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Abstract. This paper discusses a two-stage based dynamic transportation assignment problem (TS-based DTAP) under 
a fuzzy random environment in an earth-rock transportation system. This problem is a multi-objective dynamic pro-
gramming optimization process for minimizing total operational cost, transportation duration and total waste. Triangular 
fuzzy random numbers are used for the uncertain parameters, and a hybrid crisp approach and an expected value opera-
tor are introduced to deal with these uncertainties. A dynamic programming based contraction particle swarm optimiza-
tion is developed to solve the proposed expected value model for TS-based DTAP. Then, the earth-rock dam construction 
at Pubugou Hydropower project is used as a practical application to verify the proposed approach. Results and analysis 
are presented to highlight the performance of the proposed TS-based DTAP model and the optimization method, which 
proves to be effective and relatively efficient compared to the models under other environments and a standard PSO 
algorithm.
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Introduction 

As the special case of minimum cost network flow prob-
lem, assignment problem plays a very important role 
in many real-world applications, such as Li and Simha 
(2000), Clementi et al. (2003) and Bliemer and Bovy 
(2003). In large scale hydropower construction projects, 
transportation assignment problem solutions are crucial 
and must be dealt with urgently because of high cost, 
long construction durations and other important reasons. 
Further, the optimization of transportation assignment 
problems requires combinatorial optimization, combin-
ing transportation costs, duration and waste optimiza-
tion, which in turn have a significant influence on each 
other. This is reflected in real conditions, where there is 
increasing pressure to shorter transportation duration to 
reduce or eliminate extra project expenses by ensuring 
the early arrival of materials, a shortening of the con-
struction project completion time and the improvement 
of construction efficiency. With this in mind, this paper 
focuses on a multi-objective optimization of a two-stage 
based earth-rock dam construction transportation system, 
with the aim of minimizing total operational cost, trans-
portation duration and total waste.

Dynamic transportation assignment problems (DTAP) 
are often encountered in many systems, such as urban plan-
ning traffic networks, closed traffic network systems, field 
service support systems, container transportation and flow-
shop-type production systems (Crainic et al. 2004; Wang 
et al. 2008; Ebben et al. 2004; Papadopoulos 1996; De 
Meo et al. 2008; Celik et al. 2009; Anghinolfi, Paolucci 
2009; Hurink, Knust 2001). Linear programming, bi-level 
programming and multi-objective programming are usually 
used to solve such transportation problems, as in Luathep 
et al. (2011), Ali and Sik (2012), Maher et al. (2001), Cao 
et al. (2007), Islam and Roy (2006), El-Wahed and Lee 
(2006). While these studies have made a significant contri-
bution to DTAP and have solved many practical problems, 
they rarely discuss double multistage transportation sys-
tems, and do not take possible waste into consideration. In 
particular, these studies have not considered multi-objective  
optimization and multistage optimization together, nor 
discussed problems from a dynamic view for large scale  
hydropower construction projects. By considering the char-
acteristics of different areas (borrow areas, stockpile areas 
and filling areas), introducing a double multistage transpor-
tation system, and including the different objectives in a  
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dynamic environment, decision-makers are able to dynami-
cally allocate resources so that the total operational cost, 
transportation duration and total waste are minimized. Spe-
cifically, several kinds of transportation carriers are proposed. 
Above all, a two-stage based dynamic transportation assign-
ment problem (TS-based DTAP) using a multi-objective  
dynamic programming process for large scale hydropower 
projects is proposed in this paper.

Transportation systems are often complex with in-
evitably encountering uncertain parameters. Though pre-
vious research (Cascetta 1989; Barbarosoglu, Arda 2004; 
Shu et al. 2005; Watling 2006) has successfully used 
probability theory to solve many transportation problems, 
sometimes the probability distributions for uncertain pa-
rameters may be unknown or just partially known because 
of a lack of statistical data. In this case, random variables 
are not able to adequately describe these uncertain param-
eters, and fuzzy set theory is a more appropriate choice. 
First proposed by Zadeh (1965), and consequently devel-
oped by researchers such as Dubois and Prade (1978), 
fuzzy theory has been a useful tool in dealing with am-
biguous information, and has been applied to forecast-
ing (Möller, Reuter 2007), decision-making (Pardo, de 
la Fuente 2007), and control of actions in environments 
which are characterized by vagueness, imprecision, and 
subjectivity (Bojadziev, G., Bojadziev, M. 1997; Sumalee 
et al. 2006). For instance, if experienced experts are asked 
about the unit transportation cost between two places, the 
answer is more likely to be around a certain value rather 
than an absolute value because of possibility of unfore-
seen factors such as changing weather, labor inefficiency, 
or the road and traffic condition. Since this information 
is described using linguistic terms, conventional proba-
bility is not suitable to model this imprecise content. So 
in this case, unit transportation cost could be expressed 
as a fuzzy variable rather than as a constant, as outlined 
in Chanas et al. (1984), Chanas and Kuchta (1996),  
Teodorovic (1999), Liu and Kao (2004), and Peidro et al. 
(2009). There have also been studies considering fuzzy 
demand, purchase cost and holding cost in inventory 
control systems (Xu, Liu 2008). While these studies have 
significantly improved the uncertainty in transportation 
system management, they are incapable of reflecting the 
multiple uncertainties of parameters with combinations of 
both fuzziness and randomness. In practical large scale 
construction projects, imprecision and complexity cannot 
be dealt with using simple fuzzy logic or random logic, 
and TS-based DTAP control often takes place in a hy-
brid uncertain environment. In this case, fuzzy random 
variables, introduced by Kwakernaak (1978, 1979), Puri 
and Ralescu (1986), Kruse and Meyer (1987), and used 
in modeling and analyzing “imprecise values” which is 
associated with the sample space of a random experi-
ment using fuzzy-set functions (Gil et al. 2006), can be  
employed. This approach has received approval from 
many scholars and encouraged further research in uncer-
tain events. Dutta et al. (2005) constructed a single-period  
inventory model with fuzzy random variable demand. 

Ammar (2008) presented fuzzy random multi-objective 
quadratic programming solutions for application in port-
folio problems. Xu and Liu (2011) and Xu et al. (2012c) 
developed a facility location-allocation problem and a re-
sources allocation problem in a mixed random and fuzzy 
environment. These studies show how efficient fuzzy ran-
dom variables can be when dealing with hybrid uncertain 
environments where fuzziness and randomness co-exist. 
However, the application of fuzzy random variables has 
not yet been applied to the TS-based DTAP to solve prac-
tical problems. In this paper, fuzzy random uncertainty is 
adopted to describe the characteristics of the hybrid un-
certain environment for TS-based DTAP, and the results 
and analysis obtained in section 4.4.4 “Model Compari-
son in Different Environments” are presented to highlight 
the superiority of usage for the fuzzy random variables.

With the TS-based DTAP being intrinsically dif-
ficult and the model being nonlinear, non-convex and 
non-differentiable, it follows that the search for exact 
algorithms is futile. Effort has been made to develop 
effective heuristic algorithms to solve the TS-based 
DTAP. Over the past three decades, many efficient meta- 
heuristic search techniques have been developed, such 
as genetic algorithms (Gen et al. 1998), ant algorithms 
(Doerner et al. 2001; Bell, McMullen 2004; Vitins,  
Axhausen 2009), simulated annealing (Naderi et al. 
2009; Friesz et al. 1993) and the tabu search. Recently, 
a new population-based stochastic search method, par-
ticle swarm optimization (PSO), inspired by the social 
behaviors of animals like fish schooling and bird flock-
ing, was proposed for optimization (Kennedy, Eberhart  
1995). Existing publications indicate that the PSO 
method has comparable or even superior performance 
when solving many NP-hard problems and has a fast 
and stable convergence (Clerc, Kennedy 2002). Because 
it is easy-to-implement, efficient and effective, PSO is 
adopted in this study to develop a dynamic program-
ming based contraction particle swarm optimization 
(DP-based CPSO) algorithm for solving the transformed 
optimization model.

