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Abstract. This paper presents a fuzzy subtractive modelling technique to predict the weight of telecommunication tow-
ers which is used to estimate their respective costs. This is implemented through the utilization of data from previous-
ly installed telecommunication towers considering four input parameters: a) tower height; b) allowed tilt or deflection;  
c) antenna subjected area loading; and d) wind load. Telecommunication towers are classified according to designated 
code (TIA-222-F and TIA-222-G standards) and structures type (Self-Supporting Tower (SST) and Roof Top (RT)). As 
such, four fuzzy subtractive models are developed to represent the four classes. To build the fuzzy models, 90% of data 
are utilized and fed to Matlab software as training data. The remaining 10% of the data are utilized to test model perfor-
mance. Sugeno-Type first order is used to optimize model performance in predicting tower weights. Errors are estimated 
using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) for both training and testing data 
sets. Sensitivity analysis is carried to validate the model and observe the effect of clusters’ radius on models performance.
Keywords: cost estimating, quantity takeoff, telecommunication towers, fuzzy subtractive modelling, sensitivity  analysis.
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Introduction

Modelling in construction proved its effect on predicting 
data. Many models were developed with some mathemat-
ical operations to guide practitioners with the expected  
scenario that most likely take place during construction 
phase. Theoretical studies have shown that fuzzy mod-
els are capable to approximate complex functions on 
an easy to use model at acceptable degree of accuracy. 
As such, the performance of the imitated system can be 
studied. One of the main challenges in modelling is data 
 availability which aids in better initiation of the model 
and minimizing the total errors of estimation. Cost esti-
mating process is repetitive and performed throughout all 
phases (conceptual, schematic, design development, and 
procurement) of the project. The accuracy of cost esti-
mating depends on availability of information and time  
allowance to carry out the estimate (Gould 1997). Concep-
tual cost estimate is associated with limited information  
about the project and is used as a basis for comparison 
with future cost estimates as well. A number of mod-
elling techniques have been developed in construction 
to provide conceptual cost estimate (Ji et al. 2012; Jin 
et al. 2012; Fragkakis et al. 2011; El Asmar et al. 2011; 
Marzouk, Ahmed 2011; Tatari, Kucukvar 2011; Yu,  
Skibniewski 2010; Cheng et al. 2009; Chou 2009; Wang 
et al. 2008; Kim et al. 2004; Trost, Oberlender 2003; Siqueira  

1998; Hegazy, Ayed 1998; Creese, Li 1995) for differ-
ent construction projects such as  highways, bridges, 
and low-rise structural steel buildings. These model-
ling techniques utilize several approaches including 
multivariate regression (Fragkakis et al. 2011; Trost,  
Oberlender 2003), neural networks (Yu, Skibniewski 
2010; Cheng et al. 2009; Siqueira 1998; Hegazy, Ayed 
1998; Creese, Li 1995), and Case-Based Reasoning (Jin 
et al. 2012; Ji et al. 2012; Marzouk, Ahmed 2011; Chou 
2009; Wang et al. 2008).

Zadeh (1965) introduced fuzzy set theory to model 
uncertainty in human cognitive process.  Fuzzy research 
has been applied in construction management to address 
two broad fields, including: fuzzy set/fuzzy logic; and 
hybrid fuzzy techniques. Fuzzy research has four main 
categories including (Chan et al. 2009): decision mak-
ing; performance; evaluation/assessment; and model-
ling.  Applications of fuzzy set and fuzzy logic include 
(but are not limited to) contractor selection (Singh, Tong 
2005), sustainable residential buildings (Seo et al. 2004), 
and site layout planning (Tam et al. 2002). Marzouk  
(2005) presented a fuzzy clustering model for estimat-
ing the budget cost of academic buildings in Egypt. 
Ten parameters influencing the cost of academic build-
ings were identified. Four of them have been elected to 
be  significant via step-wise regression. Marzouk and 
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 Moselhi (2004) presented a two-step fuzzy clustering 
method for  estimating haulers’ travel time. The estimated 
travel time takes into account the acceleration and decel-
eration in the transition zones. The developed method 
utilizes linear regression and fuzzy subtractive cluster-
ing. Seven factors influencing haulers’ travel time were 
first  identified and their significance was then quantified 
using linear regression. Clustering algorithms suit data 
compression and construction model and are wildly used 
to manage and classify data (Sastria et al. 2008). The 
main function of clustering is to gather sets of similar 
given objectives into groups of the same class that has 
common features. A cluster algorithm technique should 
have some properties to initiate a model with satisfying 
 results. These include (Suryavanshi et al. 2005): a) stabil-
ity in generating clusters, meaning that the clusters can-
not be significantly altered; b) robustness of the model 
which means minor errors in sorting the objectives lead 
to few changes in the clustering; c) order insensitivity 
which means clusters composition is not impacted with 
the order in which objects are processed; and d) main-
tainability which means maintaining of clusters should be 
practical and efficient.

