± 77

96 ± 7%

965 ± 88

984 ± 82

98 ± 11%

978 ± 85

936 ± 84

96 ± 8%

862 ± 72

828 ± 81

96 ± 6%

M2 AND M4 (ANTAGONIST BINDING)

Left hemisphere

Right hemisphere

Change (relative to left)

3894 ± 363

3,859 ± 352

99 ± 2%

3,405 ± 190

2,877 ± 218***

84 ± 5% ###

3,337 ± 197*

3,085 ± 254***

92 ± 9%

2,997 ± 216***

2,595 ± 271**

87 ± 9% ###

3,197 ± 180*

2,737 ± 264***

86 ± 6%

M3

Left hemisphere

Right hemisphere

Change (relative to left)

7,274 ± 709

7,368 ± 757

101 ± 3%

4,999 ± 419***

4,717 ± 417***

94 ± 4%

5,398 ± 541***

5,473 ± 486***

101 ± 7%

4,853 ± 572***

4,725 ± 613***

97 ± 7%

5,316 ± 773***

5,239 ± 745***

99 ± 5%

α4β2

Left hemisphere

Right hemisphere

Change (relative to left)

392 ± 35

382 ± 23

98 ± 7%

316 ± 25***

136 ± 20***

43 ± 5% ###

335 ± 23*

354 ± 22

106 ± 7%

331 ± 31*

175 ± 23***

53 ± 7%

309 ± 20***

135 ± 18***

44 ± 8%

Asterisks indicate significance of a hemisphere to the respective side of the controls *p < 0.05, **p < 0.01, ***p < 0.001. Rhombs display interhemispheric significance within one group
###p < 0.001. Significance was calculated with a between-subject Univariate General Linear Model (post-hoc ANOVA analysis of variance) using the mean receptor density of every

treatment group separately for the left and right hemisphere.

Muscarinic M2 and M4 Receptor
(Antagonist Binding)
In control rats (group C), a mean density of 3,876± 357 fmol/mg
(mean ± SD) was measured. No significant interhemispheric
differences were found (Figures 3A,C). Injection of 6-OHDA
(group L) resulted in a significant ipsilateral decrease of
antagonistic ([3H]-AFDX-384) binding of 16% when densities
were averaged over all examined time points (Figures 3B–D).
Furthermore, only densities of the ipsilateral hemisphere of
group L animals were significantly lower than in controls. No
significant correlation was found between receptor densities and
post-injection time points (L6W1M −18.6%, L6W3M −15.4%,
L6W6M−16.5%, L6W9M−15%) (Figure 3D).

Treatment with BoNT-A only (group B) resulted in a non-
significant interhemispheric decrease (−8%) in antagonistic
receptor binding when densities were averaged over all
examined time points (Figure 3C). However, the densities
were significantly lower in both hemispheres of group B rats
compared to those of control animals (Figure 3C). Values
changed significantly (R2 = 0.68926, p = 0.0001) depending on
post BoNT-A injection-time, starting with an ipsilateral decrease
at 2 weeks and ending with a slight increase at 9 months: −16%
(B2W), −10.9% (B1M), −9.4% (B3M), −0.6% (B6M), 3.5%
(B9M) (Figure 3D).

Group LB, but not group LV, showed a significant
interhemispheric difference in receptor density if antagonistic
binding sites were averaged over all examined time points
(Figure 3C). Both groups presented significantly lower densities

of antagonistic binding sites in both hemispheres if compared
to controls (Figure 3C). A significant time-dependent BoNT-
A-induced effect on the 6-OHDA induced binding site density
(group LB) is disclosed in the longer post injection periods
(R2 = 0.317, p = 0.0001): (LB6W1M −19.8%, LB6W3M
−16.5%, LB6W6M −10.1%, LB6W9M −7.7% (Figure 3D).
Contrastingly, the vehicle injection in hemi-PD rats (group LV)
did not influence the 6-OHDA induced M2 receptor density
(Figures 3C,D).

Right-left differences for groups LB and LV did not correlate
(R2 = 0.1247, p = 0.1966) with motor behavior in the
apomorphine rotation test.

Muscarinic M3 Receptor
A mean (± SD) density of 7,321 ± 733 fmol/mg was found
for M3 receptors in control rats (group C) (Figures 4A,C).
The differences between both hemispheres are not significant
in any of the examined control and experimental groups
when values are averaged over all post-injection time points
(Figures 4B,C). However, the M3 receptor density is significantly
lower in both hemispheres of the experimental groups (L,
B, LB, LV) compared to the drug naïve rats (group C)
(Figure 4C).

