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Abstract. The unsafe behavior of workers is the main object of construction safety management, in which violations require 
increased attention due to their pernicious consequences. However, existing studies have merely discussed violations separately 
from unsafe behaviors. To respond quickly to workers’ violations on site, this study proposes a real-time control approach based 
on intelligent video surveillance. First, scenes reflecting unsafe behaviors are automatically acquired through camera-based behav-
ior analysis technology. Meanwhile, the time corresponding to the construction phase is recorded. Second, the temporal associa-
tion rule model of worker’s unsafe behavior is constructed, and the rule “construction phase→unsafe behavior” is determined by 
the Apriori algorithm to identify target behaviors necessary for critical control in different construction phases. Finally, statistical 
process control is used to find the trends of violations with frequency and mass characteristics through the dynamic monitoring 
of target behavior. In addition, real-time alerts of these unsafe acts are produced simultaneously. A pilot study is conducted on 
the cross-river tunnel project in Wuhan city, Hubei, China, and the violations related to construction machineries is proven to be 
controllable. Thus, the proposed approach promotes behavioral safety management on construction since it effectively controls 
workers’ violations by real-time monitoring and analysis.
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Introduction

The construction sector is one of the most dangerous job 
sectors worldwide (Zhu et al. 2016), and thus, construc-
tion safety management is arduous. After studying nearly 
75,000 accidents, Heinrich et al. (1980) attributed 88% of 
safety accidents to the unsafe behavior of workers. Sta-
tistical results obtained by DuPont over the last 10 years 
also indicated that 96% of injuries were due to unsafe acts 
rather than unsafe conditions (McSween 2003). The un-
safe behavior of workers is considered as a direct cause 
of accidents, making it one of the main research objects 
of construction safety management. For this research, 
unsafe behaviors refer to observable dangerous actions 
that may lead to accidents. The general unsafe behaviors 
of operators could be loosely classified as either errors or 
violations (Reason 1997). Errors represent the mental or 
physical activities of individuals that fail to achieve their 
intended outcome, whereas violations refer to the willful 
disregard for rules and regulations. Helmreich (2000) re-

ported that over half the “errors” observed in line safety 
operations audit were due to violations and that those who 
violated procedures were 1.4 times more likely to commit 
other types of errors than those who did not. O’Dea and 
Flin (2001) also indicated that violation of existing rules 
and procedures was considered one of the most impor-
tant factors that contribute to accidents. Therefore, finding 
ways to effectively control workers’ violations is an impor-
tant issue in behavioral safety.

Previous studies have mainly focused on the con-
trol of workers’ unsafe behaviors, but few have separate-
ly focused on workers’ violations. The cognitive causes 
of workers’ unsafe behaviors are either conscious or un-
conscious. Violations represent the unsafe behaviors that 
workers know but are willfully executed anyway, which 
more frequently lead to serious construction accidents 
than errors. Jazayeri and Dadi (2017) introduced various 
construction safety management systems and discussed 
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their components. The behavioral element was regarded 
as a critical component usually controlled through tradi-
tional methods such as observation, interview, and train-
ing. Observation by employees is a time-consuming pro-
cess on construction sites. Interview and training focus 
on changing the attitudes of workers that have subjective 
influences. Some safety management systems had men-
tioned a safety factor for improving safety behavior that 
hazards needed monitoring to identify trends. Behavior-
based Safety (BBS) emerged from the research of Skin-
ner (1953); BBS is widely used as an effective method for 
behavior improvement, because the intervention process 
targets specific behavior for constructive change (Gel-
ler 2011). Although BBS interventions proved useful, its 
consistent effectiveness vanished with the removal of in-
tervention (DeJoy 2005). Few contractors have voluntarily 
collected goals and feedback from individual workers over 
time and have conducted corresponding interventions due 
to the dynamic and temporary nature of the construction 
industry. Furthermore, safety models combining behavio-
ral and cultural elements have been used in the construc-
tion industry because many unsafe behaviors can be at-
tributed to poor construction safety culture. For instance, 
an operational excellence model was developed to evaluate 
and improve safety performance for construction organi-
zations (Liu et al. 2015). Compared with the workers’ un-
intentional errors on construction sites, violations can be 
effectively controlled (Cigularov et al. 2010). In addition, 
violations jeopardize organization-level safety outcomes, 
and thus, additional control is necessary (Zohar 2014). If 
symptoms of such behaviors toward change are discov-
ered early, then the possibility of accident occurrence will 
greatly decrease. Controlling workers’ violations is also 
necessary in achieving excellent safety performance, with 
operational excellence defined as doing the right thing, the 
right way, every time – even when no one is watching (Liu 
et al. 2017). Barabasi (2005) found that certain behaviors 
do not occur randomly over time and space, but have char-
acteristics of burstiness. Similarly, violations display char-
acteristics of frequency and mass in different construction 
phases, thus generating massive unsafe behavior data in 
a short time. Therefore, a data-driven approach could be 
considered to control workers’ violations. 