This study focuses on the subtracting clustering 
method (Chiu 1994), as it is an advanced technique 
established on mountain clustering method. To avoid 
being confronted with the risk of over fitting the data 
in case of large number of rules, suitable cluster radius 
has to be chosen. Sugeno-Type first order is utilized 
to represent the behaviour of fuzzy models in order 
to optimize model performance. A total of 586 previ-
ously erected telecommunication towers are classified 
into four classes (F_SST, F_RT, G_SST, and G_RT) 
to represent their categories with respect to designated 
code (TIA-222-F and TIA-222-G standards) and struc-
tures type (Self-Supporting Tower (SST) and Roof Top 
(RT)). Each class is divided into training and testing 
data with different cluster radius, from 0.2 till 0.65 
with 0.05 intervals, and the results were recorded. 
The results revealed that the developed fuzzy subtrac-
tive models are effective modelling tool in providing 
the takeoff of telecommunication towers. To validate 
the developed fuzzy subtractive models, two types of 
errors Absolute Percentage Error (MAPE) and Root 
Mean Square Error (RMSE) are estimated for both 
training and testing data results. Result graphs are 
drawn to provide a comparison and detect models’ per-
formance at different clusters’ radiuses. The subtrac-
tive models aid cost estimators (either from owners’ 
side or contractors’ side) who are working in telecom-
munication towers field to have an idea about the cost 
of their project. It is worth noting that the cost of civil 
work scope in telecommunication towers might reach 
up to 70% of the total cost, representing a sizable por-
tion. Therefore, the proposed subtractive models act as 
a decision support tool that can be used to predict the 
costs of telecommunication towers projects at accept-
able accuracy level once their specifications are set.

1. Background review 

In this study, telecommunication towers are classified 
according to designated code and structure type. Below 
sub-sections provide background review for the different 
classes of telecommunication towers. 

1.1. Telecommunication towers design standards
Telecommunications Industry Association (TIA) is 
 responsible for providing a structural standard for an-
tenna supporting structure. The main goal of the TIA 
is to serve the public interests through eliminating mis-
understandings between manufacturers and purchasers, 
facilitating interchangeability and improvement of prod-
ucts for their particular needs. Besides this, standards 
provide recognized work for antenna supporting struc-
ture to minimize the design loads, giving design criteria 
for these structures. Both TIA-222-F and TIA-222-G are 
used as different standards for telecommunication tow-
ers. TIA-222-F was first published in 1996, this stand-
ard was used during the time where most nations were 
building telecommunication towers at the start time of 
mobile technology (TIA/EIA-222-F). While TIA-222-G 
was first published in 2006 (ANSI/TIA-222-G 2005). It 
calculates wind speed in a different manner, compared 
to TIA-222-F. The basic wind speed (according to TIA-
222-F) is the fastest wind speed which leads to the most 
worst-case wind speed maintained for a linear meter of 
air. While most wind gauges do not measure the fastest 
wind speed this way. Considering this fact, TIA-222-F 
standard leads to heavy structure according to fixed con-
stant in the wind load equation and it is not preferred 
from the economic point of view. In TIA-222-G stand-
ard, the 3-second gust for its definition of wind speed is 
adopted and a conversion formula is used to translate the 
fastest meter to a 3-second gust. The 3-second gust wind 
speed is the highest sustained gust over a 3-second period 
of time. Further, TIA-222-G standard divides structures 
into three exposure categories (B, C & D) and it gives the 
wind load equation for each category. Exposure category 
B represents urban and suburban areas, wooded areas, or 
other terrain with numerous closely spaced obstructions 
having the size of single-family dwellings or larger. Ex-
posure category C represents open terrain with scattered 
obstructions having heights generally less than 30 ft. 
Whereas, Exposure category D represents unobstruct-
ed shorelines exposed to wind flowing over open water 
 (excluding shorelines in hurricane prone regions) for a 
distance of at least 1 mile. As such, TIA-222-G standard 
provides more flexibility and economical  consideration 
to the designer.