A significant (R2 = 0.309, p = 0.001) time dependence of
the BoNT-A effect (group B) on the M3 receptor densities
was observed: −3% (B2W), –.3% (B1M), −2.0% (B3M),
4.4% (B6M), 7.8% (9M) (Figure 4D). The hemi-PD rats
with injection of BoNT-A (group LB) also presented a
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FIGURE 1 | (A,B) Contrast-enhanced color-coded images showing the regional distribution of M1 receptor density labeled with [3H]pirenzepine in a control rat (A,B)

after 6-OHDA lesion (group L6W1M) in a control rat (A) and after 6-OHDA lesion (group L6W1M) (B). (C) Mean receptor density (fmol/mg protein; averaged over all

post-lesion survival times) in the left/contralateral (black column) and right/ipsilateral hemispheres (gray column) of the 5 groups: C, control; L, 6-OHDA lesion; B,

BoNT-A only; LB, L + BoNT-A; LV. L + vehicle. All data is expressed as means ± SD. (D) Scatter plots and regression analyses of the right-left differences of M1

receptor density for all 18 groups and time points (five groups with different survival times); see Table 1 for explanation of abbreviations. Significant regressions are

labeled by a continuous line.

significant (R2 = 0.16436, p = 0.020) post-injection time
dependency (LB6W1M −5.6%, LB6W3M −5.1%, LB6W6M
+0.6%, LB6W9M −1.4%) (Figure 4D). In the vehicle-injected
group (LV), the M3 receptor density was comparable to that of
hemi-PD rats (group L) (Figures 4C,D).

We observed no significant (R2 = 0.1433, p = 0.1643)
correlation between the right-left difference of M3 receptor
density in the CPu of groups LB and LV and the apomorphine-
induced rotational behavior.

Nicotinic α4β2 Receptor
Nicotinic α4β2 receptors exhibited a density of 387 ±

29 fmol/mg (mean ± SD) in the CPu of control rats
(group C), and no significant interhemispheric differences
were observed (Figures 5A,C). A significant reduction of 57%
ipsilateral to the 6-OHDA application (group L) was found.
The decrease remained constant up to 9 months after 6-
OHDA injection (Figures 5B–D). Furthermore, this obvious
interhemispheric difference was also seen in the hemi-PD

rats treated with BoNT-A (group LB) or vehicle (group LV).
A significant, but low reduction in binding site densities
is also found on the contralateral side of all experimental
groups (L, B, LB, LV) if compared to drug naïve controls
(Figure 5C).

Treatment with BoNT-A only (group B) did not result in
significant interhemispheric differences when densities were
averaged over all post-injection time points (Figure 5C),
although the receptor density of the ipsilateral hemisphere
decreased significantly (R2 = 0.2678, p = 0.002) from values
well above control levels at 2 weeks to 3 months after
BoNT-A to control values at 6 and 9 months post-injection
(B2W 9.0%, B1M 7.6%, B3M 11.4%, B6M 0.1%, B9M 0.7%)
(Figure 5D).

If the time-dependency after BoNT-A injection was analyzed
(group LB, Figure 5D), a significant (R2 = 0.174, p = 0.014)
negative correlation between interhemispheric differences and
increasing post-injection times was found (LB6W1M −41.8%,
LB6W3M −53.4%, LB6W6M −46.2%, LB6W9M −51.8%)
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FIGURE 2 | (A,B) Contrast-enhanced color-coded images showing the regional distribution of M2 receptor density labeled with the agonist [3H]oxotremorine-M in a

control rat (A,B) after 6-OHDA lesion (group L6W1M) in a control rat (A) and after 6-OHDA lesion (group L6W1M) (B). (C) Mean receptor density (fmol/mg protein;

averaged over all post-lesion survival times) in the left/contralateral (black column) and right/ipsilateral hemispheres (gray column) of the 5 groups (see Figure 1). All

data is expressed as means ± SD. (D) Scatter plots and regression analyses of the right-left differences of M2 receptor density for all 18 groups and time points (five

groups with different survival times); see Table 1 for explanation of abbreviations. Significant regressions are labeled by a continuous line.

(Figure 5D). In vehicle-injected hemi-PD rats (LV) nicotinic
receptors equaled those of group L (Figures 5C,D).

A highly significant correlation (R2 = 0.5493, p = 0.0016)
of the interhemispheric difference of nicotinic receptors in the
groups LB and LV and apomorphine-induced rotations was
found (Figure 5E).