The data-driven approach combines data acquisition 
techniques and data mining algorithms. The use of intel-
ligent video surveillance helped improve the productivity 
and safety on construction sites (e.g. Aguilar, Hewage 2013; 
Teizer et al. 2013) as it can automatically obtain scenes re-
flecting workers’ unsafe behaviors (Guo et al. 2016). The 
development of data mining algorithms also supports the 
analysis and utilization of massive data. The use of the as-
sociation rule is effective for massive data processing in 
finding items among attributes of a large database hidden 
in relationships (Sarawagi et al. 2000). Violations are usu-
ally related to the construction phase. The association rule 
can identify unsafe behaviors that frequently occur at each 
construction phase to determine target behaviors that re-
quire critical control. Statistical process control (SPC) 

determines whether changes in processes significantly 
influence outcomes, and thus, SPC is commonly used in 
quality management (Oakland 2007). By applying SPC to 
the monitoring process via intelligent video surveillance, 
the data of target behaviors is dynamically analyzed. Thus, 
the trends on workers’ violations can be identified to pro-
duce real-time alerts before encountering serious conse-
quences.

This study reviews existing research on the control of 
worker’s unsafe behavior, intelligent video surveillance ap-
plications on construction safety management, and asso-
ciation rule and SPC usage in the construction industry. 
This study further introduces the proposed approach for 
real-time control of workers’ violations, and its applica-
tions on a cross-river tunnel construction site in Wuhan 
city, Hubei, China.

1. Literature review
1.1. Control of worker’s unsafe behavior

Some studies have focused on BBS to explore its sustained 
effect on behavior control. Zhang and Fang (2013) pro-
posed a continuous BBS strategy that integrates BBS into 
management routines to continue improving the effect 
of behavioral intervention. Choudhry (2014) indicated 
that BBS can continue to function effectively only to fully 
mobilize the enthusiasm of subcontractors and workers 
in participating. Li et al. (2015) established an extension 
of BBS for construction called proactive behavior-based 
safety, combining traditional BBS management with novel 
information technology, including BIM and RFID, to en-
hance behavior control. Visualization techniques includ-
ing 3D game engine and virtual reality (e.g. Sacks et al. 
2013) were applied to the behavioral safety training of 
workers, and application results showed partial effects 
on unsafe behavior control. In view of the links between 
unsafe behaviors and safety culture, Liu et al. (2015) de-
veloped a safety model involving cultural and behavioral 
elements to assess and improve safety performance. As 
construction and project organizations became over-
regulated, violation management emerged as an issue 
(Love, Smith 2016). Cavazza and Serpe (2009) explored 
the role of safety climate in reducing the attitudinal am-
bivalence of workers toward using personal protective 
equipment (PPE). Their result indicated that good safety 
climate maintained a direct effect on violation. Lingard 
et al. (2016) identified the violations of workers through a 
participatory video process, the results of which can help 
establish how they may function safely. Alper and Karsh 
(2009) argued that minimal research about violations con-
trol in work settings exist. Whether BBS interventions or 
safety training is used, workers’ unsafe behaviors are con-
trolled from psychological aspects. Although implemen-
tations have improved owing to technical development, 
control effects have been greatly determined by workers’ 
safety attitudes. Furthermore, available safety models 
combining behavioral and cultural factors explain the ne-
cessity of controlling worker’s violation to some extent. 
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However, few studies have focused on workers’ violations 
in the construction industry, and existing ones have lacked 
control approaches. 

