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Abstract 
 

The article studies the mathematical apparatus, being the basis of information support of the methods of non-destructive 
thermal control of heat-shielding properties of samples from solid heterogeneous or monolithic materials using 
rectangular heated surface area. When developing the mathematical apparatus we used Laplace and Fourier 
transformations which let the developed method of integral characteristics greatly simplify the search for solutions of 
multi-dimensional problems of thermal conductivity and get explicit and accurate analytical expressions to determine 
thermal conditions. 
 

 
 Keywords: thermal properties, heat conduction problem, non-destructive thermal control, temporal integral characteristics, volume 
integral characteristics. 

 __________________________________________________________________________________________ 
 

1. Introduction 
 

Manufacturers previous to us formulated the following basic 
technical requirements to the developed devices and 
systems: 
 

1. The method provides a comprehensive control of 
the main thermal-physical properties (TPP) of non-
conductive materials: thermal conductivity λ,  
thermometric conductivity а, volumetric heat 
capacity Сρ - without the loss of  sample integrity. 

2. The monitoring process should not take more than 
15 minutes. 

3. The device should allow to determine λ, а, Сρ with 
the maximum error in 10 ÷ 12%, in the range of 
values for λ = 0,08 ... 0,5 W / (m K). 

4. The test sample thickness is at least 5 mm for 
samples with λ to 0.2 W / (m⋅K) and at least 15 
mm for samples with λ more than 0.2 W / (m⋅K). 

5. The size of the base of device probe placed on the 
surface of test material is at most (70 × 140) mm². 

6. The instrument is designed as a construction of two 
separate units: the main unit (the operator panel), 
directly controlling the experiment and associated 
with data processing system (computer); and stem-
term probe, which switching cable allows to carry 
it from the main unit at 5 ... 10 m. 

 
 The developed methods calculated characteristics are 
derived from the solutions of thermal conductivity boundary 

value problems, which took place on the ideological basis of 
integral characteristics (IC) method [1 - 8]. The main idea of 
the application of  IC method for creating the methods lies in 
the possibility of simple and analytically accurate solutions 
of inverse multidimensional problem of thermal 
conductivity. In this paper we will use two IC types. 
 
1. Name the integral S (t) extended to a certain fixed V area 
of the test body 
 

  
S(t) = ρ(x)ϑ(x,t)dx

V
∫        (1) 

as volume integral characteristics (VIC) of function   ϑ(x,t)  
[1,2,4]. 
 
2. Name the integral   ϑ

∗(x, p)  by means of time variable t  

  
ϑ∗(x, p) = exp(− pt)ϑ(x,t,)dt

0

∞

∫ , p>0      (2) 

 
as temporal integral characteristics (TIC) of function 

  ϑ(x,t) . 
 
(2)  the classical Laplace transformation, when the parameter 
is a complex variable. 
 
 In a further study, we will use the parameter p as real and 
positive. It is a right choice of well-defined real and positive 
value of this parameter which allows you conveniently and 
easily calculate TIC optimal values (2) on the results of the 
experiment, where the function U (x, t) - either the body 
temperature or the rate of heat flow density q (r, t), going 
through a heated area of the sample surface. 
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 The procedure of solving the boundary value problems 
of thermal conductivity by using the IC methods is showed 
in [1-3, 6, 7]. It is appropriate to quote the words of 
Academician A.V. Lykov:. "... Using the operating methods, 
many problems of exceptional difficulty, may be quickly and 
effectively solved, what is valuable to engineers and 
physicists. It is necessary to use methods for effective 
solution of these problems with a purpose of practical 
application" [8]. 
 The applied IC method has the advantage that makes it 
possible to simplify the mathematical part of the work in 
solving multidimensional problems of thermal conductivity 
and get clear and accurate analytical expressions for 
determining the TPP. 
 In our work, when developing the NDT of TDTP 
method, Laplace [4] and Fourier [4, 9, 13] integral 
transformations necessary for solving boundary problems of 
thermal conductivity were used. Let’s introduce in further 
application some types of IC which will be used in the work 
and differs by weighting functions form. For surface 
temperature   U (r,0,t) =U (x,t)  and heat flow   q(r,t)  – they 
are the following: 
 
1) the time integral characteristic (TIC) of body temperature 

 

  
U ∗(r,z, p) = exp(− pt)U (r,z,t)dt

0

∞

∫        (3) 

 
and heat flow 
 

  
q∗(r, p) = exp(− pt)q(r,t)dt

0

∞

∫ ;      (4) 

 
2) surface-temporal integral characteristic (STIC) of body 
temperature 
 

   

!U D
∗ (ξ ,0, p) = exp(− pt)cos(xξ )U (x,t)dt dx

0

∞

∫
0

∞

∫ ;    (5) 

 
and heat flow 
 

   
!q∗

D (ξ , p) = rq∗(r, p)cos(xξ )dt dx
0

∞

∫ ;      (6) 

 
3) the volume integral characteristic (VIC) of body 
temperature 
 

   

!U D (ξ ,z,t) = U (x,z,t)cos(xξ )dx
0

∞

∫ ;      (7) 

 
4) the volume temporal integral characteristic (VTIC) of 
body temperature 
 

   

!U D
∗ (ξ ,z, p) = U ∗(x,z, p)cos(xξ )dx

0

∞

∫ .    (8) 