However, there is still no research which takes the 
multi-objective, double multi-stage, dynamic, and hybrid 
uncertainty factors into consideration comprehensively. 
So in this paper, the following techniques are used: first, 
this paper, in reference to the earth-rock transportation 
system at the Pubugou Hydropower Project, establish-
es a multi-objective dynamic optimal control model to 
solve the TS-based DTAP under a fuzzy random envi-
ronment. Second, the description of the TS-based DTAP 
under a fuzzy random environment is described. Because 
the TS-based DTAP control in a large scale construction 
project takes place in a hybrid uncertain environment, 
source data was first gathered from the engineers, then 
estimated using maximum likelihood method, finally the 
expected values of which were determined using a hybrid 
crisp approach and an expected value operator. Another 
technique used here is the DP-based CPSO, which was 
developed based on the particular nature of the model to 
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solve the above problem, by automatically controlling 
the particle-updating in the feasible solution space to find 
the optimal solution. The final contribution is to illus-
trate the application of the optimization method on actual 
data collected from the Pubugou Hydropower Project, 
which demonstrates the value of practical application of 
the optimization method to a construction transportation 
system.

The rest of this paper is organized as follows: Section 1  
describes the key problem statement for TS-based DTAP. A 
TS-based DTAP model with fuzzy random coefficients is 
then formulated to minimize the total operational cost, trans-
portation duration and total waste in Section 2. In Section 3,  
a DP-based CPSO algorithm is developed to solve the 
model. In Section 4, the earth-rock dam construction at the 
Pubugou Hydropower Project is used as a practical applica-
tion to demonstrate the practicality of the modeling method 
and the efficacy of the developed algorithm. Finally, con-
cluding remarks are given in the last section.

1. Key problem statement
1.1. Multistage earth-rock dam construction project 
with two-stage based transportation system
In a large scale hydropower construction project, earth-
rock dam construction is a crucial task. The complete 
earth-rock dam construction process in this paper can be 
divided into three stages on the basis of total construc-
tion duration, construction sequence and construction di-
version. The three stages in the order of earth-rock dam 
construction are foundation filling, central dam filling and 
upper dam filling as shown in Figure 1, and each stage re-
quires a different quantity of earth-rock depending on the 
construction strength, area and features. The main task of 
the first stage is foundation filling until a solid foundation 
is reached. During the second stage, the main task is cen-
tral dam filling and cofferdam filling, and this is the most 
crucial period for the entire earth-rock dam construction, 
which requires intense efforts. The main task of the third 
stage is the filling of the dam crest, and construction of 
the dam’s corresponding height, thickness and slope pro-
tection construction, all of which are dependent on varia-
tions in the water level in the upper dam area.

From the construction site’s environmental features 
and the characteristics of the transportation routes, the 
earth-rock dam construction project transportation sys-
tem can be divided into two stages. The first stage is the 
transportation from the borrow areas to the stockpile areas  
using dump trucks, and the second stage is from the stock-
pile areas to their corresponding filling areas using belt 
conveyors, the details of which are in Figure 1. For each 
transportation route, the transportation distance, road con-
dition, transportation intensity and other objective factors 
are quite dissimilar, meaning that the various parameters 
are also different and uncertain. To improve operational 
efficiency and reduce traffic accidents, each dump truck 
driver is allocated a fixed transportation route. Therefore, 
the transportation routes selection and the earth-rock  

allocation between the borrow areas, stockpile areas and 
filling areas need to be appropriately planned to ensure 
that adequate earth-rock is available to meet the varying 
needs of the filling areas, and to ensure the optimization 
of the objectives. The TS-based DTAP proposed in this 
paper aims to achieve the identified objectives (i.e. cost 
minimization, transportation duration minimization and 
waste minimization) to ensure optimization and maxi-
mum benefit, efficiency and resource utilization.

1.2. Motivation for employing fuzzy random  
variables in TS-based DTAP
The need to address uncertainty in earth-rock dam con-
struction projects is widely recognized. For example, at 
each stage, the earth-rock unit excavation costs may dif-
fer due to excavation difficulty uncertainty, mechanical 
production and construction management costs, or in-
direct shop labor expenses. In fact, as advancements in 
engineering technology have allowed for more construc-
tion operation alternatives, decision makers are faced with 
more imprecise information than before. Therefore, fuzzy 
random variables are favored by decision makers to de-
scribe the uncertainty and vague information encountered 
in reality. The fuzzy random environment has been suc-
cessfully studied and applied in many areas, such as in  
inventory problems (Dutta et al. 2005; Xu, Liu 2008), port-
folio problems (Ammar 2008), civil engineering (Möller,  
Reuter 2007), facility location-allocation problems (Xu, 
Liu 2011), and resource allocation problems (Xu et al. 
2012c). These studies highlighted the necessity of consid-
ering the fuzzy random environment in practical problems. 
In practical large scale construction projects, the transpor-
tation plan is usually drawn up before any transportation 

Fig. 1. Construction stages and transportation system
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activity commences, so the parameter data may be un-
known or partially known because of the lack of statisti-
cal data, so there is a strong motivation for considering the 
fuzzy random environment for the TS-based DTAP.

To collect the necessary data, investigations and sur-
veys were conducted with experienced project engineers. 
First, the above parameters were determined on a day to 
day basis, with each being an interval (i.e. [ld, rd]) with 
the highest possible value being (i.e. md). At each stage, 
the minimum value of all ld and the maximal value of all 
rd for each parameter in the survey data were determined, 
and these were selected as the left border (i.e. a ) and the 
right border (i.e. b) of the fuzzy random variable, respec-
tively. For a more accurate calculation, a new method 
for determining the highest possible value for each pa-
rameter at each stage is proposed, as in each stage there 
are many possibilities for the highest possible value, the 
fluctuation of which (i.e. md) is characterized by a sto-
chastic distribution. Therefore the uncertain parameters 
are characterized as triangular fuzzy random variables in 
each stage. For example, the highest possible value (i.e. 
md) for the unit transportation cost can be regarded as a 
random variable (i.e. φ(ω)) approximately following a 
normal distribution (i.e. N(μ, η2)), which can be estimat-
ed using the maximum likelihood method and justified 
by a chi-square goodness-of-fit test. Thus, the triangular 
fuzzy random variable for the unit transportation cost can 
be derived as (a,φ(ω),b). This modeling technique is rec-
ognized as fuzzy random optimization and from Figure 2  
it can be seen why triangular fuzzy random variables are 
used to characterize the complex twofold uncertain envi-
ronment encountered in the TS-based DTAP.

Fig. 2. Twofold uncertain environment with triangular fuzzy 
random variables

2. Model formulation

To model the objective optimization for the multistage 
earth-rock dam construction transportation system under 
a fuzzy random environment in this paper, the state tran-
sition equation, initial conditions, constraint conditions 
and objective functions are presented. As mentioned 
above, in each stage the earth-rock can be transported 
from any borrow area to any stockpile area, but each 
stockpile area is in charge of its corresponding filling 
area, so we can use the same set S to express both the 
stockpile areas and filling areas. To make our model eas-
ier to understand, the following notations are introduced:

Sets and subscripts
B: set of all borrow areas, i ∈ B ;
S: set of all stockpile areas or filling areas, j ∈ S ;
K: set of all stages, k ∈ K ;
Aj (k): set of all borrow areas from which earth-rock 

transported to stockpile area j at stage k.

