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A SPECTRAL EXCESS THEOREM FOR DIGRAPHS WITH NORMAL
LAPLACIAN MATRICES
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Abstract. The spectral excess theorem, due to Fiol and Garriga in 1997, is an important result,

because it gives a good characterization of distance-regularity in graphs. Up to now, some authors

have given some variations of this theorem. Motivated by this, we give the corresponding result

by using the Laplacian spectrum for digraphs. We also illustrate this Laplacian spectral excess

theorem for digraphs with few Laplacian eigenvalues and we show that any strongly connected

and regular digraph that has normal Laplacian matrix with three distinct eigenvalues, is distance-

regular. Hence such a digraph is strongly regular with girth g = 2 or g = 3.

1. Introduction

One of the most important concepts in combinatorics is distance-regularity of graphs. A distance-

regular graph is a regular graph such that for any two vertices v and w at distance i, the number of

vertices adjacent to w and at distance j from v only depends on i and j. Distance-regular graphs of

diameter 2 are strongly regular graphs [2, 4]. For more information on distance-regular graphs, we

refer the reader to [2, 3, 4, 6, 8] and [15]. Some authors extended the notion of distance-regularity

of graphs to the directed graphs in different ways. The research on distance-regular digraphs was

initiated by Damerell in 1981 [9]. A digraph is strongly connected if every pair of vertices can be
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joined by a path and is connected if its underlying graph is connected. The (directed) distance

from a vertex u to a vertex v, ∂(u, v), is the length of a shortest u− v (directed) path in Γ. The

maximum (directed) distance between any two distinct vertices of Γ is called the diameter of Γ

and is denoted by D. A digraph is geodetic if the shortest path between any two vertices is unique.

The girth g(Γ) = g (resp. odd-girth go(Γ) = go) is the smallest length of a cycle (an odd cycle)

in Γ. For any vertex u ∈ V (Γ) we will denote Γ+
k (u) (respectively, Γ−

k (u)) the set of vertices at

distance k from u (respectively, the set of vertices from which to u is at distance k). If k = 1, for

any vertex u we have, outdegree(u) = |Γ+
1 (u)| and indegree(u) = |Γ−

1 (u)| and if the in-degree and

the out-degree at each vertex of Γ are equal to k, we say Γ is regular with degree (valency) k.

The adjacency matrix A = (aij) of Γ with vertex set V (Γ) = {v1, v2, . . . , vn} is a n× n matrix

indexed by the vertices of Γ, with entries aij = 1 if vi is adjacent to vj, and aij = 0 otherwise.

The spectrum of the digraph Γ is denoted by the multi-set

Spec(Γ) = {λm0
0 , λm1

1 , . . . , λmd
d },

where the superscripts mi denote the multiplicities of the distinct eigenvalues λi, i = 0, 1, . . . , d.

Since A is not symmetric, the eigenvalues of A might not be real. Digraphs with symmetric

adjacency matrix are precisely graphs. A digraph Γ is called normal if A is a normal matrix; that

is, AA∗ = A∗A, where A∗ is the transpose of A,s conjugate.

A strongly connected digraph Γ with diameter D is distance-regular if, for any two vertices

u, v ∈ V such that ∂(u, v) = k, for 0 ≤ k ≤ D, the numbers aki1(u, v) = |Γ+
i (u)

∩
Γ+
1 (v)|, for

each i such that 0 ≤ i ≤ k + 1, only depend on their distance k. We write aki1(u, v) = aki1,

for short that called intersection numbers. Every distance-regular digraph with girth g satisfies

∂(u, v) + ∂(v, u) = g for any pair of vertices u, v ∈ V (Γ) at distance 0 < ∂(u, v) < g [9]. In this

case we say the digraph Γ is stable. From the stability of distance-regular digraph Γ and the fact

g ∈ {2, D,D + 1}, we conclude that the digraph Γ is normal [5].