 
 In (5 ÷8) - D indexes correspond to the Cartesian 
coordinates. Variables p and ξ here and elsewhere are 
considered as valid and positive. If p and ξ are arbitrary 
value, we see: (3), (4) - the Laplace integral transformation; 

(5), (6), (8) – are consequently held Laplace and Fourier 
integral transformations. 
 Most often, NDT are subjected to the solid-state products 
and samples, but we are faced with the need to investigate 
TPP of these matters, but different structure: mushy, 
disperse, free-flowing materials and heterogeneous medium 
[14]. A number of researchers and founders of thermal 
physics believes that we define the effective values of the 
TPP for these materials with sufficient accuracy [14]. 
 The most common methods and devices [15] for the 
NDT of TPP contain the linear or point temperature sensors. 
The structure of heterogeneous or bulk material eliminates 
such types of sensors application, as it will appear 
considerable error in temperature measurement with a 
possible penetration of point sensor in a microgap between 
the material particles. 
 Therefore, the main idea of this work is the creation of 
sensitive elements, used in NDT of TPP aids, and, namely, 
the surface integral devices which can measure not only 
point temperature, but some definite temperature integral of 
the heated area of sample surface. We have done work on 
creation of methods and devices NDT of TPP, based on the 
surface of integrating temperature converters (hereinafter - 
temperature integrators - TI), allowed to get information 
about the surface area temperature in the form of stripes. The 
numerical measurement result will be obtained in the shape 
of 
 

  
S(t) = β

v
∫ (v)U (v)dv,        (9) 

 
where v - the plotted range of temperature integration U; β 
(v) - weight function determined the shape and form of TI. 
 Flat TI in a form of strip or rectangle (2 ℓ width and 2L 
length) is applied for NDT of TPP samples and products 
having flat surface area, as well as products and samples of 
cylindrical shape having a sufficiently large radius of surface 
curvature (to be positioned the strip on the line surface 
parallel to the cylinder); samples and products made of 
material with the anisotropy along the coordinate axes. 
 
 
2. Theoretical foundations of the method with the 
application of heated strip surface temperature 
integrator  

 
Let’s illustrate a detailed solution of the boundary value 
problem of thermal conductivity. The thermal process model 
is as follows: 
 
 Suppose that the following conditions are realized in the 
experiment: 
 
1. The test body with reference to the thermal effect is 
semibounded:  
 
  −∞ < x < ∞,   −∞ < y < ∞,   z ≥ 0  (Fig.1); 
 
2. The heat flow with density   q(x,t)  is applied to the 
surface   z = 0  of the body through endless strip 
 
   −ℓ ≤ x ≤ ℓ,   −∞ < y < ∞ ; 
 
3. On the rest of the surface 

   x > ℓ,   −∞ < y < ∞,   z = 0 of 
semibounded body the heat exchange is missed; 
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4. The test body is isotropic and its thermal properties are 
not dictated by temperature; 
5. In the initial time (  t = 0 ) the temperature is constant (take 
it equal to zero). 

 
Fig. 1.Investigated sample model 

 
 
 Under this assumption for any point of time   t > 0  the 
excess temperature   U (x, y,z,t)  of the test body does not 
depend on the coordinate y. Then the temperature 

  U (x, y,z,t) ≡U (x,z,t) is the solution of the following 
boundary value problem: 
 

   

∂U (x,z,t)
∂ t

= a ∂ 2U (x,z,t)
∂ x2 + ∂ 2U (x,z,t)

∂ z2

⎛
⎝⎜

⎞
⎠⎟

,  

t > 0,   −∞ < x < ∞,   0 < z < ∞;

       (10) 

 
  U(x,z,0 )= 0,  U(x,z,t)→ 0,  x, z →∞;     (11) 
 

   

∂U (x,z,t)
∂ z z=0, x ≤ℓ

= − q(x,t)
λ

,    ∂U (x,z,t)
∂ z z=0, x >ℓ

= 0 .   (12) 

 
Apply to the problem (10) - (12) a spatial integral 

Fourier cosine transform [13]. The following formula will be 
correct for this task: 

   

p
a

U
∗
(s,z, p) = − ∂U ∗(x,z, p)

∂ x
x=0

− s2U
∗
(s,z, p)+ ∂ 2U

∗
(s,z, p)
∂ z2 . 

Where   U
*
(s,z, p)  is the integral characteristic (IC) of 

temperature in the field of time transformations (Laplace) 
and in the field of (Fourier cosine transform) integral 
transformations. 

A condition of TPP non-destructive testing requires 
information receiving in the experiment about temperature 
and heat flow only on the surface   z = 0  of the test body. 
Therefore, we will further consider STIC for z = 0, i.e. 

   
U

*
(s,0, p) ≡U

*
(s, p) = q

*
(s, p)

λ p a + s2
.     (13) 

Let us suppose that we know the integral 
characteristics of temperature and heat flow for real 
parameter values s, and two different p1 and p2, i.e. 

 

 

   

U
*
(s, p1) =

q
*
(s, p1)

λ p1 a + s2
, 

U
*
(s, p2 ) =

q
*
(s, p2 )

λ p2 a + s2
.