Summary of Important Results
Unilateral injection of 6-OHDA into the MFB (group L) leads to
a 10% decrease of M1 receptor densities 3 weeks after 6-OHDA
application, and a restitution to control values 9 months later
(Figure 1D). The M2/M4 receptors (agonistic binding site) show
control values 3 weeks after 6-OHDA application followed by a
decrease of ∼10% over the subsequent 9 months (Figure 2D).
The M2 receptor (antagonistic binding site) and the M3 receptor
are also decreased by ∼10% compared to control value, but do
not show any significant recovery over time (Figures 3D, 4D).
The nicotinic α4β2 receptor shows the most obvious decrease in
density (50–60%) 3 weeks after 6-OHDA injection, but no sign of
any recovery during the following period (Figure 5D).

Injection of BoNT-A into the striatum of drug naïve
rats (group B) leads to an initial (2 weeks after injection)
decrease in M1 and M3 receptor densities of about 5–10%
followed by a steady recovery, reaching 5–10% over the
control value 9 months later (Figures 1D, 4D). Also the
M2 receptor (agonistic binding site) show an initial decrease
of slightly more than 10%, followed by a steep increase
resulting in a density of ∼10% over control values 9 months
after BoNT-A treatment (Figure 2D). The antagonistic binding
sites of the M2/M4 receptor start with a density nearly
20% below control level, and come back to control levels 9
months later (Figure 3D). The nicotinic α4β2 receptor shows
a completely different reaction. It starts with a 10% higher
density than control values 2 weeks after BoNT-A injection,
and returns to control values during the following period
(Figure 5D).

Injection of BoNT-A into the 6-OHDA lesioned striatum
(group LB) leads to an M1 receptor density which is well
comparable to that of the untreated (group L) and vehicle injected
(group LV) hemi-PD rats over all time points (Figure 1D).
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FIGURE 3 | (A,B) Contrast-enhanced color-coded images showing the regional distribution of M2 and M4 receptor densities receptor density labeled with the

antagonist [3H]AF-DX 384 in a control rat (A,B) after 6-OHDA lesion (group L6W6M) in a control rat (A) and after 6-OHDA lesion (group L6W6M) (B). (C) Mean

receptor density (fmol/mg protein; averaged over all post-lesion survival times) in the left/contralateral (black column) and right/ipsilateral hemispheres (gray column) of

the five groups (see Figure 1). All data is expressed as means ± SD. Asterisks mark significant differences to the respective side of controls (*p < 0.05, ***p < 0.001).

Rhombs signs highlight interhemispheric significance within each group (###p < 0.001). (D) Scatter plots and regression analyses of the right-left differences of M2

receptor density for all 18 groups and time points (five groups with different survival times); see Table 1 for explanation of abbreviations. Significant regressions are

labeled by a continuous line.

The decrease in M2 (agonist and antagonist binding sites)
and M3 receptor densities caused by 6-OHDA application is
compensated by BoNT-A, since changes over time in the densities
of these receptors in the LB group result in values comparable to
those of controls 9 months after BoNT-A injection (Figures 2D,
4D). The nicotinic α4β2 receptor shows an initial 15% increase
of its density when groups L and LB are compared. However, the
receptor density decreases during the following period and in the
hemiPD rats treated with BoNT-A (LB group) reaches nearly the
values of the untreated hemi-PD (L group) rats (Figure 5D). The
large difference between the non-lesioned but BoNT-A treated
rats (group B) and the BoNT-A treated hemi-PD rats (group
LB) is remarkable and may indicate a strong effect of 6-OHDA
lesions on the expression of the nicotinic α4β2 receptor. This is
also supported by the conspicuously large decrease of the α4β2

receptors after 6-OHDA lesioning.
Most notable is the fact that BoNT-A injection causes

a negative correlation between nicotinic α4β2 receptor

densities and post-injection time in drug naïve (group
B) and BoNT-A treated (group LB) hemi-PD rats, but
results in a positive correlation between all examined
muscarinic cholinergic binding site (M1, M2/M4 (agonist
and antagonist) and M3) densities. Apparently, the nicotinic
and muscarinic receptors react differentially to BoNT-A
treatment.