1.2. Application of intelligent video surveillance on 
construction safety management

Several studies have examined how intelligent video sur-
veillance could be used in construction. To address site 
safety issues, Shrestha et  al. (2015) established a safety 
system to monitor whether workers properly use PPE, 
and Zhu et  al. (2016) proposed novel Kalman filters to 
predict movements of workers and mobile equipment on 
construction sites. Han and Lee (2013) proposed a frame-
work of vision-based unsafe action detection for behav-
ior monitoring which can identify critical unsafe behav-
ior. Guo et al. (2017) showed a trend in intelligent video 
surveillance on construction safety to obtain and analyze 
worker’s unsafe behavior in real-time.

1.3. Association rule and SPC usage in construction 
industry

The association rule, which is used to discover interesting 
patterns in relational databases, has potential applications 
in many areas. Several studies have utilized this method to 
mine factors influencing the causation of accidents. These 
studies include that of Verma et al. (2014), who investi-
gated and identified main contributing factors and root 
causes for the occurrence of incidents. Cheng et al. (2010) 
used the association rule in analyzing 1,347 accidents to 
identify potential hazards in Taiwan construction projects. 
Liao and Perng (2008) found through association rule 
mining that the effect of rain on the occurrence of fatali-
ties is considerably significant. In terms of project qual-
ity management, Cheng et al. (2015) proposed a genetic 
algorithm-based approach to discover multi-level patterns 
of construction defects for quality improvement. The SPC 
method dynamically monitors significant changes in key 
indicators by using statistical tools; this method was intro-
duced by Shewhart (1931). This method has been used in 
several aspects of construction with increasing data gen-
erated from work progress. Stewart and Spencer (2006) 
integrated SPC into a structured process-improvement 
strategy for quality monitoring of engineering materials 
to reduce waste. Aliverdi et  al. (2013) presented an ap-
proach to monitor earned value indices by applying sta-
tistical quality control charts. In terms of construction 
safety, Wetzel and Thabet (2016) described a data collec-
tion method and an analysis method using the six sigma 
define function to develop standard safety attributes for 
facility management. Liu (2016) used SPC in building a 
control model to dynamically monitor key factors related 
to falling accidents. Isaac and Edrei (2016) utilized real-
time tracking data to control the exposure of construction 
workers to safety risks that accumulate and change over 
time. In conclusion, the association rule is an effective tool 
in mining potential correlations of influencing factors, 

mostly used in the analysis of accident factors. With the 
realization of automatic data collection in the construction 
industry, the SPC method has great application potential 
in data utilization.

2. Proposed approach for the real-time control of 
workers’ violations

As shown in Figure  1, the process of the proposed ap-
proach includes three main parts accomplished by col-
lecting, analyzing and, utilizing data on worker’s unsafe 
behavior:

1. The collection process pre-defines common unsafe 
behaviors from safety standards and operating in-
structions, considering the functions of camera-
based behavior analysis technology. These behaviors 
can be automatically recognized through the intelli-
gent monitoring videos, allowing scenes that reflect 
the unsafe behavior of workers to be obtained. Time 
is also simultaneously recorded to identify construc-
tion phases through the Gantt chart, which is used 
to record actual construction progress and to reflect 
ongoing work.

2. The analysis process identifies the association rule 
“construction phase→unsafe behavior” to analyze 
collected data. According to the rule, collected data 
are preprocessed to prepare a data set for mining. 
Apriori is the mining algorithm, which contains 
three parameters, namely, support, confidence, and 
lift. Effective strong association rules satisfying pa-
rameter requirements are located from frequent item 
sets to ascertain the target behaviors that require 
critical control in different construction phases.