     (14) 

 
 Then the unknown thermal coefficients of the formulas 
are in an explicit form: 
 

    

a =
p2 U

*
(s, p2 )q

*
(s, p1)⎡

⎣⎢
⎤
⎦⎥

2

− p1 U
*
(s, p1)q

*
(s, p2 )⎡

⎣⎢
⎤
⎦⎥

2

s2 U
*
(s, p1)q

*
(s, p2 )⎡

⎣⎢
⎤
⎦⎥

2

− U
*
(s, p2 )q

*
(s, p1)⎡

⎣⎢
⎤
⎦⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

,     (15) 

 

  
λ = 1

s

− p2

q
*
(s, p1)

U
*
(s, p1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ p1

q
*
(s, p2 )

U
*
(s, p2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

p1 − p2

.               (16) 

 
 These formulas are very attractive, as provide obtaining 
the estimated dependence for determination of thermal 
characteristics in explicit form [1, 16]. But for the technical 
implementation we need information of the temperature field 
in the subspace   z = 0  for the field 

  
x > ℓ to calculate STIC 

of body temperature   U
∗
(s, p)  and heat flow   q

∗
(s, p)  (5)-(6). 

But as  −∞ < x < ∞ , then it requires to create a special device 
measuring the temperature in different points of the 
surface  x1,..x2⎡⎣ ⎤⎦ , or a special integrator with a large 

manipulation area in the field 
  
x > ℓ . We have also made a 

series of experiments using a thermal imager. But there is a 
big problem of the measurement accuracy of radiative 
characteristic (emissivity coefficient) of bulk sample surface. 
As the formulas (15)-(16) use the numerical value of STIC 
temperature and heat flow then the application of thermal 
imager caused a significant measure of inaccuracy of surface 
temperature numerical value. 
 The need for NDT of TPP by the values of integral 
temperature came about from the study of disperse materials 
with heterogeneous structure, which explains the need to 
measure the temperature in a certain area or section. We 
created a device that uses in the strip heat a flat stripe 
integrator from the resistance thermometer detector (RTD). 
Let’s establish the theoretical basis and calculated 
characteristics for TPP definition on this integrator base. 
 As long as the surface temperature for given boundary 
problem (10)-(12) is not the function of coordinate y, the 
temperature of   U (x, y,t,) ≡U (x,t) . 

 Name   Sn( p)  as the integral characteristic of strip 
temperature. To solve the problem (14) we use inverse 
Fourier cosine transformation and obtain STIC of the 
temperature which under the condition that the heat flow 
inside the strip

  
x ≤ ℓ  is known and its density does not 
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depend on the coordinate x, i.e. 
   
q(x,t)

x ≤ℓ
= q(t),  will be as 

follows: 
 

    

U *(x, p) = 2
π

q*( p)
λ

sin(sℓ)cos(sx)

s p a + s2
ds.

0

∞

∫     (17) 

 
 Put in this correspondence a dimensionless parameter 

    g( p) ≡ g = pℓ2 a  and result the following formula of strip 
STIC temperature: 
 

   
Sn

*( p) = 2q*( p)ℓ
πλ

sin2 µdµ
µ2 g + µ2

0

∞

∫     (18) 

 
 Bring into use a traditional for us [1, 2] approach: assign 
two values of a parameter p1 и p2 (p1 ≠ p2). In this case, it 
will be known the numerical values  of STIC   Sn

*( p1)  и 

   S!
* ( p2 )  obtained from the experimental   Sn(t)  values . The 

thermometric conductivity coefficient а and thermal 
conductivity  λ are determined from the following formulas: 

 

    a = pℓ2 g ,       (19) 
 

  
λ = 2

π
q*( pi )
Sn

*( pi )
sin2 µdµ
µ2 g + µ2

.
0

∞

∫                    (20) 

 
 For (19) and (20) the parameter g is from formula: 

 

  

Sn
*( p1)

Sn
*( p2 )

⋅
q*( p2 )
q*( p1)

= V (g)
V (kg)

,   k =
p1

p2

,     (21) 

 
being  
 

  

V (g) = 2
π

sin2 µdµ
µ2 g + µ2

0

∞

∫ ,   

V (kg) = 2
π

sin2 µdµ
µ2 kg + µ2

0

∞

∫ .
 

 
 By experimentally measured data of integrated 
characteristic   Sn (t)  and the heat flow q (t) the numerical 
value of function is presented here: 
 

  
Φ( p,k) =

Sn
*( p1)

Sn
*( p2 )

⋅
q*( p2 )
q*( p1)

,  

 
for given values   p = p1  and   k( p2 = kp) . Then we find the 
value of  g  parameter tacitly expressed in the equation: 
 

  
Φ(g,k) ≡ F(g,k) = V (g)

V (kg)
,      (22) 

 
then by  g  value а is defined from (18) and λ is from (20), 
and volumetric heat capacity:   cρ = λ a .  

 Works [1-6] show the methods and devices of TPP NDT, 
wherein the main measured parameter for the calculation of  
IC temperature and TPP is the temperature of heated surface 
center, i.e.   U (0,0,0,t) ≡Un(t). is measured. In addition to 
determine the TPP values it is applied the same approach as 
shown in [2]. In calculated formulas it is used a function 
 

  
F1(g,k) = sinµdµ

µ g + µ2
0

∞

∫ sinµdµ
µ kg + µ2

0

∞

∫ .   (23) 

 
 Numerical analysis and the experiment demonstrated 
that the comparison of formulas (22) and (23) determined 
that the sensitivity of method used SIC of strip temperature 

  Sn (t) , is higher than that of the method used Uц(t)  
temperature of  the central point of this stripe [16]. The 
result of these formulas comparison for the region 

 g ∈[0,3…1,7], which is functional for this method [2,10] is 
shown in the chart (Fig. 2). 
 