DISCUSSION

Progressive dopaminergic cell death and the consequent DA
deficit in the CPu can only partly explain PD’s symptomatology,
hence various compensatory changes in dopaminergic and other
neurotransmitter systems have been described (Barone, 2010).
Here, we applied quantitative in vitro receptor autoradiography
to analyze time-dependent changes in the densities of mAchRs
(M1, M2, M3, M4) and nAchRs (α4β2) in hemi-PD rats with or
without unilateral BoNT-A injection into the striatum. Receptor
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FIGURE 4 | (A,B) Contrast-enhanced color-coded images showing the regional distribution of M3 receptor density labeled with [3H]4-DAMP in a control rat (A,B)

after 6-OHDA lesion (group L6W1M) in a control rat (A) and after 6-OHDA lesion (group L6W1M) (B). (C) Mean receptor density (fmol/mg protein; averaged over all

post-lesion survival times) in the left/contralateral (black column) and right/ipsilateral hemispheres (gray column) of the five groups (see Figure 1). All data is

expressed as means ± SD. Asterisks mark significant differences to the respective side of controls (***p < 0.001). (D) Scatter plots and regression analyses of the

right-left differences of M2 receptor density for all 18 groups and time points (five groups with different survival times); see Table 1 for explanation of abbreviations.

Significant regressions are labeled by a continuous line.

densities were measured in the striatum ipsi- and contralateral
to the 6-OHDA injection side, and expressed as relative values
by calculating the difference between ipsilateral and contralateral
receptor densities normalized by the contralateral density. BoNT-
A was injected ipsilaterally.

Five experimental groups were analyzed up to a survival
time of 9 months to uncover changes in hemi-PD rat striata
and to disclose possible receptor-related explanations for the
positive motor effect of BoNT-A in hemi-PD rats (Wree et al.,
2011; Antipova et al., 2013; Mann et al., 2018a,b).To confirm
successful 6-OHDA lesion we performed apomorphine-induced
rotational testing. As dopaminergic deprivation with 6-OHDA
increased ipsilateral striatal D2/D3 receptor density (Creese
et al., 1977; Creese and Snyder, 1979; Murrin et al., 1979;
Staunton et al., 1981; Przedbroski et al., 1995; Sun et al.,
2011; Choi et al., 2012), the ipsilateral CPu of hemi-PD rats
is inhibited more than the left by application of the D2/D3

agonist apomorphine. Hemi-PD rats start to rotate contralateral
to the 6-OHDA lesion. Animals which demonstrated at least
4 rotations per minute were seen as successfully lesioned

confirming dopaminergic depletion of about 97% (Ungerstedt
and Arbuthnott, 1970).

Striatal Organization and Cholinergic
Neurotransmission
The majority of striatal neurons (about 95%; Oorschot, 1996)
are medium spiny cells (MSN), a GABAergic projection neuron.
About 50% express substance P, dynorphin and dopamine D1

receptors, and project to the globus pallidus internus and
substantia nigra pars reticulata (SNpr) (direct basal ganglia
loop), whereas the other half of the MSNs express enkephalin
as well as dopamine D2 receptors and mainly project to the
globus pallidus externus (EGP) (indirect basal ganglia loop;
Bolam et al., 2000). The remaining 3–5% are interneurons and
can be subdivided into at least 4 subtypes. Three of them
are GABAergic interneurons expressing either parvalbumin,
somatostatin or calretinin. The fourth subtype is a large
tonically active aspiny cholinergic interneuron (Kawaguchi, 1993;
Kawaguchi et al., 1995). Cholinergic neurotransmission in the
CPu arises predominantly from these cholinergic interneurons,
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FIGURE 5 | (A,B) Contrast-enhanced color-coded images showing the regional distribution of nicotinic α4β2 receptor density labeled with [3H]epibatidine in a control

rat (A,B) after 6-OHDA lesion (group L6W3M) in a control rat (A) and after 6-OHDA lesion (group L6W3M) (B). (C) Mean receptor density (fmol/mg protein; averaged

over all post-lesion survival times) in the left/contralateral (black column) and right/ipsilateral hemispheres (gray column) of the five groups (see Figure 1). All data is

expressed as means ± SD. Asterisks mark significant differences to the respective side of controls (*p < 0.05, **p < 0.01, ***p < 0.001). Rhombs signs highlight

interhemispheric significance within each group (###p < 0.001). (D) Scatter plots and regression analyses of the right-left differences of M2 receptor density for all 18

groups and time points (five groups with different survival times); see Table 1 for explanation of abbreviations. Significant regressions are labeled by a continuous line.

(E) Relationship between interhemispheric differences in the α4β2 receptor densities of groups (LB and LV) and rotational behavior (anti-clockwise: +, clockwise: –).

but also from an external cholinergic projection from the
pedunculopontine and laterodorsal tegmental area (Woolf and
Butcher, 1986; Dautan et al., 2014). Moreover, a weak cholinergic
input was described to come from the nucleus basalis Meynert
(Mesulam, 2013).