3. In the utilization process, the SPC method is in-
tegrated into intelligent video surveillance to dy-
namically monitor workers’ target behaviors. The 
trends of workers’ violations with frequency and 
mass characteristics automatically and timely found 
in the process of monitoring. In addition, real-time 
alerts for accident prevention are produced simul-
taneously. The implementation of this method in-
cludes the following steps: (1) the unsafe behavior 
rate is taken as the control index, then a center line 
(CL) and an upper control limit (UCL) are set to 
generate the control chart; (2) Process Capability In-
dices (PCI) reveal process zones based on specifica-
tion limits (SLs). To calculate this index, monitored 
unsafe behaviors are classified at different levels 
using a risk assessment method. The SLs of unsafe 
behavior rates are identified according to risk level. 
If the PCI satisfies the requirement, then the phase 
changes from analysis to control in monitoring; 
(3) according to discrimination criteria detected in 
abnormal situations, the control chart is observed 
and analyzed to suppress the trends of violations 
with characteristics of frequency and mass.



70 Sh. Guo et al. A real-time control approach based on intelligent video surveillance for violations ... 

2.1. Automatic data collection mechanism

Two types of data are collected. A Big-Data-based plat-
form was used to automatically obtain scenes reflecting 
the unsafe behaviors of workers from intelligent video sur-
veillance (Guo et al. 2016). Construction phases could be 
identified through the Gantt chart according to the time 
when workers’ unsafe behavior manifested. 

2.2. Time-related association rule mining of 
worker’s unsafe behavior

The association rule is expressed in X→Y form, where X is 
the antecedent and Y is the consequence. Data collected 

are preprocessed to build the mining database in “con-
struction phase→unsafe behavior” form. The Boolean as-
sociation rule is used, given that the data are discrete. Sup-
port, confidence, and lift are three important parameters 
which could be calculated by Eqns (1)–(3):

( ) ( )( ) ,
( ) ( )

num X Y P X YSupport X Y
num I P I

∩ ∩
∩ = =

 
(1)

where: P(X∩Y) is the occurrence probability of item sets 
X∩Y; P(I) is the occurrence probability of database I;  
P(I) = 1; num(X∩Y) is the occurrence number of item 
sets X∩Y; and num(I) represents the occurrence number 
of Database I.

Figure 1. Process of the proposed approach
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where P(X) is the occurrence probability of item X, and 
Support(X) is the support of item X.

( )( )( ) ,
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Support Y P Y

→
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(3)

where P(Y) is the occurrence probability of item Y; 
P(Y|X) is the occurrence conditional probability of item 
Y under the condition that item X exists; and Support(Y) 
is the support of item Y.

Apriori algorithm is employed to determine the rules 
(Agrawal et al. 1996). The process that uses the Apriori al-
gorithm includes three steps: (1) Item sets with greater sup-
port than the minimum (threshold value set by the user) 
are determined to consist frequent item sets; (2) strong 
rules are determined from frequent item sets, wherein 
items with strong rules meet not only the demand for 
minimal support but also for minimum confidence; (3) ef-
fective strong association rules are verified by lift, with 
Lift（X→Y）> 1 signifying effectiveness. Effective strong 
association rules reflect target behaviors that require criti-
cal control in certain construction phases. Concentrating 
on these behaviors is typical as they easily happen on site.

2.3. SPC for workers’ violations

Intelligent video surveillance dynamically monitors work-
ers’ target behaviors. SPC is then used to analyze moni-
tored data and to identify statistically significant variations 
that should be addressed. Workers’ violations with fre-
quency and mass characteristics exist in these variations. 
The assumption is that the measured characteristic of the 
process has a normal distribution when the process is un-
der control due to natural sources of variation.

Considering that times and durations of target be-
havior can be recorded by intelligent video surveillance, 
unsafe behavior rate is defined as the proportion of time 
when these behaviors occur in one hour. The Single Value-
Moving Range (X-MR) chart is adopted in this study to 
determine whether this rate is in a controlled state. Oth-
erwise, these abnormal data fluctuations may greatly be 
caused by frequent and mass violations. In the ideal state, 
unsafe behavior rate is expected to be distributed symmet-
rically around the mean (μ) and relative to the standard 

deviation (σ); approximately 99% of measurements are ex-
pected to be within μ ± 3σ. Therefore, CL is determined to 
be set at the position of mean (μ). In addition to CL, UCL 
is set at the position of μ + 3σ for process control. In the 
monitoring process, the X-MR chart is divided into two 
stages, namely, the analysis and control stages. The prereq-
uisite for determining the control stage process is that PCI 
Cp meets specific requirements. The PCI Cp is computed 
as:

3
S

P
SL

C
−µ

=
σ

,
 

(4)

where SLS is the specification limits (SLs). Generally,  
Cp ≥ 1.67 indicates that the process capability is excellent, 
that 1.33 < CP ≤ 1.67 indicates that the process capability 
is sufficient and that 1  ≤  CP  <  1.33 shows that the pro-
cess capability is acceptable. In the above three cases, the 
process can be regarded as entering the control stage. For 
this monitoring process, SLs serve as the limit of unsafe 
behavior rate, which is identified from the safety manage-
ment requirements in an actual construction project. To 
obtain this index, different types of unsafe behavior are 
divided into several levels. Considering that worker’s un-
safe behavior is a kind of safety risk, the combination of 
assessments regarding the probability of unsafe behavior 
occurrence (P) and the consequence caused by unsafe 
behavior (C) creates a modified risk matrix. This matrix 
defines the relative level of behavioral risk (Table 1). Risk 
index (R) is computed as: 

R = P*C. (5)

Risk matrix approach was initially developed by the 
Electronic System Center of the US Air Force in April, 
1995 to assess risk in the life cycle of purchase projects 
(Paul et  al. 1998). The original risk matrix (ORM) has 
good applicability in risk assessment but still exhibits bias-
es because levels of probability and consequence are iden-
tified through a subjective calculation process. To reduce 
those biases, probability is divided into five categories by 
calculating the previously mentioned support parameter, 
and consequence is assessed according to factors including 
the casualties, property loss and accident extent. The defi-
nitions of the five categories are presented in Table 2. An-
other significant weakness of ORM is the non-meticulous 
classification of risk index, which only has three qualitative 
levels. As a result, different risks may at times share the 

Table 1. Behavioral risk assessment matrix

C
P Catastrophic Major Moderate Minor Insignificant

P > 0.9 I I I II III
0.5 < P ≤ 0.9 I I II III III
0.2 < P ≤ 0.5 I II III III IV
0.1 < P ≤ 0.2 II III III IV IV

P ≤ 0.1 III III IV IV IV
       Risk:                              Low             Medium       High     Very High

IV III II I
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same risk level in a specific case. Some studies have added 
extra risk index levels to reduce the vagueness of ORM to 
a certain extent (e.g. Ni et al. 2010; Zhou 2010; Isaac, Edrei 
2016). After discussions with experts and on-site manag-
ers, four levels of behavioral risk are identified ranging 
from Low (IV) to Very High (I). Intervals of unsafe behav-
ior rate corresponding to different levels are 1%–5% (I), 
6%–10% (II), 11%–20% (III), and 21%–40% (IV). In prac-
tice, the specific value represented by SLs is determined by 
the level of safety management on construction sites.

In the control stage, a critical step is the detection 
of abnormal situations according to discrimination cri-
teria, in which the trends of frequent and mass workers’ 
violations exist. Out-of-control conditions are defined 
in Statistical Process Control Systems of GEIA Standard  

(EIA557B 2006) addresses data points that (1) lie outside 
statistical control limits and (2) show significant changes, 
runs, trends, or patterns within statistical control limits. 
However, the discrimination criteria to be used in specific 
cases are determined by controllers. Montgomery (2009) 
discussed some sensitizing rules for the control chart and 
illustrated the definition of small probability as a critical 
factor in identifying discrimination criteria. Referring to 
previously defined discrimination criteria, re-definition 
of rules is required within the adaptation of the workers’ 
violation control on site. Four items are finally determined 
from the eight discrimination criteria in the Standard of 
Shewhart Control Charts in China (GB/T 4091-2001). 
Other criteria are unsuitable because they cannot judge 
abnormally increasing trends of the unsafe behavior rate. 