 
Fig. 2. Graphs of F(g,k) function for the method of heated strip 
integrated characteristics and F1(g,k) function for the method of this 
strip center temperature 

 
 
As we can see from the graphs (Fig. 2) virtually 

throughout the whole range of g parameter application, it is 
carried out the following inequation: 
  

  
Fg

' (g,k) > F1g
' (g,k),  

 
indicating a greater sensitivity of   F(g,k)  function to the g 

parameter change, than   F1(g,k)  function. This leads to the 
conclusion about the greater sensitivity of NC TPP method, 
based on measuring the temperature of the whole heated 
surface area of the sample than the method based on 
measuring the temperature at one central point of the heated 
surface area. 
 
 
3. Theoretical foundations of a method with the use of 
the temperature integrator of heated rectangular surface 
area  
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The model of thermal process is similar to the previous 
model, but the heat flow with the density of   q(x,t)  is 
applied to the body surface of   z = 0  through the rectangle 
surface of   z = 0 ,   −ℓ ≤ x ≤ ℓ   −L ≤ y ≤ L  (Fig. 3). 
 The distribution of temperature   U (x, y,z,t) is described 
by solving the problem of heat conduction: 

 

  

∂U (x, y,z,t)
∂t

=

a ∂2U (x, y,z,t)
∂x2 + ∂2U (x, y,z,t)

∂y2 + ∂2U (x, y,z,t)
∂z2

⎛
⎝⎜

⎞
⎠⎟

;
 

with t, x, y, z > 0.       (24) 
 

  U (x, y,z,0) = 0 ;   U (x, y,z,t)→ 0  with  x, y, z → ∞.   (25) 
 

   

∂U (x,z,t)
∂z z=0

x ≤ℓ
y ≤L

= − q(t)
λ

;      (26) 

   

∂U (x, y,z,t)
∂x x=0

= ∂U (x, y,z,t)
∂y y=0

=

= ∂U (x, y,z,t)
∂z z=0

x ≤ℓ
y ≤L

= 0
   (27) 

 
Fig. 3. The model of the sample heating by means of surface rectangle 

 
 
 Apply to this problem the consequent Laplace 
transformation, the integral cosine Fourier transformation for 
the x coordinate and cosine Fourier transformation for the y 
coordinate. Then, we show that known integrated 
temperature characteristics and the heat flow values for valid 
parameters  s ,  r  and two different   p1  and   p2 , that is 
 

  U
*
(s,r, p1)

  

=
q

*
(s,r, p1)

λ p1 a + s2 + r 2
, 

  U
*
(s,r, p2 )

  

=
q

*
(s,r, p2 )

λ p2 a + s2 + r 2
. 

  

 The thermal diffusivity and thermal conductivity are 
determined explicitly by the formulas: 
 

  

a =
p2 U

*
(s,r, p2 ) ⋅q

*
(s,r, p1)⎛

⎝
⎞
⎠

2

− p1 U
*
(s,r, p1) ⋅q

*
(s,r, p2 )⎛

⎝
⎞
⎠

2

s2 U
*
(s,r, p1) ⋅q

*
(s,r, p2 )⎛

⎝
⎞
⎠

2

− U
*
(s,r, p2 ) ⋅q

*
(s,r, p1)⎛

⎝
⎞
⎠

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

;   (28) 

 

  
λ = 1

sr

p2 q
*
(s,r, p1) U

*
(s,r, p1)⎛

⎝
⎞
⎠

2

+ p1 q
*
(s,r, p2 ) U

*
(s,r, p2 )⎛

⎝
⎞
⎠

2

p1 − p2

   .(29) 

 
 We assume that q does not depend on the coordinates x 
and y: 
 

   
q(x, y,t)

x ≤ℓ, y ≤L
= q(t) . 

 
 We apply the Fourier cosine transformation with respect 
to x and y: 
 

   

q(s,r, p) =

= ( q
*
( p)cos(sx)dx)cos(ry)dy = q*( p)sin(sℓ)sin(rL)

sr0

ℓ

∫
0

L

∫
. 

 
 STIC temperature for rectangular heater   Sc

*( p) : 
 

   
Sc

*( p) = 1
2ℓ

⋅ 1
2L

U *(x, y,z, p)dy dx
− L

L

∫
−ℓ

ℓ

∫ . 

 
We introduce the dimensionless parameters 

   
g( p) = pℓ2

a
,  µ = rL ,   ν = sℓ ,   m = L ℓ . We get: 

 

   
Sc

*( p) = q*( p)ℓ
λ

⋅ 4
π 2

sin2ν
ν 2

sin2 µdµdν
µ2 µ2 m+ g + µ2

0

∞

∫
0

∞

∫ drds . 

 
 Indicate  
 

  
Vc (g,m) = 4

π 2

sin2ν
ν 2

sin2 µdµdν
µ2 µ2 m+ g + µ2

0

∞

∫
0

∞

∫ drds . 