Parameters
: unit excavation cost of earth-rock in borrow 

area i at stage k, i ∈ B, k ∈ K;
: unit storage cost of earth-rock in stockpile 

area j during stage k, j ∈ S, k ∈ K;
: unit storage cost of earth-rock in stockpile 

area j between stage k and stage k+1, j ∈ S, k ∈ K;
: unit transportation cost from borrow area i to 

stockpile area j at stage k, i ∈ B, j ∈ S, k ∈ K;
: unit transportation cost from stockpile area j 

to filling area j at stage k, j ∈ S, k ∈ K;
: unit transportation time of the first dump 

truck from borrow area i to stockpile area j at stage k,  
i ∈ B, j ∈ S, k ∈ K;

: unit transportation time from stockpile area j 
to filling area j at stage k, j ∈ S, k ∈ K;

: waste of per unit earth-rock transported 
from borrow area i to stockpile area j at stage k, j ∈ S,  
k ∈ K;

: waste of per unit earth-rock transported 
from stockpile area j to filling area j at stage k, j ∈ S,  
k ∈ K;

: demand of filling area j at stage k, j ∈ S,  
k ∈ K.

Decision variables

 

: amount of earth-rock transported from bor-
row area i to stockpile area j at stage k, i ∈ A, j ∈ S,  
k ∈ K;

: amount of earth-rock transported from stock-
pile area j to filling area j at stage k, j ∈ S, k ∈ K.
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2.1. Dealing with fuzzy random variables
Before modeling the multiple objective optimization for 
the multistage earth-rock dam construction transporta-
tion system, the method for dealing with the fuzzy ran-
dom parameters is introduced.

While the fuzzy random variable for this problem en-
sures greater accuracy, its use makes the model much more 
difficult to solve. One strategy is to employ a transforma-
tion method to convert the fuzzy random variables into 
real numbers, so a deterministic model is obtained. In this 
paper, the hybrid crisp approach put forward in Xu et al.  
(2012b) is used to integrate the decision maker’s optimis-
tic-pessimistic attitudes in adopting real world practice. 
This method first transforms the fuzzy random parameters 
into (γ,σ) – level  trapezoidal fuzzy variables, which are 
subsequently defuzzified using an expected value opera-
tor with an optimistic-pessimistic index. As described be-
fore, , , , , , , , , 

 can be characterized as triangular fuzzy random 
numbers, generally, let  be any of 
them, where φ(ω) is a random variable with a probability 
density function  and σ are any given possibil-
ity level of the fuzzy variable and any given probability 
level of the random variable, respectively. The procedure 
for converting these fuzzy random variables in both the 
objective function and constraints into (γ,σ) – level  trap-
ezoidal fuzzy variables is summarized as follows:

(1) Denote the fuzzy random variable as
. Furthermore, it is assumed that 

φ(ω) follows a normal distribution N(μ, η2).

(2) Estimate the parameters , , μ and η2 
from the collected data and professional experience us-
ing statistical methods such as the maximum likelihood 
estimation and the chi-square goodness-of-fit test.

(3) Obtain the decision-maker’s degree of opti-

mism γ and σ, where ,

.

(4) Let φσ be the σ- level sets (or σ –cuts)of the 
random variable φ(ω), and

. Where,

.

(5) Transform the fuzzy random variable

 into the (γ,σ) – level  
trape zoidal fuzzy variable  by the equation: 

 where 

 

After converting the fuzzy random variables into (γ,σ) –  
trapezoidal fuzzy variables as shown above, the   
(γ,σ) – level trapezoidal fuzzy variables are subsequent-
ly defuzzified using an expected value operator with an 
optimistic-pessimistic index as follows:

  (1)

where λ is the optimistic-pessimistic index to determine 
the combined attitude of a decision maker. The definition 
of this fuzzy measure Me, which is a convex combination 
of Pos and Nec can be found in Xu and Zhou (2011), and 
the basic knowledge for the measures Pos and Nec  can 
be seen in Dubois and Prade (1978).

Based on the above method, for example, the fuzzy 
random variables  in this paper can be transformed 
into the (γij,σij) – level trapezoidal fuzzy variable. It 
should be noted that the probability and possibility co-
efficients of different fuzzy random variables may be 
different, but in this paper, to make the model easier to 
solve, we set all probability levels σij, σjj, σi, σj, σ1

j and 
σ2

j at the same value σ, and all possibility levels γij, γjj,  
γi, γj, γ1

j  and γ2
j at the same value γ.

2.2. State equations
From the decision variable notations, it can be seen that   
xij(k)δij(k) expresses the amount of earth-rock transported 
from borrow area i to stockpile area j at stage k. It is as-
sumed that there are M borrow areas, N stockpile areas 

Fig. 3. Transformation method of the fuzzy random 
parameters
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and N filling areas. Let Bi(k) and Sj(k) be the amount of 
available earth-rock in borrow area i (i = 1, 2, ..., M) 
and stockpile area j (j = 1, 2, ..., N) at the end of stage 
k, respectively. Therefore we can use Eqns (2) and (3) 
to describe the relationships between the state variables 
(i.e.  Bi(k) and Sj(k)) and the decision variables (i.e. δij(k), 
xij(k) and yjj(k) ), which are shown as follows:

  (2)

  (3)

2.3. Initial conditions
It should be noted that the amount of earth-rock in every 
borrow area is fixed at the beginning of the construc-
tion project, and let αi be the total amount of earth-rock 
in borrow area i. The amount of available earth-rock at 
stockpile area j (j = 1, 2, ..., N) at the beginning of the 
construction project is zero. Thus the state variables Bi(k) 
and Si(k) can be initialized as follows:

  (4)

  (5)

2.4. Constraint conditions
As shown in notations, the total demand of filling 
area j at stage k (i.e. ) is decided by the pro-
ject manager according to the construction require-
ments at stage k, It is a triangular fuzzy number with 

 wherein,  and 
 are the minimum and maximum of the total de-

mand of filling area j at stage k, respectively. From the 
global transportation system and construction stage view, 
the total amount of earth-rock in all borrow areas af-
ter considering the waste during transportation should 
satisfy the total maximum demand of all filling areas. 
The amount of earth-rock in borrow area i transported 
to stockpile area j at stage k (i.e. xij(k)) should be non-
negative and not more than the total amount of available 
earth-rock of borrow area i at the end of stage (k-1) (i.e.  
Bi (k-1)). Similarly, the amount of earth-rock in stockpile 
area j transported to its corresponding filling area should 
be no less than the total demand of filling area j at stage 
k, and not more than the sum amount of earth-rock trans-
ported from each borrow area and the earth-rock left in 
stockpile area j at the last stage, then according to Eqn (3),  
the constraint conditions are listed as follows:

  (6)

  (7)

 
 (8)
  (9)

Constraint condition Eqn (9) is naturally satisfied be-
cause of the assumption that the amount of earth-rock 
transported to the filling area will never exceed the 
amount of available earth-rock at each stockpile area at 
any given moment.

It is assumed that each stockpile area has its own 
maximum capacity at the end of the stages, so let βj be 
the maximum capacity of stockpile area j. The amount 
of available earth-rock in stockpile j at the end of stage k 
(i.e. Sj(k)) should be no more than the maximum capac-
ity of stockpile area j. Thus Eqn (10) is also considered 
a constraint condition:

  (10)

To simplify the problem, it is assumed that the amount of 
earth-rock transported from borrow area i to stockpile area 
j at each stage is at least the capacity of one dump truck 
when δij(k) = 1. Let C be the heaped capacity of the dump 
truck. Then the following constraint condition is derived:

  (11)

2.5. Objective functions
For large-scale construction projects, minimizing to-
tal cost and transportation duration are two extreme-
ly important objectives. During the transportation and  
construction, earth-rock work waste is inevitable, so the 
presented optimization model is formulated to minimize 
total cost and the transportation duration, while also min-
imizing total waste. To this end, decisions are selected by 
optimizing the expected values of the objective functions 
subject to various constraints, and the details of which 
are now presented.