1.2. Structure types of telecommunication towers 
Telecommunication Towers are classified, according to 
structure types, to Self-Supporting Tower (SST) and 
Roof Top (RT). SSTs are either square or triangular tow-
er with three or four legs. They are made of galvanized 
angular or tubular elements, designed on a base pattern. 
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SSTs can stand without any wires to reduce tension as 
in the mast design. Their height ranges from 20 m to 
160 m, depending on the site requirements (Figure 1a). 
The weight of SSTs ranges from 2.5 tons to 120 tons. 
SSTs are used for medium to heavy loads and they are 
generally  suitable for primary cellular sites, MW back-
bone sites, or central communication hubs. On the other 
hand, Roof Top (RT), or stub tower, can be described 
as a telecom square or triangular tower made from an-
gular or tubular elements. RTs consist of galvanized 
steel parts and they usually situated over buildings; 
roofs. Their height ranges from 9 m to 21 m (Fig. 1b).  
The weight of RTs ranges from 0.5 tons till 2.5 tons. 
Building heights provide  additional height for the stubs. 
To construct SSTs, an area of 10*10 m is required to 
support construction phases of  excavation, replacement, 
plain concrete, reinforced concrete, erection of the tow-
er and equipment installation. Concrete base of SSTs 
can be either isolated footing or raft foundation or even 
piles (in case of clay soil sites). It takes an average of 
nine to twelve days to complete erection of a single 
SST. While it takes one or two days to erect a RT. The 
foundation of RT is galvanized steel beams which are 
rested on the buildings’ roof columns. An area of 4*4 m  
is required to construct RTs towers It is worth noted that 
the function of the two structure types (SST and RT) is 
to support antenna, however, the SST needs an open 
area to cover signals between two sites. RT is used in 
crowded areas with high population, where there are no 
available open areas to construct SSTs.

1.3. Fuzzy logic
Fuzzy logic is represented in a fuzzy inference system 
(FIS), with the “IF-THEN” rules, and it generates the 
outputs from given inputs using mathematical opera-
tions on membership functions. Many rules in fuzzy 
logic system match inputs to some degree, and they 
have their impact on the outputs. The FIS enables the 
users to notice the relationship between input fea-
tures and output classes, which otherwise cannot be 
observed. Zadeh (2004) pointed out that the guiding 
principle of fuzzy logic is to exploit the tolerance for 
imprecision, uncertainty, and partial truth to achieve 
tractability, robustness, and low cost solution. This led 
the fuzzy logic to have an effect over modelling and 
the predicting of complicated problems as well as with 
unverified data. Different cluster algorithms have been 
reviewed: 1) fuzzy C-Means (FCM) clustering method 
(Bezdek et al. 1992); 2) mountain clustering method 
(Yager, Filev 1994); and 3) subtractive clustering meth-
od (Chiu 1994). Subtractive clustering method (Chiu 
1994) is an extension of the mountain clustering meth-
od, where the potential is calculated for the data rather 
than the grid points. Cluster analysis is the task of as-
signing a set of objects into groups (called clusters) so 
that the objects in the same cluster are more similar (in 
some sense or another) to each other than to those in 
other clusters, it’s a statistic technique that is used to 

segregate groups of data. To develop fuzzy model, five 
steps are followed as shown in Figure 2. These steps 
are detailed as follows:

Step 1:  Calculating the potential (Pi) after normaliza-
tion of all data points in the training data set to equal-
ize its coordinate range in all directions. The data point, 
with much neighbourhood with the data points around 
it, will have maximum potential value than remaining 
data points. The first radius cluster (ra) is given a posi-
tive value to determine the potential of first data cluster 
which is a function with its distance to all the other data 
points:

 
 (1)

 
 (2)

Step 2:  The highest potential Pi
* will be set as the first 

cluster of the model, then revise the potential for each 
data points by Eqns (3) and (4). Chiu (1994) advised to 
consider rb equals 1.5 ra to avoid new cluster radius to 
be near the first born cluster:

Fig. 1. Structure types of telecommunication towers
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 (3)

 
 (4)

Step 3: Repeat the previous step for all remaining 
clusters by a subtracting process, where each time 
new cluster found, the data points potential have been 
 revised and the data points near the defined cluster 
 radius will get the most reduced potential and of course 
it most likely will not to be chosen in the next cluster. 
Eqn (5) is used to choose the next cluster, and then 
the clustering process will be accepted if the Eqn (6) 
is applicable:

 
 (5)

 
. (6)

Step 4: after determining all the clusters, considering 
every cluster centre has its rule “membership value” that 
can describe system behaviour, and with putting y as an 
input vector, the output vector (z) is calculated using 
Eqns (7) and (8): 

 
 (7)

 

 (8)

where: µi is the membership value of cluster i; and α is 
constant as per Eqn (2).

Step 5: Least-Square optimization Takagi-Sugeno used 
as polynomial function of first order. Supposing a  linear 
output for each cluster (z* = Giy + hi), optimization is per-
formed to minimize the square error shown in Eqns (9), 
(10) and (11):

 

 (9)

 

 (10)

 (11)

2. Research methodology
2.1. Data collection
In this study, four inputs parameters are considered 
which are: antenna subjected loading, tilt, height and 
wind speed. The predicted output is the expected 
weight of the telecommunication tower. The towers’ 
data is taken from a library that has the records of 
previously erected towers with their respective inputs 
and output. Such data are used to develop fuzzy sub-
tractive models. Data are divided into four groups as 
follows:

 – Group 1: F_SST contains 250 SST towers’ records, de-
signed using F Standard, that are divided into two sets: 
225 records for training and 25 records for testing.

 – Group 2: F_RT contains 43 RT towers’ records, 
 designed using F Standard, that are divided into 
two sets: 38 records for training and 5 records for 
testing.

 – Group 3: G_SST contains 235 SST towers’ records, 
designed using G Standard, that are divided into 
two sets: 212 records for training and 24 records 
for testing.

 – Group 4: G_RT contains 40 RT towers’ records, 
 designed using G Standard, that are divided into 
two sets: 36 records for training and 4 records for 
testing.

2.2. Model implementation
The proposed models are capable to estimate the cost of 
the towers using the predicted weight using Eqn (12). 
Figure 3 illustrates schematic diagram of models’ in-
puts and output which are implemented using Matlab 
 software:

Fig. 2. Fuzzy clustering subtractive algorithm
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 (12)

where: Wp is predicted weight by model; and CT is Cost 
per ton.

2.3. Models cluster centres
Finding clusters’ centres are deemed important to start 
fuzzy rules and, then, optimizing the rules. The first 
step in finding clusters’ centres is to choose data points 
with high potential to be selected as the clusters’ cen-
tres in a group of (n)input-output data.  Every single 
data point has its potential, which is the distance be-
tween data points and the assigned radius of clusters 
(ra). The potential is expressed by an exponential func-
tion stating neighbourhood. After the potentials of all 
data point are initialized, the potentials are revised and 
checked, and then the numbers of clusters are set. As 
a cluster centre is evaluated and data point is accepted 
as a cluster centre, then firing the fuzzy rules, which 
is accomplished by optimization is carried out. Chiu 
(1994) noticed that the cluster radius must suit the data 
points to avoid over-fitting that appears when using a 
small radius, however, choosing a large radius will lead 
to fewer clusters which then create unsatisfied model 
results, therefore, while choosing the cluster radius, it 
must fit the data points. This disadvantage of this meth-
od is the creation of a membership function with many 
trials in order to find a best initial set-up. However, 
there is also an advantage which is taking the short-
est way without waiting the training data iteration to 
complete the system. Because of the importance of the 
radius ra of the clusters in Chiu method, more than one 
radius was used with this system to predict the results. 
Table 1 lists the number of clusters for the different 
 assigned radius ra.

2.4. Estimating models errors
To validate fuzzy models, Mean Absolute Percentage 
 Error (MAPE) and Root Mean Square Error (RMSE) are 
estimated for training and testing data sets for the four 
fuzzy subtractive models using Eqns (13) and (14):

 

 
(13)

where: n is the number of input of the data; Oa is actual 
input of the data; and Ot is target output from the system.