 Then 
 

   
Sc

*( p) = q*( p)ℓ
λ

⋅V (g,m) .    (30) 

The aspect (30) is rather similar (18). Further, according 
to certain methods [1,2,4] а and λ can be determined.  
 
 
4. Theoretical foundations and design of the temperature 
integrator of bulk sample heated surface band   

 
In real devices the band will have the following finite sizes: 

   x ≤ ℓ, y ≤ L, so the temperature integral characteristics will 
be calculated using the following correspondence formula:  
 

   
Sn(t) = 1

4ℓL
U (x, y,t)dx dy.

− L

L

∫
−ℓ

ℓ

∫  
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 In accordance with boundary value problem the 
temperature U(x,y,t)≡U(x,t) does not depend on y 
coordinate, and this temperature distribution is symmetric 
about the center x = 0, therefore: 
 

   
Sn(t) = 1

ℓ
U (x,t)dx

0

ℓ

∫ .      (31) 

 
 Put in the 2n band thin (their heat capacity tends to zero) 
copper conductors (Fig. 4) that will be a single resistance 
temperature detector (RTD). The coefficient of copper 
temperature dependence is   α = 0,47 ⋅10−3 1/ c⎡⎣ ⎤⎦  [17]. As the 
band length temperature U (x, y, t) = U (x, t) does not 
depend on the y coordinate, then the resistance of any string 
lying in the point xi:, where 2L - the band length will be of 
(Fig. 4),   R0 = ρ2L (Ohm),  ρ - the length unit resistivity 
RTD (ohm/m). For each i-th RTD string the resistance is 
equal to: 
 

  R(U (xi ,t)) = R0(xi )(1+αU (xi ,t).  

 
Fig. 4. Scheme of linear RTD connection into surface temperature 
integrator 

 
 

Consider the series resistance of n conductors, their 
total resistance is: 

  Rod (t) = R(U (x1,t)+ R(U (x2 ,t)+ ...+ R(U (xn ,t){ },  if α1= 
α2=α3=...αn, then 

 

  
Rod (t) = R0(xi )

i=0

n

∑ +α R0(xi ) ⋅U (xi ,t).
i=0

n

∑    (32) 

 
In our methods we accept that in solutions of the 

boundary value problems the temperature   U (x,t)  is in 

excess related to the initial   U0 , temperature, i.e. 

  U (x,t) =Uu3(x,t)−U0 . Then from (32), we find that the first 
term of the right side is the total resistance of the whole 
integrator at initial temperature: 

 

  
Rod (0) = R0(xi ) = f (U (0)).

i=0

n

∑  

 
From (32) we get: 
 

  

Rod (t)− Rod (0)
α

= R0(xi )U (xi ,t).
i=0

n

∑       (33) 

 
Take out from the right side the R factor the value of 

which is constant and can be set. Then, denoting 
 

  
Ki =

Ro(xi )
Rc

 , 

 
from the general rules of integration function one can write 
that: 
 

   
I (t) = U (x,t)dx =

a1U (x1,t)+ a2U (x2 ,t)
+...+ a nU (xn ,t)

⎛

⎝
⎜

⎞

⎠
⎟ h,  i ∈ 1,n⎡⎣ ⎤⎦.

x1

x2

∫  (34) 

 

where 
  
h =

x2 − x1

h
 is the integration step; Аi - coefficients 

depending on the integration formula. 
 

 
  

Rod (t)− Rod (0) ⋅h
αRc

≅ U (x,t)
x1

x2

∫ dx = I (t).    (35) 

 
 At that, it must be satisfied a condition, that 

  
A = Ki

R0(xi )
Rc

, and h is a distance between RTD (integrator) 

strips. Taking into account the symmetric property of the 
temperature field in the heating strip   −ℓ ≤ x ≤ ℓ and the fact 
that in real conditions we will place the integrator across the 
whole of heating strip, then: 
 

   
Sn(t) = 1

2ℓ
U (x,t)dx ≅

Rod (t)− Rod (0)⎡⎣ ⎤⎦h
2ℓαRc−ℓ

ℓ

∫ ,   (36) 

 

where 
   
h = 2ℓ

n
; n is a number of RTD (integrator)  strips 

placing along the entire 2ℓ width of heating strip; Rc = const. 
Integration of any function can be fulfilled by well-

known integration formulas in the theory of. Let’s consider 
the possibility of these formulas using for placing the single 
RTD fiber in the area of temperature integrator. The required 
parameters here are the coordinates x = xi of RTD strips 
location and their main characteristics: the electrical 
resistance R0(0) = Rc is an electrical resistance of a separate 
fiber at the xi point, entering into the series circuit of the 
whole temperature integrator. 

Variant 1: Analyze the use of Newton-Cotes 
quadrature for equidistant n nodes (Fig. 5). The Weddle rule 
for n = 6. 