If we replace Γ+
1 with Γ−

1 in the definition of a distance-regular digraph, the stability property

dose not necessarily hold, and we obtain another digraph with weak structure but interesting

properties that named as weakly distance-regular (see [5]). Another concept of weakly distance-

regular digraph (that is equivalent to the previous concept) is: A digraph Γ with diameter D is

weakly distance-regular if, for each nonnegative integer ℓ ≤ D, the number aℓuv of walks of length ℓ

from vertex u to vertex v only depends on their distance ∂(u, v) = k, for any ℓ=0, 1, . . . , D. Weakly

distance-regular digraphs of diameter 2 are strongly regular digraphs that were first investigated by

Duval in [10] as an extension of strongly regular graphs to the directed case. A directed strongly

regular graph with parameters (n, k, µ, λ, t) is a regular directed graph on n vertices with valency

k, such that every vertex is incident with t undirected edges, and the number of walks of length

2 from a vertex u to another vertex v is λ, if there is an edge from u to v, and µ otherwise. In
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particular, for t = k we have the undirected case and for t = 0 the digraph is a tournament. See

Brouwer’s website [2] and the references given there for more details. A weakly distance-regular

digraph with adjacency matrix A is distance-regular if and only if Γ is stable or A is normal

[5, 10].

So far, there have been some results on characterization of distance-regular graphs. Some of

these results are based on the spectral excess theorem. This well-known theorem characterizes

distance-regular graphs by their spectra and the average number of vertices at extremal distance.

In fact this theorem states that a connected regular graph with d + 1 distinct eigenvalues is

distance-regular if for every vertex, the mean of the numbers of vertices at distance d from every

vertex (the excess) equals some given expression in terms of the spectrum of the graph. For more

information about this theorem see [7, 8, 11, 13, 16, 17, 18, 19] and [20].

Distance-regularity of a digraph is in general not determined by the spectrum of the digraph.

In [21] the author showed that distance-regularity of a strongly connected normal digraph Γ (with

d + 1 distinct eigenvalues) is determined by its spectrum and the average of the numbers of

vertices at distance d from every vertex. In this note we give the corresponding result by using

the Laplacian spectrum for digraphs. We also state some applications of this result. In fact we

illustrate this Laplacian spectral excess theorem for digraphs with few Laplacian eigenvalues. We

show that any strongly connected and regular digraph that has normal Laplacian matrix with

three distinct eigenvalues, is distance-regular. Hence such a digraph is strongly regular with girth

g = 2 or g = 3. We next prove that if Γ is a strongly connected, regular and geodetic digraph

that its Laplacian matrix is normal and has four distinct eigenvalues and with finite girth g ≥ 3,

then Γ is distance-regular. We also show that every strongly connected and geodetic digraph with

normal Laplacian matrix L and finite girth g ≥ d + 1 is distance-regular. In [21] also it is shown

that every strongly connected normal digraph Γ with d+1 distinct eigenvalues and finite odd-girth

at least 2d+ 1 is distance-regular. We think this result is obtained when the Laplacian matrix of

any strongly connected digraph with d+1 distinct Laplacian eigenvalues and (finite) odd-girth at

least 2d+ 1, is normal and we left it as a conjecture.

Conjecture. Let Γ be a strongly connected digraph with normal Laplacian matrix and with

finite odd-girth go ≥ 2d+ 1. Then Γ is distance-regular and go = 2d+ 1.

2. Preliminaries

In this section, we give the background and introduce some terminology and notations that

occur in this note. A directed graph (or just digraph) Γ = (V,E) consists of a non-empty finite set

V (Γ) = {v1, v2, . . . , vn} of elements called vertices or nodes, and a finite set E(Γ) of ordered pairs

of distict vertices called arcs or directed edges. For two distinct vertices u and v of Γ, we say that
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u is adjacent to v if there is an edge (directed edge) from u to v. The digraph that loops, edges of

the form (v, v), and multiple edges are not permitted in it is called simple. A closed directed walk

in a digraph Γ is called Eulerian if it uses every edge exactly once. We say that Γ is Eulerian if

it has such a walk. The distance-k matrix Ak of a digraph Γ with diameter D, where 0 ≤ k ≤ D

is defined by (Ak)ij = 1 if ∂(vi, vj) = k and (Ak)ij = 0, otherwise. In particular, A0 = I, where I

denotes the identity matrix and A1 = A. We observe that
∑D

k=0Ak = J, where J is a matrix with

all entries equal to 1. These matrices play an important role in the study of distance-regularity.