Table 2. Definitions of the five consequence categories

Consequence Category Definition

Catastrophic A kind of unsafe behavior that, upon occurrence, would cause an extremely serious accident with 
numerous casualties and property loss, as well as the ability to achieve minimum acceptable requirements.

Major A kind of unsafe behavior that, upon occurrence, would cause a serious accident with many casualties 
and property loss. Secondary requirements may be achieved.

Moderate A kind of unsafe behavior that, upon occurrence, would cause a moderate accident with some 
casualties and property loss, but important requirements would still be met.

Minor A kind of unsafe behavior that, upon occurrence, would cause a small accident with few casualties and 
property loss, and most requirements would still be achieved.

Insignificant A kind of unsafe behavior that, upon occurrence, would cause an incident without casualties and prop-
erty loss, and without any effect on the construction project.

Table 3. Specific information about four discrimination criteria

Discrimination criteria Probability of 
occurrence Rule

Points exceed UCL (i) 0.27% Real-time alerts are provided at points exceeding UCL

Six successive points display consistent increase (ii) 0.273% Real-time alerts are provided at the last of the six 
points

Two out of three consecutive points exceed μ + 2σ (iii) 0.066% Real-time alerts are provided at the last of the three 
points

Four out of five consecutive points exceed μ + σ (iv) 0.21% Real-time alerts are provided at the last of the five 
points

Figure 2. An example of the X-MR chart to control workers’ violations
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Small probability is defined as 0.27%, indicating that 
these items can be considered as abnormal situations  
because the probability of their occurrence is extremely 
low. The rules for providing real-time alerts are provided 
corresponding to different items. Additional specific infor-
mation are shown in Table 3. 

Figure 2 presents a case identified in one of the tests 
conducted with the X-MR chart in which PCI meets the 
requirements. In Figure 2, the horizontal axis is the time 
axis wherein each number represents an hour, whereas 
the vertical axis represents the unsafe behavior rate moni-
tored by intelligent video surveillance. The points with red 
marks in the X-MR chart indicate abnormal situations. 
The X chart shows that point 65 exceeds SLs, and points 
13 and 18 exceed UCL. These points reflect that behavioral 
risk greatly increase, exceeding the acceptable level. In ad-
dition, points 12 and 13 are in violation of criterion (iii), 
point 14 violates criterion (iv), and points 49 and 50 vio-
late criterion (ii). Although these points are under SLs and 
UCL, they reflect a dangerous proximity to UCL. All these 
abnormal situations reflect trends of violations, and thus, 
real-time alerts are provided to reduce behavioral risk. The 
MR chart is used to analyze non-random factors causing 

abnormal data fluctuations in the X chart. For instance, 
point 66 with the red mark violates criterion (i), which re-
flects that the alert produced for point 65 greatly reduces 
behavioral risk. 

3. Pilot study

Wuhan, one of the major cities in Hubei, China, is ex-
ecuting a metro construction program with 12 lines under 
construction simultaneously. The cross-river tunnel pro-
ject of Metro Line 7 is chosen as the application site. As 
shown in Figure 3, this tunnel is 4.6 km long, of which 
2.59 km are constructed under a river. The construction 
task under a river is executed by two shield tunneling 
machines with diameters of 15.2 m. Workers face a com-
plicated construction environment in addition to extra 
potential behavioral risks caused by a highly congested 
construction site and complex geological and hydrological 
conditions. Workers with minimal safety training owing 
to tight construction schedule causes weak safety attitudes 
and frequent unsafe behaviors. Managers hope to reduce 
workers’ observable unsafe behaviors, especially viola-
tions, through the real-time control approach. Therefore, 

Figure 3. Satellite map of the cross-river tunnel project in Wuhan Metro Line 7

Figure 4. System interface of intelligent video surveillance
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a rapid reaction for behavioral risk is established to meet 
safety management goals. 

3.1. Data collection process

Data collected through intelligent video surveillance in 
tunnel construction process includes three steps:

1) Camera positions were determined on site. The 
camera positions satisfied universal coverage of the 
construction site, as shown in Figure 4. Six cameras 
were separately located in soil removal places in the 

shield machine, lifting hole, tail of shield machine, 
duct piece assembly area, tunnel transportation 
zone, and shield machine operating room.