2.5.1. Total cost
This objective function defines the total cost of the com-
plete construction. Usually, total project cost varies be-
cause of many factors such as unit transportation cost, 
unit excavation cost, unit storage cost, and amount of 
earth-rock. Decision makers, therefore, aim to achieve 
the best option so that the total project cost (excavation 
cost, transportation cost and storage cost) is minimal. The 
details of each component are given below.

Excavation cost. In the construction project de-
scribed in the problem statement, the unit excavation cost 
of the earth-rock in each borrow area at each stage may be 
different because of the uncertainty related to excavation  
difficulty, mechanical production and construction man-
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agement costs, and indirect shop labor expenses, so fuzzy 
random variables  are used to express these charac-
teristics. Let Ce be the total excavation cost of the earth-
rock, which can be expressed as follows:

  

Transportation cost. The transportation system in 
the TS-based DTAP discussed in this paper contains two 
subsystems as shown in Figure 1. The first is the trans-
portation by dump trucks from the borrow areas to the 
stockpile areas, the second is the transportation using belt 
conveyors from the stockpile areas to their corresponding 
filling areas. The transportation cost for different trans-
portation routes between different borrow areas, stockpile 
areas and filling areas in each stage are dissimilar and un-
certain because of the differences in such elements as dis-
tance, road condition, traffic intensity, and weather.  
and  are used to express the unit transportation cost 
of the two transportation subsystems respectively. Let Ct 
be the total transportation cost, which can be expressed 
as follows:

  

Storage cost. The total storage cost is the storage 
cost at every stage and the storage cost between stages. 
From the notations for unit storage cost between stages 
and the state variables for the stockpile areas, the storage 
cost in stockpile area j between stage k and stage (k+1)  
is  Let  express the amount 
of earth-rock in stockpile area j at time t during stage 
k. It can be seen that  changes over time, which 
leads to changes in the storage cost. Let Tj(k) be the 
transportation duration at stockpile area j at stage k, is 

 the maximum value of  during duration Tj(k). 
Then, the storage cost in stockpile area j during stage k

is , which is difficult to calculate. In 

this paper, a conversion factor is introduced to balance 
the difference between the maximum value  and the 
actual storage cost of stockpile area j during stage k. Let 

 express the conversion factor for stockpile area j at 
stage k, which is defined by the following equation:

 ,

where 
 
is a fuzzy random number and its expected 

value  is between 0 and 1.
Let Cs be the total storage cost, which can be ex-

pressed as follows:

  

Therefore, the total cost in the whole system is:

  (12)

2.5.2. Transportation duration
In the transportation system, due to the distance, road 
condition, traffic intensity and other important influential 
factors, transportation time between the different borrow 
areas, stockpile areas and filling areas is dissimilar and 
uncertain. At each construction stage, earth-rock is trans-
ported by dump truck from the borrow areas to the stock-
pile areas, then, using belt conveyors, from the stockpile 
areas to the filling areas. When the first dump truck arrives 
at stockpile area j from the different borrow areas, earth-
rock from stockpile area j is then transported to the corre-
sponding filling area. The dump trucks and belt conveyors 
are moving the earth-rock at the same time, with the belt 
conveyor being the last to finish. Stock out waiting time 
at the stockpile areas is ignored. Therefore, the transporta-
tion duration related to filling area j at each stage includes 
the transportation time of the first dump truck arriving at 
stockpile area j and the transportation time of all earth-rock 
transported from stockpile area j to its corresponding fill-
ing area j. Let Tj(k) and T(k) be the transportation duration  
related to filling area j at stage k and the total transporta-
tion duration related to all filling areas at stage k respec-
tively, then Tj(k) and T(k) can be expressed as follows:

 

Assume that  is infinite when δij(k) = 0, so let

 express the transportation time of the first 
dump truck from borrow area i to stockpile area j at stage 
k. Therefore, the total transportation duration is:

 (13)

2.5.3. Total waste
Earth-rock waste is inevitable because of the road condi-
tion, driving technology and other factors. Similarly, due 
to the difference in the road condition on different routes, 
and the difference on different sections of the same route, 
the per unit earth-rock waste is uncertain under a fuzzy 
random environment. At the end of each stage, the earth-
rock unused at filling areas is discarded. Therefore the 
total construction project waste is:
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(14)

2.6. Expected value model
From the background of the earth-rock transportation 
system at the Pubugou Hydropower Project, appropriate 
planning for transportation route selection and earth-rock 
allocation between the borrow areas, stockpile areas and 
the filling areas to achieve the objectives (i.e. total cost 
minimization, transportation duration minimization and 

waste minimization) is proposed in this paper. For the 
state equations, constraints, and objective functions out-
lined above, a multistage multi-objective optimal con-
trol model is established to solve the TS-based DTAP 
under a fuzzy random environment. The fuzzy random 
coefficients are estimated using the maximum likelihood 
method and justified by a chi-square goodness-of-fit test. 
Then a hybrid crisp approach is used to transform the 
fuzzy random parameters into (γ,σ)-level trapezoidal 
fuzzy variables, which are subsequently defuzzified using 
an expected value operator with an optimistic-pessimistic  
index as shown in Eqn (1). Therefore, by integrating 
Eqns (2)–(14), the research problem TS-based DTAP can 
be formulated in the following Eqn (15) multi-objective 
expected value model:

3. Dynamic programming-based contraction  
particle swarm optimization
Particle swarm optimization (PSO) is a population-based 
self-adaptive search stochastic optimization technique 
proposed by Kennedy and Eberhart (1995), which was 
inspired by the social behaviour of animals such as fish 
schooling and birds flocking to find a promising position for 
certain objectives in a multidimensional space (Eberhart,  

Shi 2001). Similar to other population-based algorithms, 
such as evolutionary algorithms, PSO can solve a variety 
of difficult optimization problems but has shown a faster 
convergence rate than other evolutionary algorithms on 
some problems (Clerc, Kennedy 2002). There have been 
many variants (Anghinolfi, Paolucci 2009; Yapicioglu et al.  
2007; Xu, Zeng 2011) of the PSO algorithm since its de-
but. Existing publications indicate that the PSO method 
has comparable or even superior performance when solv-

(15)
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ing many NP-hard problems and has a fast and stable 
convergence. As it is easy-to-implement, effective, and 
relatively efficient, the PSO is adopted in this study to 
develop a DP-based CPSO algorithm for solving our 
transformed optimization model.

Unlike the standard PSO, the DP-based CPSO in 
this paper can reduce the solution representation dimen-
sions using the state equation from the expected value 
dynamic programming model (15), and each particle is 
represented by its position in an H-dimensional space. 
For the TS-based DTAP, the problem dimensions should 
include decision variables (i.e. xij(k), δij(k) and yij(k) and 
state variables (i.e. Bi(k) and Sj(k)). If the decision vari-
ables are known, then the state variables can be deter-
mined based on the state equations Eqn (2) and Eqn (3). 
Thus, the solution representation dimensions as well as 
the search space can be reduced by using the state equa-
tion when developing the iterative solution algorithm for 
Model (15) for the TS-based DTAP. More specifically, 
our approach treats the state variables as hidden param-
eters. This in turn eliminates many redundant feasibility 
checks during initialization and particle updates at each 
iteration. The basic PSO formula is shown below:

  (16)