We denote the average excess of digraph Γ with δd, where δd =

∑
v∈V (Γ) |Γ

+
d (v)|

n
.

The Laplacian matrix of a digraph Γ with the vertices v1, v2, . . . , vn whose out-degrees are

d+1 , d
+
2 , d

+
3 , . . . , d

+
n respectively, is the matrix L = O − A, where O is the (diagonal) matrix of

vertex out-degree of digraph Γ. It generalizes the Laplacian matrix of an ordinary graph. Note

that the Laplacian matrix is independent of the number of loops of Γ on each vertex. The Laplacian

spectrum of the digraph Γ, denote by specL(Γ) consists of eigenvalues of L, together with their

(algebraic) multiplicities:

SpecL(Γ) = {µm0
0 , µm1

1 , . . . , µmd
d }.

Since the graph is directed, L might be non-symmetric real. The polynomial H(x) = n
S(x)

S(0)
,

where mΓ(x) = (x − µ0)S(x) is the Laplacian minimal polynomial, is called Hoffman-like poly-

nomial. The Laplacian algebra of Γ is defined by ψL(Γ) = {P (L) : P ∈ C[x]}. The dimension

of this space is equal to the degree of the Laplacian minimal polynomial of Γ. If Γ is strongly

connected, then L has a simple zero eigenvalue and so from the equality LH(L) = H(L)L = 0,

we see that each column of H(L) is a multiple of j and each row of H(L) is a multiple of jt, where

j denotes the all-1 matrix. So H(L) = cjjt = cJ. Now let the Laplacian matrix of Γ be normal

with spectrum as above. For each µi, let Ui be the matrix whose columns form an orthonormal

basis of the eigenspace φi := Ker(L−µiI). Then the orthogonal projection onto φi is represented

by the matrix

Ei = UiU
t
i =

1

πi

∏
j ̸=i

(L− µjI) (0 ≤ i ≤ d),

where πi =
∏d

i=1,i̸=j(µi − µj). In particular, E0 =
1

n
J. For more information about digraphs, see

[1, 14].

3. Laplacian pre-distance polynomials for digraphs

In this section, at first, we introduce Laplacian pre-distance polynomials for a given strongly

connected digraph. Then we consider these polynomials for a strongly connected digraph that

its Laplacian matrix is normal. Let deg(mΓ(x)) = D̂ + 1. Consider the (D̂ + 1)-dimensional
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vector space CD̂[x] ≃ C[x]/τ , where τ = ⟨mΓ(x)⟩ is the ideal generated by the Laplacian minimal

polynomial of Γ. We define the following scalar product in this vector space, as

(3.1) ⟨f, g⟩ = 1

n
tr(f(L)g(L)∗)

with the norm defined by ∥ f ∥=
√
⟨f, f⟩ for f, g ∈ CD̂[x]. It is clear that ∥ f ∥= 0 if and

only if f = 0. By the defined scalar product (3.1), we have δk = ⟨Ak,Ak⟩ =
1

n
tr(AkA

∗
k) for every

0 ≤ k ≤ D. Let ⟨g, f⟩ be the scalar product in (3.1). Then the projection operator is defined by

Projg(f) =
⟨g, f⟩
⟨g, g⟩

g.

This operator projects the polynomial f(L) orthogonally onto the polynomial g(L). The projection

of f into {gk}sk=0 is defined by
∑s

k=0 Projgk(f). Notice that {1, x, x2, . . . , xD̂} is a basis of CD̂[x].