Localization of Cholinergic Receptors
In the CPu, M1 receptors are expressed on MSNs (Araujo et al.,
1991; Hersch et al., 1994; Yung et al., 1995; Muccioli et al.,
1996; Alcantara et al., 2001; Yan et al., 2001; Bauer et al., 2005;
Haghir et al., 2009). M2 receptors are also located on MSNs
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and ChAT-ir interneurons (Mash and Potter, 1986; Hersch et al.,
1994; Bernard et al., 1998; Bauer et al., 2005; Haghir et al., 2009).
M3 receptors are found on MSNs and on terminals of cortical
and thalamic afferents (Zubieta and Frey, 1993; Levey et al., 1994;
Yan et al., 2001; Haghir et al., 2009). M4 receptors are found in
spines of MSNs of striatal neurons (Levey et al., 1991; Hersch
et al., 1994).Within the CPu, nAchR are described predominantly
on nigrostriatal and also corticostriatal terminals, and ChAT-
ir interneurons (Hunt and Schmidt, 1978; Schwartz and Kellar,
1983; Clarke et al., 1985; Happe et al., 1994; Arroyo-Jim nez et al.,
1999; Kaiser and Wonnacott, 2000; Jones et al., 2001; Pradhan
et al., 2002).

Cholinergic and Dopaminergic Interaction
The dopaminergic and cholinergic systems can regulate one
another’s function in a bidirectional manner (Havekes et al.,
2011). Receptors play a key role in this issue. Activation of
dopamine D2 receptors inhibits Ach release (Maurice et al.,
2004), whereas the D1 receptors facilitate it (Joyce, 1991). The
nAchRs and mAchRs (M1−M5) were both described to mediate
DA release from dopaminergic terminals. However, studies
report conflicting results on the DA inhibiting or facilitating
effects. The role of different receptor subtypes, especially of
mAchRs located on MSNs and corticostriatal or thalamostriatal
afferents (Woolf and Butcher, 1981; Schoffelmeer et al., 1986;
Xu et al., 1989; De Klippel et al., 1993; Calabresi et al., 2000;
Zhang et al., 2002; Bendor et al., 2010; Havekes et al., 2011) is
not completely understood. NAchRs located on dopaminergic
axons were described to regulate DA release (Sharples et al.,
2000; Wonnacott et al., 2000; Zhou et al., 2001). Moreover, due
to the regulation of Ach release of the cholinergic interneurons
via autoreceptors (M2 + M4), the DA release of dopaminergic
terminals is modified indirectly by mAchRs via nAchRs (Raiteri
et al., 1984). A recent publication postulated a change in the
impact of Ach on the regulation of DA release (reducing or
increasing) at DA terminals depending on the firing mode of
the respective DA neuron (Threlfell et al., 2010). DA neurons
exhibit two different states of firing modes in rats in vivo: a
single-spike mode at a frequency of about 1–10Hz, and a burst
firing mode of 3–5 spikes at a frequency of about 15–100Hz
which is interrupted by short-term pauses (Hyland et al., 2002).
Ach acting on β2 subunits of nAchRs on nigrostriatal terminals
provokes DA release in terminals during the single-spike mode,
but inhibits DA release at terminals in the burst firing mode
(Zhou et al., 2001; Rice and Cragg, 2004; Zhang and Sulzer, 2004).
Activation of mAchRs (M2, M4) results in decreased Ach release
from cholinergic interneurons, and by this in a reduced activation
of nAchR on dopaminergic axons. Consequently, inhibition of
DA release is observed after activation ofmAchRs for single-spike
modes of DA neurons, activation is found for burst firing mode
(Threlfell et al., 2010).

Muscarinic Receptors in PD and Hemi-PD
Studies on mAchR binding in the CPu of PD patients using
post-mortem brain tissue (Aubert et al., 1992; Lange et al., 1993;
McOmish et al., 2017) are partly contradictory and have been
summarized together with animal experiments in Table 4. Lange

et al. (1993) postulated a decrease in M1 receptor density of the
striatum and an unaltered M2 receptor density in PD brain tissue
compared to controls (Lange et al., 1993). McOmish et al. (2017)
recently found no changes in M1 and M2 receptor densities, but
an increased M3 receptor density in the CPu of PD patients
(McOmish et al., 2017).