 

   

In(t) U (x,t)dx = 41
140

h(U (x0 ,t)+5U (x1,t)+U (x2 ,t)+ 6U (x3,t)+U (x4 ,t)+
−ℓ

ℓ

∫

+5U (x5,t)+U (x6 ,t)) = 41
140
ℓ
3

U (−ℓ,t)+5U − 2
3
ℓ,t

⎛
⎝⎜

⎞
⎠⎟
+U − 2

3
,t

⎛
⎝⎜

⎞
⎠⎟
+ 6U 0,t( ) +⎛

⎝⎜
⎡

⎣
⎢
⎢

+U
ℓ
3

,t
⎛
⎝⎜

⎞
⎠⎟
+5U

2
3
ℓ,t

⎛
⎝⎜

⎞
⎠⎟
+U ℓ,t( )⎞

⎠⎟
⎤

⎦
⎥
⎥
,    h = 2ℓ

6
= 1

3
ℓ.
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It is obvious that K0 = K2 = K4 = K6 = 1, K1 = K5 = 5, 

K3 = 6. Or 
   
K0 =

R0(x0 )
Rℓ

.  Hence 
   Rℓ = R0(x0 ). Then the first, 

third, fifth and seventh integrator fibers have the same 
resistance, i.e. have made of the same conductor, such as 
copper, of the same length, section and resistance. The 
second and sixth fibers have a resistance is fivefold, as 
K1=5=5R0(x0).  In this case, the section of RTD conductor is 
5 times less. It is possible to match, for example, a copper 
wire with cross-section of 5 times less. The third fiber is 
made of copper wire, which cross section is five times less 
than that of the first fiber. When carrying out in planar 
method, by coating the fibers on a substrate, then at equal 
coating thickness B the width of RTD fibers will be differed 
in 5 times (Figure 5.). 

 
B = const – the width of integrator layer (deposition) 
Δ1 = Δ3 = Δ5 = Δ7; Δ2 = Δ4 = Δ6; Δ1 = 5Δ2 

Fig. 5. The scheme of the fibers disposition of RTD integrator of 
surface rectangle temperature 

 
 
Then, the design equation for the integral temperature, 

measured by the given integrator, will be: 
 

  
Sn(t) =

Rod (t)− Rod (0)⎡⎣ ⎤⎦
α M Rc⎡⎣ ⎤⎦

41
140

,    (37) 

 
where R0(0)=Rc – the resistance of the first fiber of 
integrator placed on the line x = -ℓ. 

This example is not quite successful for the 
implementation under real conditions, as it requires the 
application, in the integrator, of copper wire of quite 
different section or coating of different width RTD fibers in 
the integrator surface, which may affect the contact 
resistance and the measurement error. 
 
Variant 2. We analyze the application of the rectangular 
formula for the calculation of integral for equidistant nodes 
integration n. (It is better if n is an even value). 

 

 
   
In(t) ≅ 2ℓ

n
U (0,t)+ ...+U (n,t)⎡⎣ ⎤⎦.  

 
 In this case, whatever the value of n, we will put in the 
surfaces of directed strip the RTD fibers of equal parameters 
(length, section and material). It is very convenient and 
easily realizable (Fig.  6). Then the integral characteristic of 
the heated strip surface temperature is equal to: 
 

  
Sn(t) ≅

Rod (t)− Rod (0)⎡⎣ ⎤⎦
α M nRc

,      (38) 

 

where n is a number of RTD fibers conductors representing 
the temperature integrator of the heated strip surface (Fig. 6). 

 
1 – electric heater fibers; 2 – RTD fibers, entering the surface TI;  
3 – control sample probe substrate; 4 – test body. 
Fig. 6. Scheme of heater and temperature integrator disposition on the 
substrate of measuring probe 

 
 

 In papers [2, 16, 20] it has been shown that the optimal 
size of the width of the heated strip surface, is the value of ℓ 
= (3…3,5)⋅10-3 m. Usually when creating the measuring 
device-probes a constantan wire of 0,07⋅10-3 m in diameter is 
used for electric heaters. Since the stripe or rectangular 
integrator has a length of 2L = 88 ⋅ 10-3 m., the common 
calculation of the total resistance of TI strip shows that the 
total value of its initial resistance at Т0 = 293 К (20 0С) and 
for width of 2ℓ = 6 ⋅ 10-3 m., will be equal to Rопт = 2,1 ohm. 
At the same time on the width of 2ℓ = 6 ⋅ 10-3 m it will put 
42 fibers of wire, alternating in succession: a heater fiber – 
RTD fiber (Fig. 6). 
 The total length of the RTD, including in the integrator 
of surface temperature will be equal to 1.8 m. When turning 
it to the bridging measuring scheme according to the 
principle shown in [2], its rather linear characteristic reaches 
a value of 250 mV/ohm in the absence of the influence on 
this value of the RTD internal heating from the bridge 
measuring current. This value is in 3 ... 4 times higher than 
sensitivity of these common primary transducers (PT) as 
chromel-copel and chromel-alumel thermoelectric 
converters (RTD) [17]. Therefore, even in terms of a simple 
surface temperature measurement the value SIC Sп(t) is 
measured with an error less than the surface temperature of 
U (t), wherein mentioned TC are applied [18]. 