By starting with this basis, we use the Gram-Schmidt method to produce an orthogonal set

{P0,P1, . . . ,PD̂} as follows:

Let P0 = 1, P1 = x− ⟨1, x⟩
⟨1, 1⟩

1 = x− |E(Γ)|
n

and for 0 ≤ i ≤ D̂ − 1

Pi+1 = xi+1 −
i∑

k=0

ProjPk
(xi+1).

The polynomials {P0,P1, . . . ,PD̂} is an orthogonal basis of CD̂[x] that spans the same space

(D̂ + 1)-dimensional as the basis {1, x, x2, . . . , xD̂} and for each i, Pi is a polynomial that has

degree i and leading coefficient 1. The polynomial Pi is the i-th predistance polynomial of Γ. By

normalizing the set of predistance polynomials {P0,P1, . . . ,PD̂}, we obtain a new set of polyno-

mials {p0, p1, . . . , pd} such that ∥pi∥2 = δi for each 0 ≤ i ≤ D and pi = Pi for D < i ≤ D̂.

Throughout this note, we assume that Γ = (V,E) is a strongly connected (finite) simple digraph

on n vertices with d+1 distinct Laplacian eigenvalues, diameter D, minimal polynomial of degree

D̂ + 1, distance matrices {Ak}Dk=0, predistance polynomials {Pk}D̂k=0 and normalized predistance

polynomials {pk}D̂k=0.

Let two arbitrarily matrices A and B be normal. In this case, can we say AB and A + B are

normal? The following proposition gives an answer to this question.

Proposition 3.1. [14] If A and B are normal with AB = BA, then both AB and A+B are also

normal.

Notice that for a strongly connected digraph Γ if AO = OA, and Γ is normal, then Γ is regular.

Thus by Proposition 3.1, if Γ is regular and normal, then L is normal.

Theorem 3.2. [1] A digraph is Eulerian if and only if |Γ+
1 (u)| = |Γ−

1 (u)| for every vertex u and

the underlying graph has at most one nontrivial component.
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Suppose that an arbitrary digraph Γ is connected with Laplacian matrix L such that H(L) = J,

thus we can write LJ = LH(L) = H(L)L = JL. So by Theorem 3.2 Γ is Eulerian and jtL = 0.

Thus we have the following proposition.

Proposition 3.3. Let Γ be a connected digraph and satisfies H(L) = J, then Γ is strongly

connected.

When Γ is a strongly connected digraph with normal Laplacian matrix and with Hoffman-like

polynomial H(x) =
n

π0

∏d
i=1(x− µi), we have H(L) = nE0 = J. But the converse of this fact is

not true (there is a strongly connected digraph such that H(L) = J, but its Laplacian matrix is

not normal).

4. A Laplacian spectral excess theorem for digraphs

In this section, at first, we give some characterizations of weakly distance-regular digraphs.

Then we give a Laplacian version of spectral excess theorem for strongly connected digraphs with

normal Laplacian matrix L as a generalization of the Laplacian spectral excess theorem for graphs.

Also we give some of the applications of this theorem. The following theorem may be proved in

much the same way as [5, Theorem 2.2] and [13, Theorem 3].

Theorem 4.1. For a strongly connected digraph Γ with diameter D, and distance matrices Ak,

where 0 ≤ k ≤ D the following statements are equivalent:

(a) Γ is a weakly distance-regular digraph.

(b) The distance matrix Ai is a polynomial of degree i in the Laplacian matrix L; that is, Ai =

ri(L) for each i = 0, 1, . . . , D, where ri ∈ Q[x].

(c) The set of distance matrices {Ai : i = 0, 1, . . . , D} is a basis of the Laplacian algebra ψL(Γ).

Now we state the following lemma that has an important role in the proof of Laplacian spectral

excess theorem. Since the main idea of the proof of this lemma is similar to the idea of [21, the

proof of Theorem 4.4], we state it without any proof.