2) One camera-based behavior analysis function was 
chosen according to camera position. Camera-
based behavior analysis technology includes func-
tions such as intrusion detection, stay identifica-
tion, and line-crossing detection. The function was 
pre-defined to automatically recognize possibly 
occurring unsafe behaviors within the scope of the 
monitor. Figure  4 demonstrates a possible unsafe 

Figure 5. Visualization process of data mining by the Apriori algorithm in this study
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behavior in the tunnel transportation zone, where 
“unwanted workers get into the dangerous areas of 
rail”. The behavior analysis function was selected as 
intrusion detection, which automatically recognized 
the entry of workers into these areas and exacted 
video scenes by observing the motions of workers.

3) The time when the unsafe behavior of workers 
happened was simultaneously recorded by camera. 
After finding the actual construction progress re-
flected by time in the Gantt chart, two types of data, 
namely, unsafe behavior and construction phase 
were obtained.

3.2. Data analysis process

Data collected in three months were preprocessed to 
form a data set for association rule mining. The prelimi-
nary analysis showed that workers mainly exhibited un-
safe behavior during three construction phases, namely, 
shield launching, shield driving, and duct piece assem-
bling. The machineries used in shield construction are 
either automatic or semi-automatic, thus injuries caused 
by machineries mostly occur in these phases. A total 
of 1,837 records of workers’ unsafe behaviors related to 
machineries were analyzed through IBM SPSS Modeler 
14.1 using Apriori algorithm. This process was illustrated 
in Figure  5 in two steps. Step 1 built a network reflect-
ing links between unsafe behavior and the correspond-
ing construction phase, from which the thickness of lines 
could intuitively indicate the degree of support shown in 
Figure 5 (b). For instance, the line between shield driv-
ing and unwanted workers get into the dangerous areas 
of rail is thicker than that between the former and work-
ers climb a moving vehicle in tunnel because the first line 
is 34.28% bigger than the 5.51% support of the second 

line. Supports beyond 5% represent frequent item sets. 
Thus, Step 2 further identified the strong rule from those 
item sets. Minimum support and confidence were both 
pre-defined as 30%. As seen in Figure 5 (a), the strong 
rule was satisfied by “Shield driving → Unwanted workers 
get into the dangerous areas of rail”. “Shield driving” was 
expressed as Item X, and “Unwanted workers get into the 
dangerous areas of rail” was expressed as Item Y, and then, 

( ) 41.516%( ) 1.211 1
( ) 34.278%

Confidence X YLift X Y
Support Y

→
→ = = = > . 

Therefore, this rule was proven effective. The result shows 
that this unsafe behavior required critical control for its 
frequent occurrence during this period.

3.3. Data utilization process

In the shield driving process, the target behavior identified 
above was dynamically monitored through intelligent vid-
eo surveillance. The support calculated above was 34.28% 
and this behavior caused major consequence. Thus, this 
behavior was classified as Level II behavioral risk; SLs was 
preset at 10% to meet the requirement of safety manage-
ment on site. Work was accomplished in three shifts a day 
for uninterrupted construction; data obtained in one day 
is a single batch. Figure 6 is the X-MR chart made using 
monitored data over 10 days, including the analysis and 
control stages which are as follows.

In the analysis stage, monitored data fluctuated large-
ly on the first and second days, and the computed result 
was PCI < 1 below the requirement. Thus, workers were 
warned to avoid this behavioral risk by on-site engineers. 
On the third day, the number was significantly reduced 
with PCI close to one. Monitored data began to fluctu-
ate smoothly on the fourth day. The computed result was 

Figure 6. X-MR chart of monitored data collected over ten days
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PCI≈1.43  >  1, indicating that the monitoring process 
can proceed to the control stage the next day. The values 
CL = 4.24 and UCL = 7.64 were also calculated.