M2 receptors contain a high and a low affinity binding site
(Birdsall et al., 1978; Giraldo et al., 1987). Here, we investigated
the high affinity binding site of the M2 receptor with the agonist
[3H]oxotremorine-M and the high and low affinity binding site
with the antagonist [3H]AF-DX 384. Furthermore, it must be
noted that [3H]AF-DX 384 also binds to the antagonistic site
of the M4 receptor, and about 80% of the sites labeled with
this ligand in the mouse striatum correspond to the M4 and
not the M2 receptor (Levey et al., 1991; Hersch et al., 1994;
Valuskova et al., 2018). Consequently, we found an about four
times higher mean density with [3H]AF-DX 384 than with the
more M2 subtype-specific [3H]oxotremorine-M throughout all
experimental groups (Figures 2C, 3C, Table 3). This is in line
with the measurement of Svensson et al. (1992) who described
that the high affinity binding sites constitute about 27% and the
low affinity site about 73% (Svensson et al., 1992). Interestingly,
only the [3H]AF-DX 384 binding significantly decreases after
6-OHDA lesioning (Figure 3C), and slowly returns to control
values after BoNT-A injection (Figure 3D). With the presently
available tritiated ligands it cannot be clarified whether this
decrease is caused by the higher binding ofM4 thanM2 receptors.

In hemi-PD rats, all mAchR densities were decreased
ipsilateral to the lesion between 6% and 16% as compared
to the contralateral hemisphere. Our findings on 6-OHDA-
induced changes of mAchRs are partly in line with others:
Araki et al. (2000) showed that dopaminergic depletion by 6-
OHDA injection into the MFB decreased binding of [3H]QNB
(labeling subtypes M1-M5; Jakubík et al., 2017) by 12–17%
8 weeks post lesion (Araki et al., 2000). Similar experiments
resulted in a striatal decrease of M1 receptor density of 26%
using the selective antagonist [3H]pirenzepine about 1 year after
deafferentiation (Dawson et al., 1991), and also a decrease in
[3H]pirenzepine binding of 25% to 29% after intranigral 6-
OHDA application (Joyce, 1991). However, contradictory results
were published by Wang et al. (2014) who found no changes
in [3H]pirenzepine binding 3 weeks post 6-OHDA lesion of
the MFB (Wang et al., 2014) as well as by Knol et al. (2014)
describing unaltered striatal M1 receptor density with the
[123I]iododexetimide SPECT method. Besides the small general
reduction of the striatal M1 receptor density ipsilateral to the
6-OHDA lesion, we found a positive correlation between the
right-left difference and the survival time between 3 weeks and 9
months. M2 receptors measured using [3H]NMS in the presence
of unlabeled pirenzepine decreased by about 27% in the lateral
CPu after intranigral 6-OHDA injection (Joyce, 1991). Also in
Pitx3ak mice, which exhibit a severe loss of dopaminergic cells in
the SNpc, M2 receptor density (agonist binding) in the CPu was
significantly reduced by 19% (Cremer et al., 2015). In addition to
the initial marked reduction of M2 receptor density induced by
dopaminergic deafferentiation, the M2 receptor densities further
significantly decreased with longer post lesion survival times up
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TABLE 4 | Striatal changes in cholinergic receptor densities in human PD patients and different animal models of PD.

Receptor

subtype

Species/Animal

model

Survival time Detection method Ligand Effects References

M1 Human PD patient – Binding in post-mortem

homogenates

[3H]pirenzepine Decrease Lange et al., 1993

M1 Human PD patient – Binding in post-mortem

slices

[3H]pirenzepine Unaltered McOmish et al., 2017

M1 MFB-lesioned

6-OHDA rat

1 year Autoradiography [3H]pirenzepine Decrease (26%) Dawson et al., 1991

M1 SN-lesioned 6-OHDA

rat

3 weeks Autoradiography [3H]pirenzepine Decrease

(25–29%)

Joyce, 1991

M1 MFB-lesioned

6-OHDA rat

3 weeks Autoradiography [3H]pirenzepine Unaltered Wang et al., 2014

M1 MFB-lesioned

6-OHDA rat

10-13 days SPECT [123 I]iododexetimide Unaltered Knol et al., 2014

M2 Human PD patients – Binding in post-mortem

homogenates

[3H]oxotremorine-M Unaltered Lange et al., 1993

M2 Human PD patients – Binding in post-mortem

slices

[3H]AF-DX 384 Unaltered McOmish et al., 2017

M2 SN-lesioned 6-OHDA

rat

3 weeks Autoradiography [3H]NMS (+unlabeled

pirenzipine)