  (17)

where: particle index l = 1, 2, ..., L; is the popula-
tion size; iteration index τ = 1, 2, ..., T is the iterationl 
limit; 1 2( ) { ( ), ( ), ..., ( ), ..., ( )}l l l lh lHV v v v vτ = τ τ τ τ   denotes
the H-dimension velocity for the lth particle in the τth itera-
tion, wherein, h = 1, 2, ..., H is the dimension index, H is the  
problem dimension; 1 2( ) { ( ), ( ), ..., ( )}l l l lHP p p pτ = τ τ τ  
denotes the H-dimension position for the lth particle in 
the τth iteration; 1 2{ , , ..., }l l l lHΨ = Ψ Ψ Ψ  denotes the
personal best position of the lth particle encountered after τ
iterations; 1 2{ , , ..., }g g g gHΨ = Ψ Ψ Ψ

  
denotes the global 

best among all the swarm of particles achieved so far;  
cp and cg are the personal best and global best position 
acceleration constant respectively, and they determine the 
relative weight of the global best to the personal best; rp 
and rg are uniform random numbers in the interval [0,1]; 
w(τ), the inertia weight used to control the impact of the 
previous velocities on the current velocity that influences 
the trade-off between the global and the local explora-
tion abilities during the search, and the adaptive inertia 
weights are set to be varying with iterations as shown in 
Eqn (18):

  (18)

Eqn (16) is used to calculate the particle’s new velocity 
according to its previous velocity and the distance of its 
current position from its own best experience and the 

group’s best experience. Eqn (17) is traditionally used 
to update the particle moving toward a new position 
(Shi, Eberhart1998). The adaptive inertia weights (Shi,  
Eberhart1998) have a good convergent behavior in this 
study, which is in accordance with the results provided by  
Eberhart and Shi (2001).

3.1. DP-based CPSO solution representation
As noted earlier, based on the state equations (Eqn (2) 
and Eqn (3)), the state variables can be determined if 
the decision variables have been known, so the essential 
difference between the DP-based CPSO and the stand-
ard PSO is that the DP-basd CPSO takes advantage of 
the iterative mechanism of Model (15) by using the state 
equations to reduce the dimensions of the particles as 
well as the solution search space. In this study, the DP-
based CPSO dimensions are 6MN + 3N (i.e. H = 6MN + 
3N), which is smaller than the dimensions 6MN + 6N + 
3M in the standard PSO. Figure 4 shows the structure of 
the particle and how the DP-based CPSO generates solu-
tions for the proposed multistage, multi-objective model.

3.2. Weight-sum procedure for dealing with  
the multi-objective factor
There are many methods for dealing with the multiple ob-
jectives, such as the aggregating approach, lexicographic 
ordering, the sub-population approach, the Pareto-based 
approach, and the combined approach. As the aggregated 
objective in the form of a weighted-sum makes it pos-
sible to find the optimal Pareto solutions only when the 
solution set is convex, and the convexity of the three ob-
jectives and the constraints in the model above can be 
proved, meaning that the TS-based DTAP mathematical 
model is a convex programming and its solution set is 
also convex. So in this paper, the weight-sum procedure 
is adopted to deal with the three objectives above. Before 
the weight-sum procedure, the estimated maximal value 
is used to divide the dimensions and unify the orders of 
magnitude (Xu et al. 2012a) to make sure the conformity 
in the three different objectives is effective. The basic pro-
cedure for aggregating the three objectives is as follows:
(1) Estimate maximal value ,  and  of fc, fd 

and fw respectively.
(2) Calculate and standardize the f΄c, f΄d and f΄w:

  (19)

(3) The weighted-sum objective function f is given by 
the following equation:

  (20)

where: the weights ηc , ηd and ηw are proposed for the to-
tal project cost, total transportation duration and the total 
project waste during the transportation and construction 
system respectively, which are provided by the decision 
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makers and reflect the importance of each objective from 
their view. Further, these weights satisfy ηc + ηd + ηw  =1.  
For a given individual, the fitness value function is ex-
pressed as follows:

  (21)

3.3. DP-based CPSO initialization
The element in the multidimensional particle position can 
be initialized as follows to avoid an infeasible position: 
Step 1:  Initialize L particles as a swarm: Set iteration τ = 1.  

For l = 1, 2, ..., L generate the position of particle l 
with a random real number position Pl in the range 
[pmin , pmax]. Its corresponding value is xij (k),  
δij (k) and yjj (k). From the state transition equa-

tions, the state variables Bi(k) and Sj(k) are de-
termined.

Step 2:  Check the feasibility: All particles satisfy the con-
straints in the expected value Model (15), then 
continue. Otherwise, return to Step 1.

Step 3:  Initialize the speed of each particle: For l = 1, 2, 
..., L, velocity 

Step 4:  Evaluate each of the particles: For l = 1, 2, ... L 
compute the performance measurement of the lth set 
solution of the hth dimension, and set this as the fit-
ness value of plh(τ), represented by Fitness (plh(τ)).

Step 5:  Initialize the memory of each particle, the initial 
ψl is current position Pl(1), i.e. update personal 
best position ψl = Pl(1).

Fig. 4. Solution representation of DP-Based CPSO
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3.4. DP-based CPSO updating and schematic  
procedure
After the initialization, the updating procedure is as follows:

Step 1:  WHILE the maximum number of cycles has not 
been reached, DO

(1) Calculate the fitness value of the objective functions 
fc, fd and fw respectively, then calculate the fitness 
value Fitness(Pl(τ)) of the particle based on Eqn (20)  
and Eqn (21).

(2) Update pbest: For l = 1, 2, ..., L, update ψl = Pl, if 
Fitness(Pl) < Fitness(ψl).

(3) Update gbest: For l = 1, 2, ..., L, update ψg = ψl, if 
Fitness(ψl) < Fitness(ψg).

(4) Update the velocity and the position of each lth par-
ticle based on Eqn (16) Eqn (17) and Eqn (18).

(5) If  plh (τ + 1) > pmax, then:  

(6)    (22) 

If  plh (τ + 1) < pmax, then:    

   (23)
where pmax and pmin are the maximum and minimum 
position value, respectively.

(7) Check the feasibility and make adjustments: After 
the above updating, the decision variables (i.e. xij (k) ,  
δij (k) and yjj (k)) are determined in accordance with 
the properties and characteristics of the constraint 
conditions. If some constraint conditions are not sat-
isfied, the adjustment is made as follows:

1) Through the above updating, if δij(k) is not a 
0–1 variable, it will be adjusted as follows: 

    

Then, assume that the 0–1 variable  does not 
change, no matter what constraint conditions are not 
satisfied;

2) Adjust yjj (k) according to the unsatisfied constraint 
conditions which do not contain xij (k) such as Eqn (8).  
As the  has been decided, if yjj(k) does not  
satisfy Eqn (8), an adjustment will be made as 
shown in step 1.(5);

3) After the adjustment above,  and   
are decided, then xij(k) is adjusted according to 
the unsatisfied constraint conditions. Let H and H1 
be the number of δij(k) and δij(k) = 1 in one un-
satisfied constraint condition respectively. If the 
unsatisfied constraint condition in the remain-
der of the constraint conditions is in the form 

of  then every  

should reduce A/H1. In the model above, the re-
mainder of the constraint conditions are shown 
in Eqn (6), Eqn (7) and Eqn (10) (Converted into 

  

yjj(k) ≤βj based on Eqn (3)) and they all have the 

same form  Further, if there is more 

than one constraint condition not satisfied, then in 
the whole model every  should 

reduce  where r is the number of 

unsatisfied constraint conditions in the rest of the 
constraint conditions, so the adjustment to xij (k) is 

;

4) After the adjustment above, if there are still no fea-
sible solutions  and , then adjust  

again, find , where 

, and choose one or 

more δij(k) properly and let δij(k) = 1. Continuously 
adjust using the above methods until all equations 
are satisfied;

5) After the adjustment for
 
xij(k), δij(k) and yjj(k), make 

a generation into the state equation and determine 
the state variables.