 

, (14)

where: n is the number of input of the data; Za is actual 
input of the data; and Zt is normalized target output from 
the system.

3. Sensitivity analysis

Sensitivity analysis investigates the output of mathemati-
cal model robustness and is useful for decision making 
support by testing the results of a model. Modellers  refer 
to these types of models and use their results to take 
the right decisions, make recommendations, increase the 
ability to understand all the variables of the model such 
as inputs and outputs and the relationship between them, 
and understanding how the model behaves. Sensitivity 
analysis leads to improving final solutions and improv-
ing implementation. Sensitivity analysis is carried out on 
the developed fuzzy clustering models by  considering 
different values for the assigned radius of clusters (ra) 
and tracing the output values. Figures 4 and 5 depict the 
 values for Mean Absolute Percentage Error (MAPE) and 
Root Mean Square Error (RMSE) for the four fuzzy clus-
tering models. For Roof Top (RT) models (F_RT and 
G_RT), the values of Mean Absolute Percentage Error 
(MAPE) and Root Mean Square Error (RMSE) are close 
to zero as per as per Figure 4b and d and Figure 5b and 
d, respectively. This is attributed to the fact that the well-
trained model due to the limited number of telecommu-
nication towers types available in training data sets. The 
following results have been obtained from the sensitivity 
analysis for testing data sets (Table 2):Fig. 3. Inputs and outputs of fuzzy clustering models

Table 1. Number of clusters for different assigned radius

ra
No. of clusters

F_SST  
Model

F_RT  
Model

G_SST 
Model

G_SST 
Model

0.20 21 34 32 28
0.25 14 32 15 28
0.30 12 26 11 27
0.35 8 21 8 21
0.40 7 17 6 18
0.45 7 14 4 15
0.50 6 10 4 12
0.55 5 9 3 11
0.60 5 7 3 10
0.65 4 6 2 9
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 – For F_SST Model, both MAPE and RMSE have 
minimum values when ra equals 0.3.

 – For F_RT Model; both MAPE and RMSE have min-
imum values when ra equals 0.55.

 – For G_SST Model, MAPE has minimum value 
when ra equals 0.3, whereas, RMSE is minimum 
when ra equals 0.5.

 – For G_RT Model, both MAPE and RMSE have 
minimum values when ra equals 0.3.

Table 2. Sensitivity analysis results

Model
MAPE RMSE

ra Error (%) ra Error (%)
F_SST 0.3 7.83 0.3 10.30
F_RT 0.55 8.25 0.55 9.06
G_SST 0.3 8.65 0.5 10.74
G_RT 0.3 6.62 0.3 7.73

Conclusions

This paper presented a fuzzy subtractive modelling tech-
nique to predict the weight of telecommunication tow-
ers which is used to estimate their respective costs. Four 
input parameters are considered in the modelling: tower 
height, allowed tilt or deflection, antenna subjected area 
loading, and wind load. Four fuzzy subtractive models 
were developed to take into consideration telecommu-
nication designated code (TIA-222-F and TIA-222-G 
standards) and structures type (Self-Supporting Tower 
(SST) and Roof Top (RT)). These models are F_SST, 
F_RT, G_SST, and G_RT. Towers’ data were taken from 
a library that has the records of previously erected 568 
towers with their respective inputs and output. Four in-
puts parameters were considered in the developed fuzzy 
subtractive models which are; antenna subjected loading, 
tilt, height and wind speed. The towers’ data were clas-
sified into training data (90%) and testing data (10%). 
To validate the fuzzy model, Mean Absolute Percentage 
Error (MAPE) and Root Mean Square Error (RMSE) 
were estimated for training and testing data sets for the 
four fuzzy subtractive models. Sensitivity analysis was 
carried out on the developed fuzzy clustering models by 

Fig. 4. Models’ mean absolute percentage error (MAPE)

a) F_SST Model b) F_RT Model

c) G_SST Model d) F_RT Model
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considering different values for the assigned radius of 
clusters (ra) that range from 0.2 to 0.65. Models’ output 
values were traced to identify minimum Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error 
(RMSE) for each model. It was found that MAPE and 
RMSE have minimum values for the same radius of clus-
ter for F_SST, F_RT and G_RT Models. Whereas, the 
minimum values of MAPE and RMSE are obtained at 
different radius of clusters for G_SST model. 
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