Decrease (27%) Joyce, 1991

M2 Pitx3ak mice 4–6 months Autoradiography [3H]oxotremorine-M Decrease (19%) Cremer et al., 2015

M3 Human PD patients – Binding in post-mortem

slices

[3H]4DAMP Increase McOmish et al., 2017

M3 Pitx3ak mice 4–6 months Autoradiography [3H]4DAMP Unaltered Cremer et al., 2015

M1-M5 MFB-lesioned

6-OHDA rat

8 weeks Autoradiography [3H]QNB Decrease

(12–17%)

Araki et al., 2000

nAch Human PD patients – Binding in post-mortem

homogenates

[3H]nicotine Unaltered Lange et al., 1993

nAch Human PD patients – Binding in post-mortem

slices

[3H]methylcarbamylcholine Decrease (74%) Aubert et al., 1992

nAch Human PD patients – PET 2-[18F]FA-85380 Decrease (20%) Meyer et al., 2009

nAch MFB-lesioned

6-OHDA rat

2 weeks Ligand-binding

techniques

[3H]epibatidine Decrease (50%) Zoli et al., 2002

nAch MPTP-treated

monkeys

4 weeks Autoradiography [123 I]epibatidine Decrease

(40-50%)

Kulak et al., 2002

nAch MFB-lesioned

6-OHDA rat

3 weeks Autoradiography [125 I]epibatidine Decrease (36%) Pradhan et al., 2002

nAch MFB-lesioned

6-OHDA rat

4–5 weeks Autoradiography [125 I]epibatidine Decrease (47%) Perez et al., 2010

nAch Pitx3ak mice 4–6 months Autoradiography [3H]epibatidine Decrease (47%) Cremer et al., 2015

The table summarizes the main studies of this field.

to 9months in the present study.We found significant reductions
of M3 receptor densities, notably in both hemispheres, after
6-OHDA lesion. This is in contrast to results in the CPu of
DA depleted Pitx3ak mice, where Cremer et al. (2015) found
no significant change in M3 receptor densities as compared to
wildtype mice. This contradiction may be explainable by the
completely different PD models in the work of Cremer et al.
(2015) and the present study.

When inducing hemi-PD by 6-OHDA injection, we did
not use desipramine application ahead (Mailman, 1983; López-
Giménez et al., 1997; Nash and Brotchie, 2002) in order
to avoid binding of this substance to various receptors, and
thus to ensure comparability between all experimental groups
including BoNT-A treatment (Wree et al., 2011; Antipova

et al., 2013; Hawlitschka et al., 2013; Mehlan et al., 2016).
Notably, lesion of the locus coeruleus did not cause changes in
mAchR densities using [3H]QNB binding (Sharma et al., 1981).
Moreover, striatal Ach levels and M1 receptor density did not
show any changes after specific noradrenergic depletion with the
selective noradrenergic neurotoxin N-2-chloroethyl-N-ethyl-2-
bromobenzylamine (DSP-4) (Asanuma et al., 1992). Following
dopaminergic depletion the densities of all mAchRs were found
to be reduced in the present study. As there is no evidence in
recent literature for the localization of mAchRs on dopaminergic
axon terminals (Jones et al., 2001; Zhou et al., 2001), the
reduction of mAchR densities can probably not be explained by
6-OHDA-induced axonal degeneration. Rather, the hyperactivity
of striatal cholinergic neurotransmission due to dopaminergic
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denervation of the CPu and the subsequently increased Ach levels
in hemi-PD rats (DeBoer et al., 1993;Muma et al., 2001; Rakovska
et al., 2003) might result in a downregulation of mAchRs. This
assumption is in line with findings that chronic inhibition of
acetylcholinesterase inducing increased Ach concentrations also
leads to a significant decrease of about 20% inmAchR densities as
revealed by [3H]QNB binding (Sivam et al., 1983; Yamada et al.,
1983).

Muscarinic Receptors in BoNT-A-Injected
Rats
BoNT-A injection in control animals always led to an
interhemispheric right-left difference of mAchRs between −7
and −16% 2 weeks after injection that significantly diminishes
over time and even resulted in an ipsilateral increase in
receptor densities between 3.5 and 13.3% 9 months later.
BoNT-A injection in hemi-PD rats significantly affected overall
interhemispheric differences for M2/M4 (antagonist binding)
and M3 receptors, whereas differences of M1, and M2 (agonist
binding) receptors were not significantly changed (Figures 1C,
4C). However, considering the time course of the BoNT-A
effect in hemi-PD rats, interhemispheric differences in mAchR
densities diminished with increasing survival time. The effect
of BoNT-A on mAchR densities found in hemi-PD rats,
however, did not correlate with changes in apomorphine-induced
rotations. Seemingly, the positive effect of BoNT-A on motor
behavior in hemi-PD rats for up to 6 months (Wree et al., 2011)
cannot be based on changes in mAchR densities.