Lemma 4.2. Let Γ be a strongly connected digraph with normal Laplacian matrix L, predistance

polynomials p0, p1, . . . , pd, and distance matrices Ak, k = 0, 1, . . . , d. If pd(L) = Ad then pk(L) =

ckAk for some constant ck and for every k = 0, 1, . . . , d.

The following theorem gives a characterization of distance-regular digraphs. The proof is similar

to that used in [21, Theorem 4.5].

Theorem 4.3. For any strongly connected digraph Γ, we have εΓ ≤ kd. Where, εΓ = ⟨Ad,L
d⟩2

δd
if

d ≤ D (εΓ is zero if d > D) and kd = ⟨Pd,Pd⟩.
http://dx.doi.org/10.22108/toc.2018.105873.1513
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For a strongly connected digraph Γ with normal Laplacian matrix the equality holds if and only

if Γ is distance-regular.

Let Γ be digraph with normal Laplacian matrix. Then by considering the equation

(4.1) H(L) = A0 +A1 + · · ·+Ad =
d∑

i=0

Pi(0)

⟨Pi,Pi⟩
Pi(L),

since H(L) is a polynomial of degree d, thus ⟨H(L),Pd(L)⟩ = Pd(0) ̸= 0.

Now let qd =
Pd(0)

⟨Pd,Pd⟩
Pd (notice that qd is obtained by normalizing Pd so that ⟨qd, qd⟩ = qd(0)). It

is clear that qd(0) is nonzero and are determined by the Laplacian spectrum of Γ. The important

number qd(0) is called the spectral excess of Γ that gives a characterization of the distance-regular

digraphs. Now we give a Laplacian spectral excess theorem for strongly connected digraph with

normal Laplacian matrix.

Theorem 4.4. For any strongly connected digraph Γ with normal Laplacian matrix L that has

d+ 1 distinct eigenvalues, and Laplacian predistance polynomial Pd, we have δd ≤ qd(0).

And equality holds if and only if Γ is distance-regular.

Proof. By considering the equation 4.1, we have

(4.2) δd = ⟨Ad, H(L)⟩ = Pd(0)

⟨Pd,Pd⟩
⟨Ad,L

d⟩.

If d > D, then Ad is the zero-matrix and so in this case we have δd = εΓ = 0. Thus we are

done instead. When d ≤ D, from the equation 4.2 and the equation qd =
Pd(0)

⟨Pd,Pd⟩
Pd, it follows that

εΓ =
⟨Ad,L

d⟩2

δd
= ⟨Pd,Pd⟩

qd(0)
δd and so using Theorem 4.3, we have εΓ = kd

qd(0)
δd ≤ kd and the proof is

completed. □

Now we state and prove an application of Laplacian spectral excess theorem. In fact we show

that any strongly connected and geodetic digraph Γ with normal Laplacian matrix L and finite

girth g ≥ d+ 1 is distance-regular.

Theorem 4.5. Let Γ be a strongly connected and geodetic digraph with normal Laplacian matrix

L and finite girth g ≥ d+ 1. Then Γ is distance-regular.

Proof. First, notice that the girth of any digraph is at most D + 1, using this fact and the

assumption we conclude that D = d. Also, since L is normal, by [5, Theorem 1.1] we have

Lt = f(L) ∈ ψL(L). So the equality Lt =
∑d

k=0

⟨Lt, pk(L)⟩
⟨pk(L), pk(L)⟩

pk(L) implise that

⟨Lt,AD⟩
⟨Lt, pD⟩

=
⟨pD(L), AD⟩

⟨pD(L), pD(L)⟩
.
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Now from g = D + 1 and the property of geodetic digraph, we deduce that pD(L) = cAD for

some constant c and so PD(L) = c′AD for some constant c′. Thus we have

qd(0) =
Pd(0)

⟨Pd,Pd⟩
Pd(0) = d

⟨Pd,J⟩⟨Pd,J⟩
⟨Pd,Pd⟩

= δd.