 
 

5. Adequacy requirements of the heating process through 
the strip or rectangular surface area of a semi-bounded 
body  

 
It is necessary to estimate the adequacy requirements of the 
real heater having a finite length, the heater in the form of 
endless band, or, if it is impossible, to work appropriate 
corrections in the formulas. 
 Let’s solve the corresponding direct problem of the 
thermal conductivity of a semi-bounded body heating with 
the initial temperature of zero, through a rectangular surface 
area with the size of (2ℓ × 2L) heat flow with the density of 
q (t), starting at time t = 0. 
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 The temperature distribution function U (x, y, z, t) 
satisfies the differential equation 
 

  

∂U
∂ t

= a ∂ 2U
∂ x2 + ∂ 2U

∂ y2 + ∂ 2U
∂ z2

⎛
⎝⎜

⎞
⎠⎟

,   x, y,z > 0,    t > 0;   (39) 

 
and the boundary conditions 
 
IC U(x,y,z,0)=0,     (40) 
 

MC  
  

∂U (x, y,z,t)
∂ x x=0

= 0;         ∂U (x, y,z,t)
∂ y y=0

= 0.  (41) 

 

   

λ ∂U (x, y,z,t)
∂ y z=0

=

=
−q(t),    − ℓ ≤ x ≤ ℓ   and − L ≤ y ≤ L,

0,   ℓ < x < ∞   and  L < y < ∞,  

⎧
⎨
⎪

⎩⎪

 (42) 

 

  U (x, y,z,t)⇒ 0,    x2+y2+z2→∞.   (43) 
 
 Solve the problem by the way of the consistent 
application of Laplace transformation by the time variable  t  
and Fourier cosine transformation in the x coordinate and the 
y coordinate. We obtain VTIC (8) temperatures of the test 
body: 
 

 
   

!Uc
∗(s,η,z, p) = cos(sx) cos(ηy) e− ptU (x, y,z,t)

0

∞

∫ dt dx dy
0

∞

∫
0

∞

∫ ;  

 
 The equation (39) takes the form 
 

   
s2 −η2 + p

a
⎛
⎝⎜

⎞
⎠⎟
!Uc

* =
d 2 !Uc

*

dz2  . 

 
 Writing down the general solution of this equation, 
subject to the corresponded transformed requirements we 
obtain 

 

 
   

!Uc
*(s,η,z, p) = q*( p)sin(sℓ)sin(ηL)

λsη p a + s2 +η2
exp −z p a + s2 +η2( ).  

 
 By consequent application of the inverse Fourier cosine 
transformation on the x variable, and then on the y variable, 
we get an expression for the integral temperature 
characteristics at the point x = 0, y = 0, z = 0; i.e. in the 
center of heated rectangle: 
 

   
U *( p) = 2q*( p)

πλ
sin(ηL)

η
⋅ 2
π

sin(sℓ)
s p a + s2 + µ2

dsdη.
0

∞

∫
0

∞

∫  

 
 It turned out that for almost exact matching of the 
integral temperature characteristics in the cases of finite and 
infinite length L of the heaters in the range of a = 10-8…10-6 

м2/c, p1 = 0,016-1, p2 = 0,128-1, ℓ = 10-3…10-2 it is sufficient 
that L ≥ 5⋅10-2. 
 In this case, their difference (relative) is no worse than 
0.02%. 

 If necessary to use the heaters smaller in length the 
following modified correlations F (g) and V (g) can be 
entered in calculating formula (17-23). If turning into a 

dimensionless parameter 
   
g = pℓ2

a
, the rectangle side ratio 

  m = L ℓ , and new variables 
   p1 = p,    p2 = kp,   ν = sℓ,   then 

(21) and (23) will be in the form of: 
 

  

F(g) =

sin(µ)
µ

sin(ν )
ν g +ν 2 + µ2 m2

dν dµ
0

∞

∫
0

∞

∫
sin(µ)
µ

sin(ν )
ν kg +ν 2 + µ2 m2

dν dµ
0

∞

∫
0

∞

∫
;   (44) 

 

   
V (g) = 4ℓ

π 2

sin(µ)
µ

sin(ν )

ν g +ν 2 + µ2 m2
dν dµ.

0

∞

∫
0

∞

∫  (45) 

 
 To calculate the required time Т2, corresponding to the 
practical reaching of temperature field stationary distribution 
in the heated sample, it is necessary to find a specific 
numerical temperature correlation in the center point of the 
heater from heating time. If the heat flow density q (x, t) = q 
= const, the original for TIC temperature of heater center in 
the form of strip with width 2ℓ. 
 

 
   
U ∗(0,0, p) = 2q

πλ p
sin(sℓ)

s p a + s2
0

∞

∫ ds  

 
 It will be: 
 

   
U (0,0,t) = qℓ

2λ π
Φ(z)

z
1
t

, here 
   
z = ℓ

2 at
. 

 
 For rectangular heater with finite dimensions (2ℓ × 2L) 
the VIH temperature in the center is equal to 
 

   
Un

∗(0,0,0, p) = 2q
π pλ

sinµ
µ0

∞

∫
2
π

sin(sℓ)
s p a + s2 + µ2 L2

dsdµ
0

∞

∫ . 

 
 In accordance with the theorem of argument change in 
the image in Laplace transformations may be written as [19], 
that  
 

   

L−1 2q
πλ

sin(sℓ)
s p a + s2 + µ2 L2

0

∞

∫ dν
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=
"

"

= qℓ
2λ π

Φ(z)
z

1
t

exp
−µ2at

L2

⎛
⎝⎜

⎞
⎠⎟

. 