Nicotinic Receptors in PD and Hemi-PD
In PD patients striatal nAchRs levels were analyzed with
conflicting results (see Table 4 for a summary): Aubert et al.
(1992) using in vitro receptor autoradiography reported a
decrease by 74%, and Meyer et al. (2009) using PET analysis
with 2-[18F]FA-85380 found a reduction of 20%. However, Lange
et al. (1993) evaluating in vitro receptor binding studies did not
find changes in the caudate nucleus or in the putamen. In the
CPu of MPTP-treated squirrel monkeys nAchRs density was also
reported to decline by 40% to 50% using [3H]epibatidine (Kulak
et al., 2002).

Hemi-PD rats showed a massive ipsilateral decrease in striatal
nAchRs of more than 50%. This effect was constant up to a
survival time of 9 months. This confirms previous studies: Zoli
et al. (2002) demonstrated an ipsilateral decrease of 50% in
nAchR density using [3H]epibatidine 2 weeks after 6-OHDA,
Pradhan et al. (2002) reported a decrease of about 36% of
[125I]epibatidine binding 3 weeks post 6-OHDA, and Perez et al.
(2010) an ipsilateral decrease of 47%. Vehicle injections did not
cause any nAchR changes in the CPu (Pradhan et al., 2002). The
lesion studies in rats are in line with findings in the dopamine-
depleted Pitx3ak mouse, where striatal nAchR density was also
drastically reduced by 47% relative to control animals (Cremer
et al., 2015).

This dramatic loss of nAchR density after destruction
of dopaminergic SNpc neurons may be explained by the
predominant localization of nAchRs on dopaminergic axonal
terminals (Kaiser and Wonnacott, 2000; Jones et al., 2001;
Pradhan et al., 2002). About 50% of the striatal nAchRs are

located on cortical afferents or striatal interneurons (Zoli et al.,
2002), thus explaining the remaining striatal [3H]epibatidine
binding after 6-OHDA lesion.

Nicotinic Receptors in BoNT-A-Injected
Rats
NAchRs were slightly increased ipsilateral one month after
BoNT-A injection. However, a time dependence was detected:
this initial increase was followed thereafter by a normalization
to control values. In BoNT-A injected hemi-PD rats the
interhemispheric difference of nAchRs density significantly
diminished by about 10% compared to both the vehicle-injected
rats (group LV) and the drug naïve hemi-PD rats (group L). Thus,
BoNT-A induced an increase of nAchR density in groups B and
LB.

Seemingly, BoNT-A induced an increase of nAchRs on
non-dopaminergic structures, e.g., cortical afferents or striatal
interneurons, since dopaminergic terminals no longer exist in
hemi-PD. An initially increased nAchR density compared to
controls and vehicle-injected rats was found after BoNT-A
injection which may be explained by the reduction of striatal Ach
content and a concomitant upregulation of nAchRs. This effect,
however, disappears after 6–9 months after BoNT-A injection.
Interestingly, the opposite effect of BoNT-A was seen in mAchR
densities; here the reduction in striatal Ach content was followed
by a downregulation of mAchR densities.

This study expands our understanding of 6-OHDA- and
BoNT-A-induced changes in striatal mAchR and nAchR
expression. It provides hypotheses for the positive BoNT-A effect
on motor performance in hemi-PD rats based on changes in
cholinergic receptor densities. The differential outcome of striatal
BoNT-A application on Ach receptor densities can be interpreted
as a further hint to the fact, that the densities of mAchRs
and nAchRs are regulated differently by the availability of its
transmitter (Sivam et al., 1983; Hefco et al., 2004). Quantification
of the receptor densities of mAchRs and nAchRs provides
evidence that cholinergic transmission has a significant impact
on the clinical symptoms associated with DA depletion. Also
other neurotransmitter receptors, especially glutamatergic and
GABAergic receptors on cortical and thalamic terminals are of
interest. Changes in corticostriatal glutamate release in hemi-PD
rats have already been reported (Lindefors andUngerstedt, 1990).
To comprehensively characterize the receptor-mediated BoNT-
A effect, the reaction not only of dopamine, noradrenaline, and
serotonin receptors (Mann et al., 2018b; Wedekind et al., 2018),
but also of glutamate andGABA receptors should be investigated.
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