So Theorem 4.4 implies that Gamma is distance-regular. □

Now we consider Laplacian spectral excess theorem for digraphs with three Laplacian eigenvalues

as an application of this theorem.

Theorem 4.6. Let Γ be a strongly connected and regular digraph that its Laplacian matrix is

normal and has three distinct eigenvalues. Then Γ is strongly regular.

Proof. Since the Laplacian matrix of Γ has three distinct eigenvalues, it follows that D ≤ 2. If

the diameter of Γ is one, then Γ is a complete graph that its Laplacian matrix has two distinct

eigenvalues. Hence we consider strongly connected and regular digraph Γ of diameter 2 that its

Laplacian matrix is normal and has three distinct eigenvalues. So we can write

J = H(L) =
n

π0
(L− µ1I)(L− µ2I),

because L is normal and Γ is regular, we have P1(L) = −A1. Thus ⟨P2,A1⟩ = 0. Therfore

⟨P2,P2⟩ = ⟨P2,L
2⟩ = π0

n
⟨P2,J⟩ =

π0
n
⟨P2,A2⟩ =

π2
0

n2
δ2.

Hence we have

q2(0) =
P2(0)

2

⟨P2,P2⟩
=

n

π0
P2(0) = δ2.

So by Theorem 4.4, any strongly connected and regular digraph that has normal Laplacian

matrix with three distinct eigenvalues, is distance-regular. Hence such a digraph is strongly-

regular with girth g = 2 or g = 3 (see [10]). □

Motivated by the previous theorem, we give the following result.

Theorem 4.7. Let Γ be a strongly connected, regular and geodetic digraph that its Laplacian matrix

is normal and has four distinct eigenvalues and with finite girth g ≥ 3. Then Γ is distance-regular.

Proof. Since Γ is strongly connected with normal Laplacian matrix L that has four distinct eigen-

values, we conclude that

(4.3) J = H(L) =
n

π0
(L− µ1I)(L− µ2I)(L− µ3I).

Therefore

(4.4) ⟨A3,P3⟩ = ⟨A3,L
3⟩ = π0

n
⟨A3,J⟩ =

π0
n
δ3.
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Now using 4.1 we obtain δ3 = ⟨J,A3⟩ =
P3(0)

⟨P3,P3⟩
⟨P3,A3⟩. Hence it follows that

(4.5) ⟨P3,P3⟩ =
π0
n
P3(0).

On the other hand, since Γ is regular and geodetic digraph with g ⩾ 3, we can write

⟨P3,A2⟩+ ⟨P3,A1⟩+ ⟨P3,A0⟩ = ⟨P3,P2+
⟨L2,P1⟩
⟨P1,P1⟩

P1+
⟨L2,P0⟩
⟨P0,P0⟩

P0⟩+ ⟨P3,−P1⟩+ ⟨P3,P0⟩ = 0.

Hence

(4.6) P3(0) = ⟨P3,J⟩ = ⟨P3,A3⟩

Using the equations 4.4-4.6, we have
⟨A3,L

3⟩2

δ3
= ⟨P3,P3⟩ =

π2
0

n2
δ3. So Theorem 4.3 implies that

Γ is distance-regular. □

In [21], as an application of spectral excess theorem for normal digraphs, the author showed

that distance-regularity of a strongly connected normal digraph is determined by the spectrum

and the average excess of the digraph. Finally he showed that any connected normal digraph with

finite odd-girth go(Γ) ≥ 2d + 1, is distance-regular and go(Γ) = 2d + 1. This generalizes a result

of van Dam and Fiol [12]. If we deal with any strongly connected digraph with normal Laplacian

matrix, can we have the second result? It is clear that when Γ is regular, we get this result. But

for general case, we think the answer of this question is positive and we left it as a conjecture.

Conjecture. Let Γ be a strongly connected with normal Laplacian matrix and finite odd-girth

go ≥ 2d+ 1. Then Γ is distance-regular and go = 2d+ 1.
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