  
 Further, using the theorem of original integration [19], 
we get the following value from the image: 

 

   

L−1 2q
pπλ

sin(νℓ)
ν p a +ν 2 + µ2 L2

0

∞

∫ dν
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=
"

"

= qℓ
2λ π

Φ(z)
z

1
t

exp
−µ2at

L2

⎛
⎝⎜

⎞
⎠⎟

dt
0

τ

∫
. 
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 And, finally, using the theorem of integration by 
independent parameter [19], we get the formula for the 
temperature of the rectangle surface center: 
 

  
Un(0,0,0,t) = 2q

2πλ π
sinµ
µ0

∞

∫
Φ(z)

zt
exp − µ2at

L2

⎛
⎝⎜

⎞
⎠⎟

dt dµ
0

τ

∫ .

  (46) 
 
 
 To calculate this correlation we use approximate 
quadrature formulas [20] of the type: 
 

  
f (t)dt = Ai f (ξi )

i=1

N

∑
−1

1

∫ , 

 
 where Ai, ξi are the coefficients and abscissa quadrature 
formulas given in [20]. The formula is exact when the 
subintegral function is described by a degree polynomial not 
higher than (2N-1). 
 Write down this expression in the form of: 
 

   

2qℓ
2πλ π

sin(µ)φ(µ)dµ
0

∞

∫ =

= qℓ
λπ π

sin(µ)φ(µ)dµ
0

π
2

∫ + (−1)a k

k−1

k=1

∞

∑
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

, 

 
where 
 

  

a k = sin(µ) φ(µ)−φ µ + π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

kπ
2

kπ

∫ dµ;  

 

   

φ(µ) = 1
µ

ψ (t)exp − µ2ta
L2

⎛
⎝⎜

⎞
⎠⎟0

τ

∫ dt;

ψ (t) = Φ(z)
z

1
t
,   z = ℓ

2 at
.

 

 
 The functions will be calculated numerically: 
 

1.   
  
φ(µ) = τ

µ
ψ (t j )

j=1

N2

∑ Aj exp −µ2
at j

L2

⎛

⎝
⎜

⎞

⎠
⎟ , where 

  
t j = ξ j +1( )π2 . 

 

2.   
  

sin(µ)φ(µ)dµ
0

π

∫ = π
2

Bjφ
π
4
ξ j +

π
4

⎛
⎝⎜

⎞
⎠⎟j=1

N2

∑ , 

 

3.   
  
a k =

π
2

Bj φ kπ + π
4
ξ j −

π
4

⎛
⎝⎜

⎞
⎠⎟
−φ kπ + π

4
ξ j +

π
4

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

j=1

N2

∑ ,  

 

where 
  
Bj = Aj sin π

4
ξ j −

π
4

⎛
⎝⎜

⎞
⎠⎟

. 

 
 Note that the series using herein is Leibniz-type [21], 
(alternating series, the absolute value of its elements 

decreases with the increase of j number), then the final 
solution can be written as: 
 

   

Un(0,0,0,t) = 2
π

qℓ
2λ π

π
2

Bjφ
π
4
ξ j +

π
4

⎛
⎝⎜

⎞
⎠⎟j=1

N2

∑ + (−1)R−1 π
2R=1

N3

∑ Bjφ Rπ + π
4
ξ j −

π
4

⎛
⎝⎜

⎞
⎠⎟j=1

N2

∑ −

−φ Rπ + π
4
ξ j +

π
4

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

,

 
 
where 
 

  
Bj = Aj sin π

4
ξ j −

π
4

⎛
⎝⎜

⎞
⎠⎟

 

  
φ(µ) = τ

µ
ψ (ti )Ai exp −µ2 ati

L2

⎛
⎝⎜

⎞
⎠⎟i=1

N1

∑ ,   ti = ξi +1( )π
2

. 

 To confirm the hypotheses of the output at the steady 
state of the temperature of rectangular heater center the 
calculations correlation were performed: 
 

   

Un 0,0,0,(τ + Δτ )( ) ≅Un(0,0,0,τ )+

+ 2
π

qℓ
2λ π

sinµ
µ

Φ(z)
zτ

τ+Δτ

∫
0

∞

∫
1
t

exp −µ2 at
L2

⎛
⎝⎜

⎞
⎠⎟

dtdµ
  (47) 

  
 Numerical calculations made on a computer by the 
formula (47), proved that the temperature of the center of 

heated rectangular surface area z = 0 with side ratio 
   

ℓ
L
≥ 1

2
 

in the range of polymeric materials TPP: λ = (0,08 ÷ 1,5) 
W/(m⋅К) и а = (0,8 ÷ 4)10-7 m2/s, reached the steady state in 
less than 15 minutes by correspondence with T(t+Δt)≅T(t) 
with an error of no more than δстац ≤ 0,01 %.  
 
 
6. Сonclusions 
 
Thus, we can conclude:  
- the sensor with a narrow rectangular heater, whose ratio is 

   

ℓ
L
≥ 1

20
 can be used for suggested method; 

- transfer time to the second stage of the TPP study should 
be at least 15 minutes; 
- for these conditions NDT of TPP conducting may be 
realized rather correctly by simple and correct calculated 
correlations (14,15,18,19), obtained for the heater in the 
form of infinite band of 2ℓ width. 
 The elaborated mathematical apparatus for solving the 
thermal conductivity boundary problems is the base of 
information support of the thermal control of heat-shielding 
properties of samples from solid heterogeneous or 
monolithic materials using rectangular heated surface area. 
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