Step 2: END WHILE.
Step 3:  If the stopping criterion is met, i.e. τ  = T, go to 

Step 4. Otherwise, τ = τ + 1 and return to Step 1
Step 4:  Decode the global best position Ψg as the solu-

tion set.
Figure 5 shows the schematic procedure for the DP-

based CPSO to generate solutions for the proposed mul-
tistage and multi-objective model.

4. Practical application to a construction project
4.1. Project description
In this section, an earth-rock transportation system in the 
Pubugou hydropower earth-rock dam construction project 
is taken as an example to demonstrate the optimization 
method. The Pubugou Hydropower project has 3300, MW  
installed capacity and 14.58, GWh annual output. It oper-
ates across Hanyuan County and Ganluo County, which 
are located in the middle reaches of the Dadu River in 
Sichuan province, China. The Pubugou Hydropower 
dam is an earth-rock dam with a gravel soil core, and is  
186 meters high with a dam crest elevation of 856 meters. 
The earth-rock dam consists of a core wall anti-seepage 
material area, an upstream and downstream inverse filter 
material area, a filtration material area, two earth-rock 
filling areas, and a slope protection block stone area. The 
top and bottom elevations of the core wall are 856 me-
ters and 854 meters respectively, with the top and bot-
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Fig. 5. Procedure of the DP-based CPSO framework

tom width being 4 meters and 96 meters, and the slope 
of the upstream and downstream both being 1:0.25. The 
total amount of dam filling is 2364.25×104 cubic meters.

4.2. Data collection
All detailed engineering data for the Pubugou Hydro-
power Project (PHP) were obtained from the Dadu River  
Basin Hydropower Project Construction Company. In 
a large hydropower construction project, earth-rock is 
usually the primary activity, so earth-rock transportation 
occurs every day in the excavation projects, the borrow 
areas, the filling areas and the stockpile areas as the ma-
terial is turned over and thus needs to be replaced fre-
quently. The transportation network is shown in Figure 7  
and includes an external and an internal road network. 
The internal road has two belt conveyors, with one lo-
cated on the left bank and the other on the right, and the 
transportation routes are fixed. The external road network 
has four borrow areas and two stockpile areas, and it is 
possible that the earth-rock could be transported from 
any of the borrow areas to any of the stockpile areas.

Three types of transportation equipment (dump truck 
and two types of belt conveyor) are used in the construc-
tion project, which transport the earth-rock along differ-
ent routes between different borrow areas and stockpile 
areas, and then from the stockpile area to its correspond-
ing filling area, with the destination nodes having the 
practical demand of timeliness. All necessary data for 
each carrier type were calculated as shown in Table 1.  
Table 2 shows the detail for each borrow area and stock-
pile area. To apply the proposed methods conveniently, 
adjacent roads of the same type were combined and road 
shapes were ignored. 

To collect the unit cost, time and waste data, inves-
tigations and surveys were conducted to obtain historical 
data from both the financial department and experienced 
Dadu River Basin Hydropower Project Construction 
Company construction team engineers. Since the above 
parameters change over time, the data were classified 
based on different periods. First, they were determined 
on a day to day basis, and each of them was prescribed 
an interval (i.e. [ld, md, rd]). For each stage, the mini-
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Fig. 7. Location and detailed information of borrow areas, 
stockpile areas and fillingareas in PHP

Fig. 6. Pubugou hydropower construction project

Table 2. Information of borrow areas and stockpile areas in 
PHP

Areas Area index Maximum capacity
Borrow area 1 732.4×104 m3

Borrow area 2 581.7×104 m3

Borrow area 3 528.3×104 m3

Borrow area 4 790.2×104 m3

Stockpile area 1 15×104 m3

Stockpile area 2 15×104 m3

Table 1. Information of carriers in PHP

Carriers Kind index Type

Dump truck 1 Terex TA 28(24 m3; 35 t)
Belt conveyer 2 BC(1000 mm; 4 km)
Belt conveyer 3 BC(1200 mm; 4.5 km)

For a more accurate calculation, a new method for deter-
mining the highest possible value for each parameter at 
each stage is proposed, as in each stage there are many 
possibilities for the highest possible value, the fluctuation 
of which (i.e. md) is characterized by a stochastic dis-
tribution, which is estimated using maximum likelihood 
method and justified by a chi-square goodness-of-fit test. 
Therefore the uncertain parameters are characterized as 
triangular fuzzy random variables in each stage.

mum value of all ld and the maximal value of all rd for 
each parameter in the survey data were determined, and 
they were selected as the left border (i.e. a) and the right 
border (i.e. b) of the fuzzy random variable, respectively. 
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For each link in Figure 7 for the transportation net-
work, there are free flow L – R fuzzy random travel time  

 and , unit cost  and , and unit waste 
 and  during the transportation. The corre-

sponding data are in Table 3, Table 4 and Table 5. Simi-
larly, the unit excavation cost and unit storage cost of 
the earth-rock at each stage are also L – R fuzzy ran-
dom parameters, the data for which are stated in Table 6.
Let  be any of above parameters,
where φ(ω) is a random variable approximately following 
a Normal distribution N(μ,η2). A hybrid crisp approach is 
used in this paper to transform the fuzzy random param-
eters into (γ,σ) – level trapezoidal fuzzy variables, which 
are subsequently defuzzified using an expected value op-
erator with an optimistic-pessimistic index, from which 
the final data is determined. Here, γ and σ are any given 
possibility level of fuzzy variable and any given prob-
ability level of random variable, respectively.

4.3. Parameters selection for DP-based CPSO
From the results of preliminary experiments which were 
carried out to observe the behavior of the algorithm at 
different parameter settings, and through a comparison of 
several sets of parameters, including population size, iter-

ation number, acceleration constant, initial velocity, and 
inertia weight, the most suitable parameters were identi-
fied. Table 7 summarizes some of the parameter values 
selected for the DP-based CPSO in the computational 
experiments. Note that the population size determines the 
evaluation runs which impact the optimization cost, and 
various learning factors cp and cg may lead to small dif-
ferences in the PSO’s performance. The inertia weight 
w(τ) is set to be varying with iterations as follows:

  (24)

where iteration index τ  = 1, 2, ..., T, w(1) = 0.9 and w(T) = 
0.1 are found to be the most suitable to control the impact 
of the previous velocities on the current one and influence 
the trade-off between the global and local experiences.

4.4. Computational results and sensitivity analysis
Compared with the actual data (total cost, transporta-
tion duration and waste) from the Pubugou Hydropower 
Project, the practicality and efficiency of the optimiza-
tion model under a fuzzy random environment presented 
in this paper are verified through the implementation of 
the DP-based CPSO algorithm to solve the flow assign-
ment between the transportation routes described previ-
ously. After running the proposed DP-based CPSO using 

Fig. 8. Results of DP-based CPSO Algorithm for transportation allocation decision in Pubugou hydropower project
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Table 3. Data information of unit transportation cost in each route at each stage

Model parameters
Stage index

k = 1 k = 2 k = 3

(CNY/unit)

φ(ω) ~ N(6.40, 4.0)

MATLAB 7.0, the computational results were obtained 
based on an optimistic-pessimistic index λ = 0.5, weights  
ηc = 0.5, ηd = 0.3 and ηw = 0.2, probability σ = 0.2 and possi-
bility γ = 0.8, where the maximal values of  fc, fd and fw were 
estimated and  
and . The results and performance of 
the algorithm, as compared to the actual data from the 
project, are listed in Table 8, and Figure 8 shows the 
results of the DP-based CPSO Algorithm for the trans-
portation allocation decision at the Pubugou Hydropower 
Project.

In this paper, since there are some undetermined 
parameters such as the optimistic-pessimistic index λ, 
weights ηc, ηd and ηw, probability level σ and possibil-
ity level γ, the data for which were provided by deci-

sion makers, therefore, based on the proposed model, 
further research should be done to analyze its sensitiv-
ity and its advantages compared with other models and 
algorithms.