The control stage lasted from the fifth to the tenth 
day. The red points in the X chart of Figure  6 represent 
abnormal situations when real-time alerts were produced: 
points 122, 131, 143, and 185 violated Criterion (i); point 
172 violated Criterion (ii); and points 112 and 113 violated 
Criterion (iii). In hindsight, monitored data was abnormal 
in these points because of workers’ violations. Even though 
workers had already known after undergoing safety train-
ing that such type of unsafe behavior may cause personal 
injuries, some still persisted for work for convenience or 
accessibility. Among the red points in the MR chart, ab-
normal data fluctuations of points 123, 132, and 186 show 
that unsafe behavior rate greatly decreases after real-time 
warning. As can be seen from the charts, unsafe behavior 
rate is maintained at a relatively low level, and data fluctua-
tions remain smooth on the last two days. This result in-
dicates that the real-time control approach can effectively 
reduce workers’ violations.

4. Discussions
With the research trend of using data-driven methods to 
solve problems, a real-time control approach for workers’ 
violations was proposed. Through monitoring via intelli-
gent video surveillance, this approach opens the possibility 
of distinguishing the trends of frequent and mass workers’ 
violations behind target behaviors in different construc-
tion phases. A pilot study showed positive feasibility re-
sults. The contributions of this research are twofold:

1. Time-related association rules of workers’ unsafe be-
haviors are explored. On the basis of data obtained 
through intelligent video surveillance, the rules “con-
struction phase→unsafe behavior” are mined by the 
Apriori algorithm. Critical behaviors can be identi-
fied for further monitoring in different construction 
phases. 

2. An optimized method is used to identify workers’ 
violations from the monitoring process. SPC is in-
tegrated into intelligent video surveillance to moni-
tor target behaviors. Real-time alerts are produced to 
dynamically control violations when monitored data 
exceeds acceptable level, thereby reducing the occur-
rence of accidents on construction sites.
However, several limitations exist and should be ac-

knowledged. Some factors, such as monitoring angle and 
foreground occlusion, influence intelligent video surveil-
lance in accurately extracting scenes reflecting unsafe be-
havior of workers. On-site spatial influence is also not con-
sidered in identifying target behaviors in this study. Aside 
from construction phases, workers may behave differently 
in various locations. For instance, unsafe behavior easily 
occur near a foundation pit and near a crane are different. 
Future research should consider monitoring one kind of 
unsafe behavior from different angles to eliminate miss-
ing and false detection rates. Otherwise, the spatial-related 

association rules of workers’ unsafe behaviors should be 
further analyzed to identify hazards in different areas of a 
construction site.

Conclusions

Violations are adverse to forming organizational safety cli-
mate in the construction industry, and the accidents they 
cause have a great negative effect on economy and society. 
Previous studies have merely isolated violations from un-
safe behavior for the same control purpose from a psycho-
logical aspect. In actual cases, violations still occur even 
though workers know the dangers of such acts. To bridge 
the gap, this study proposed a real-time control approach 
to better control the on-site violations of workers. From 
theoretical points of view, behavioral safety management 
on construction is promoted. Behaviors that require criti-
cal control are mined through the association rule. These 
behaviors represent typical behavioral risks existing in dif-
ferent construction phases. Concentrating on these certain 
behaviors is necessary because violations involving them 
increase the probability of accident occurrence. With data 
monitored through intelligent video surveillance, change 
trends of these behaviors are analyzed through the SPC 
method. Real-time alerts are provided when abnormal 
data fluctuations appear. Symptoms of frequent and mass 
violations can be automatically and timely found through 
the use of this real-time control approach. Through this 
approach, reasons for violations can also be found in ad-
vance before they cause serious consequences. From a 
practical perspective, on-site video monitoring applica-
tions are improved. Video monitoring has become widely 
used with the development of lean construction. Manual 
checking tasks become increasingly heavy, costly, and te-
dious because data generated from videos considerably 
increased. Therefore, some videos are disused in practical 
applications. The proposed approach provides a solution 
to control workers’ violations in the monitoring process. 
This solution can promote efficient and effective applica-
tions of on-site video surveillance. To achieve further con-
tributions, defects in intelligent video surveillance should 
be resolved through repeated hardware and software tests 
to obtain valid data. Moreover, location-based technolo-
gies such as RFID should be considered to identify viola-
tions that frequently occur at specific places on site. 
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