4.4.1. Sensitivity analysis for the  
optimistic-pessimistic index
The results above were obtained based on λ = 0.5,  
ηc = 0.5, ηd = 0.3 and ηw = 0.2, σ = 0.2 and γ = 0.8. 
As discussed before, as some parameters in this paper 
are fuzzy random variables, a hybrid crisp approach 
is used in this paper to transform the fuzzy random  
parameters into (γ,σ) – level  trapezoidal fuzzy variables, 
which are subsequently defuzzified using an expected 
value operator with an optimistic-pessimistic index λ. 
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Table 4. Data information of transportation time in each route at each stage 

Model parameters
Stage index

k = 1 k = 2 k = 3

(hour)

(hour/104m3)

To gain further insight into the optimistic-pessimistic in-
dex selection principle in Eqn (1), a sensitivity analysis 
was conducted using the same weights and probability 
and possibility levels. Decision makers would be able to 
fine tune this parameter to obtain different solutions using  
different levels. The solutions in Table 9 reflect the differ-
ent optimistic-pessimistic attitudes for uncertainty, where  
λ = 1 and λ = 0 are the pessimistic extreme and optimistic 
extreme respectively. Since the purpose of this paper is 
the minimization of the total cost, transportation duration 
and total waste, so based on Eqn (1), it can be seen that if 
the optimistic-pessimistic λ rises, the total cost, duration 
and total waste also gradually increase, which indicates 
that a more optimistic attitude by the decision maker leads 
to a more optimistic optimization for the construction pro-

ject total cost, duration and total waste. These results are 
quite useful as a reference for decision makers in planning 
a dynamic transportation assignment problem. The opti-
mistic-pessimistic index is provided by the decision mak-
ers and is interpreted according to the real world problem.

4.4.2. Sensitivity analysis for the probability and  
possibility levels
As shown above, all probability levels are set at the same 
value σ and all possibility levels are set at the same value γ. 
By reviewing the method of dealing with the fuzzy random 
variables, it can be seen that under different probability and 
possibility levels the objective function values are different. 
In order to gain insight into the selection principle of the 
parameters including the optimistic-pessimistic index (i.e. 
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Table 5. Data information of transportation waste in each route at each stage

Model parameters
Stage index

k = 1 k = 2 k = 3

(m3/unit)

(m3/unit)

φ(ω) ~ N(0.020, 0.011)

λ), probability levels (i.e. σ) and possibility levels (i.e. γ), 
a sensitivity analysis was conducted against these param-
eters. Table 10 summarizes the different total fitness values 
with respect to the different parameters λ, σ and γ.

These are summarized as follows:
(1) For the probability level σ, parameters λ, ηc, ηd, ηw 

and possibility level γ are all fixed, when λ < 0.5, 
the bigger σ, the bigger the objective function val-
ues; when λ > 0.5, the bigger σ, the smaller the ob-
jective function values.

(2) For the possibility level γ, parameters λ, ηc, ηd, ηw 
and probability level σ are all fixed, when λ < 0.5, 
the bigger γ, the smaller the objective function val-
ues; when λ > 0.5, the bigger γ, the bigger the objec-
tive function values.

These results are quite useful and may serve as ref-
erences for decision-makers and in fact, it would be their 
choice to identify an appropriate set of parameter values 
(i.e. λ, σ and γ) to optimize the decision making process.

4.4.3. Sensitivity analysis for the weights of objective 
functions
From the discussion above, it can be seen that a dif-
ference in weights leads to a difference in objective 
function values. The results are shown in Table 11 with 
respect to different weights, in which the optimistic-
pessimistic index λ = 0.5, probability level σ = 0.2,  
possibility level γ = 0.8. These comparative results 
demonstrate that the difference in solutions with differ-
ent weights is not very big, because the weights reflect 
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Table 7. Parameter selection for DP-based CPSO

Population 
size

Iteration 
number

Acceleration 
constant Iteration weight

L T cp cg w(1) w(T)
100 100 2 2 0.9 0.1

Table 6. Data information of excavation price, storable price and demand of each filling area at each stage

Model parameters Stage index

k = 1 k = 2 k = 3

(CNY/unit)

(CNY/unit)

(CNY/unit)

(104m3)

(CNY/unit)

(104m3)

25 23 22

24 22 23

the importance of each objective from the view of de-
cision makers. Therefore, the results become gradually 
worse with an increase in the importance of the objec-
tive function fw. However, in a real situation, decision 
makers would control the weights within a reasonable 
range and they would be interpreted according to the 
real world problem.
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Table 8. Results of DP-based CPSO Algorithm for TS-based DTAP (λ = 0.5, ηc = 0.5, ηw = 0.3, σ = 0.2, γ = 0.8)

Objective
Total construction cost, duration and waste Convergence 

iteration number
Computation 

time(s)Fitness value Actual data Net decrease Rate of decrease
f 0.8773 0.9220 0.0379 4.47% 46 17.34
fc(106) 582.50 594.74 12.24 2.06% 46 17.34
fd(101) 244.47 262.36 17.89 6.82% 46 17.34
fw(104) 154.16 170.06 15.90 9.35% 46 17.34

Table 9. Sensitivity analysis on the optimistic-pessimistic index λ of decision makers (ηc = 0.5, ηd = 0.3, ηw = 0.2, σ = 0.2, γ = 0.8)

Objective
Optimistic-pessimistic index

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 0.10
f 0.8173 0.8294 0.8402 0.8543 0.8664 0.8773 0.8887 0.9008 0.9132 0.9250 0.9371
fc(106) 566.93 570.08 573.17 576.29 579.41 582.50 585.61 588.73 591.86 594.98 598.12
fd(101) 216.30 221.78 226.36 234.12 239.45 244.47 249.37 254.52 260.28 265.85 271.31
fw(104) 136.49 140.25 143.76 147.12 151.03 154.16 157.87 162.02 165.81 169.22 173.01

Table 10. Sensitivity analysis on the probability level σ and possibility level γ of decision makers

σ Objective
λ = 0 λ = 0.25 λ = 0.75 λ = 1

γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9 γ = 0.7 γ = 0.8 γ = 0.9
0.2 f 0.829 0.817 0.805 0.859 0.847 0.837 0.896 0.907 0.914 0.926 0.937 0.949

fc(106) 569.9 566.9 562.5 578.3 574.7 571.9 586.7 590.1 593.1 594.9 598.1 601.5
fd(101) 221.1 216.3 211.8 234.9 230.3 225.5 253.2 257.8 262.7 266.2 271.3 276.3
fw(104) 140.1 136.5 132.2 148.9 145.4 142.2 160.1 163.9 163.4 169.6 173 176.6

0.4 f 0.838 0.828 0.817 0.870 0.858 0.847 0.886 0.896 0.908 0.916 0.927 0.938
fc(106) 572.5 569.8 566.1 581.8 577.9 574.2 583.4 587.2 590.9 591.6 594.9 598.2
fd(101) 225.4 220.8 216.5 239.7 234.7 230.2 249.0 253.1 258.0 262.2 266.7 271.5
fw(104) 143.3 140.2 136.7 152.3 149.1 146.1 157.1 160.2 164.2 166.3 170.1 173.5

0.6 f 0.850 0.840 0.829 0.880 0.868 0.858 0.875 0.886 0.897 0.904 0.915 0.926
fc(106) 575.9 572.6 569.4 584.2 581.0 577.4 580.0 584.7 587.7 588.3 591.5 594.8
fd(101) 230.1 225.5 221.3 244.2 238.9 234.5 244.2 248.7 253.4 257.1 261.8 266.5
fw(104) 147.1 144.2 140.3 155.5 152.3 149.7 154.1 157.1 160.4 163.2 166.4 170.1

0.8 f 0.860 0.850 0.840 0.890 0.880 0.870 0.864 0.875 0.887 0.893 0.904 0.916
fc(106) 578.2 575.9 572.5 587.5 584.3 581.5 577.7 580.0 584.4 584.9 588.2 591.6
fd(101) 234.9 230.2 225.9 248.9 243.9 239.4 239.6 243.9 248.4 251.7 256.7 261.7
fw(104) 150.5 147.3 144.2 158.6 155.6 152.8 150.5 154.2 158.1 159.9 163.3 166.9

4.4.4. Model comparison in different environments
To indicate and highlight the superiority of usage for the 
fuzzy random variables for the mathematical model (15) in 
this paper, additional computational work was done using 
the proposed DP-based CPSO to solve a similar a similar 
TS-based DTAP model under the other two environments 
(i.e. determined environment and fuzzy environment). To 
carry out comparisons under a similar circumstance, anal-
ysis was conducted based on results from running the test 
problem many times. A detailed analysis follows.

In order to guarantee a fair comparison between the 
TS-based DTAP model under a fuzzy random environ-

ment and a similar TS-based DTAP model under other 
environments, each related uncertain parameter in the 
TS-based DTAP was selected in the following way. As 
shown in section “Key problem statement”, denote the 
fuzzy random variables as  where 
φ(ω) is a random variable with following a Normal dis-
tribution N(μ,η2). Since the variance of φ(ω) was suf-
ficiently small, and the expectation value μ essentially 
reflected the most possible value over time. Thus, it was 
reasonable to select  and μ as the fuzzy pa-
rameter and certain parameter for a fuzzy environment 
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and a determined environment respectively. Thus the 
models for the similar TS-based DTAP under different 
environments were formulated and solved using the pro-
posed DP-based CPSO, the computational results were 
obtained based on weights ηc = 0.5, ηd = 0.3 and ηw = 
0.2 as shown in Table 12. By comparing the fitness val-
ue of the three objectives and the aggregated objective, 
the results for the discussed two types for the TS-based 
DTAP are higher than the fuzzy random type, our find-
ings highlight the superiority of usage for the fuzzy ran-
dom variables for the TS-based DTAP model proposed in 
this paper, and also indicate that TS-based DTAP model 
using fuzzy set theory has a much better performance 
than using certain parameters. The performance also sug-
gests that DP-based CPSO is an effective and relatively 
efficient approach for solving the TS-based DTAP model.

4.4.5. Algorithm evaluation 
To carry out comparisons under a similar circumstance, 
the parameters stated in Table 5 and the initial velocities  
for the decision variables in the DP-based CPSO are also 
adopted for the standard PSO. However, the initial ve-
locities for the state variables in the standard PSO are 
selected based on the inventory level of the borrow areas 
and stockpile areas at each stage. Table 13 shows the 
comparison results and the convergence histories of the 
DP-based CPSO and standard PSO respectively based 
on an optimistic-pessimistic index λ = 0.5, weights ηc =  
0.5, ηd = 0.3 and ηw = 0.2, probability level σ = 0.2 
and possibility level γ = 0.8. The DP-based CPSO pro-
posed in this paper has an obvious advantage compared 
with the standard PSO when solving TS-based DTAP. 
The first advantage is that the DP-based CPSO is more 
stable than a standard PSO when searching for the op-

tima. Another is that the proposed DP-based CPSO is 
faster when determining the optima and converges a lit-
tle faster than the standard PSO, that is, the DP-based 
CPSO needs less iterations to find the optimal solutions. 
Thus the DP-based CPSO displays an improved search 
performance compared with the standard PSO under a 
similar circumstance.

Conclusions and future research

In this paper, a multistage multi-objective optimal 
control expected value model is established to solve 
a TS-based DTAP in an earth-rock transportation 
system under a fuzzy random environment. It is a  
multi-objective dynamic programming optimization 
process for minimizing total operational cost, transpor-
tation duration and total waste. Dump truck and belt 
conveyors characterize the features of the two-stage 
based earth-rock transportation system and construction 
site environment. Decision-makers determine a suitable 
resource allocation and route assignment to dynamically 
assign the transport between the different transporta-
tion subsystems to minimize the objectives. While using 
probability theory is cumbersome and costly, and fuzzy 
theory is incapable of dealing with ambiguous and com-
plex information, triangular fuzzy random variables are 
used to characterize the multiple parameter uncertain-
ties with combinations of both fuzziness and random-

Table 12. Model comparison in different environments

Environments
Objective function values

f fc(106) fd(101) fw(104)
Determined 
environment 0.9077 589.67 256.81 165.72

Fuzzy 
environment 0.8862 584.23 248.65 157.26

Fuzzy random 
environment 0.8773 582.50 244.47 154.16

Table 11. Sensitivity analysis on the weights ηc, ηd, and ηw of decision makers (λ = 0.5, σ = 0.2, γ = 0.8)

Combinations
Weights Objective values

ηc ηd ηw f fc(106) fd(101) fw(104)
Combination 1 0.6 0.2 0.2 0.8814 574.92 247.30 156.45
Combination 2 0.5 0.3 0.2 0.8773 582.50 244.47 154.16
Combination 3 0.5 0.2 0.3 0.8707 584.35 249.63 151.18
Combination 4 0.4 0.4 0.2 0.8647 590.26 237.20 153.85
Combination 5 0.4 0.3 0.3 0.8598 591.70 241.53 150.24
Combination 6 0.4 0.2 0.4 0.8500 590.50 248.25 147.53

Table 13. Comparison results between DP-based CPSO and 
Standard PSO

Approach Objective 
functions

Minimal 
fitness 

value(106)

Iterations 
to find 
optima

Computation 
time(s)

DP-based 
PSO f 0.8773 46 17.34

fc(106) 582.50 46 17.34
fd(101) 244.47 46 17.34
fw(104) 154.16 46 17.34

Standard 
PSO f 0.8773 74 32.20

fc(106) 582.50 74 32.20
fd(101) 244.47 74 32.20
fw(104) 154.16 74 32.20
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ness. A hybrid crisp approach and an expected value 
operator are introduced to deal with these uncertainties. 
This method first transforms the fuzzy random parame-
ters into (γ,σ) – level trapezoidal fuzzy variables, which 
are subsequently defuzzified using an expected value 
operator with an optimistic-pessimistic index. Thus, 
the expected value model is derived. This paper’s ob-
jectives are to comprehensively consider the multiple- 
objectives, the double multiple-stages, the dynamic  
factors, and the hybrid uncertainty. Subsequently, to 
solve the above problem, a multi-objective DP-based 
CPSO algorithm was developed based on the particu-
lar nature of the model, which is able to automatically 
control the particle-updating in the feasible solution 
space to find the optimal solution for the expected value 
model. Finally, an earth-rock dam construction at the 
Pubugou Hydropower project was used as a practical 
application example to verify the proposed approach. 
The results and analysis are presented to highlight the 
performance of our optimization method, which was 
proven to have the characteristics of generality, less 
calculation, high velocity, high efficiency and high pre-
cision compared to the standard PSO algorithm.

It should be noted that our TS-based DTAP ex-
cepted value model is formulated with some assump-
tions, so it may not represent the precise construction 
and transportation environment. With this in mind, an 
important area for future research would be the consid-
eration of more restrictions rather than assumptions. For 
example, by balancing the allocation of earth-rock work 
from the borrow areas, decision-makers usually add a se-
ries of restrictions, which would be beneficial in main-
taining the stability of the supply chain. Another area of  
improvement would be the consideration of including 
more details about the stockpile areas and the changing 
unit storage cost over time. Therefore, more research needs 
to be done and evidence gathered in future research to find 
solutions to the above problems and develop a more effi-
cient heuristic method to derive modified solutions.
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