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The search for treatments for neurodegenerative diseases is a major concern in light

of today’s aging population and an increasing burden on individuals, families, and

society. Although great advances have been made in the last decades to understand

the underlying genetic and biological cause of these diseases, only some symptomatic

treatments are available. Metformin has long since been used to treat Type 2 Diabetes

and has been shown to be beneficial in several other conditions. Metformin is well-tested

in vitro and in vivo and an approved compound that targets diverse pathways including

mitochondrial energy production and insulin signaling. There is growing evidence for the

benefits of metformin to counteract age-related diseases such as cancer, cardiovascular

disease, and neurodegenerative diseases. We will discuss evidence showing that

certain neurodegenerative diseases and diabetes are explicitly linked and that metformin

along with other diabetes drugs can reduce neurological symptoms in some patients

and reduce disease phenotypes in animal and cell models. An interesting therapeutic

factor might be how metformin is able to balance survival and death signaling in cells

through pathways that are commonly associated with neurodegenerative diseases.

In healthy neurons, these overarching signals keep energy metabolism, oxidative

stress, and proteostasis in check, avoiding the dysfunction and neuronal death that

defines neurodegenerative disease. We will discuss the biological mechanisms involved

and the relevance of neuronal vulnerability and potential difficulties for future trials

and development of therapies.

Keywords: metformin, neurodegeneration, diabetes, Parkinson’s disease, Alzheimer’s disease, aging,

mitochondria

INTRODUCTION

The evolution of genomics has greatly advanced our understanding of the genetic contribution to
neurodegenerative diseases and provided an entry point for studying the biological cascades leading
to neuronal degeneration. The growing research areas of bioinformatics and systems medicine
have also opened up opportunities for better targeted treatments and individualized therapies.
However, even for diseases such as Alzheimer’s and Parkinson’s disease, in which much progress
has been made, a clear link between genetics, underlying pathological processes and the resulting
clinical phenotype seldom exists. Neurodegenerative diseases are currently incurable, debilitating
conditions caused by the progressive degeneration and death of nerve cells and their prevalence is
rising in today’s society (1).
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Therefore, despite substantial advances in the development
of symptomatic treatments for Alzheimer’s disease (AD) and
Parkinson’s disease (PD) (Figure 1), there is still a major
need for novel therapeutic strategies and disease-modifying
treatments.

Given the complex and heterogeneous molecular basis of
neurodegenerative disease the task can appear overwhelming and
the previous decades have seen mostly disappointing clinical trial
outcomes and subsequent lack of financial investment.

Gallega officinalis (French lilac) contains glucose-lowering
guanidines and has been used for treatment of diabetes for
centuries. The derivate metformin is a biguanide which was
introduced in Europe in the 1950s and in the United States
in the 1990s (2, 3). Metformin has recently been reported
to decrease cardiovascular risk, restore ovarian function in
polycystic ovary syndrome, reduce hepatic lipogenesis, fatty liver
disease, and reduce oxidative stress (3, 4). The mechanisms by
which metformin exerts its effects are still not fully defined but
it is known that metformin inhibits glucose production in the
liver and increases glucose uptake in peripheral tissues thereby
lowering blood glucose levels (3, 5, 6). It is also accepted that
metformin slows mitochondrial respiration via its direct action
on complex I of the respiratory chain of mitochondria.

THE THERAPEUTIC POTENTIAL OF
METFORMIN: RATIONALE

Metformin has the potential to interfere with neuronal longevity
mechanisms and is therefore an interesting drug since it has
already been approved for human use. However, human aging
research in general has been slowed down by the lack of good
aging models that can be used in the laboratory. Retaining aging
signatures in reprogrammed neurons has been made possible by
the use of direct reprogramming protocols (7, 8) but this may not
be feasible for some research groups and time is needed for the
technologies to be established in non-expert laboratories. New,
simple and affordable methods to investigate the role of aging in
human cells are still greatly needed.

Nonetheless, data from human and animal studies regardless
of cell type have shown that dysregulation of insulin function
contributes to aging and the development of neurodegenerative
diseases (9). Insulin resistance and diabetes are increasingly
recognized as a contributor to disease development especially
in the field of dementias (10–12). Therefore, the rationale for
using metformin is its potential to slow aging processes by acting
on mitochondrial metabolism and insulin signaling. Slowing the
aging process will be beneficial because quality of life could be
improved in old age by delaying disease.

A link between diabetes and neurodegenerative diseases is for
the most part accepted, although data is not unequivocal, and the
exact mechanisms are unclear. A large body of data onmetformin
use in humans and animals with neurodegenerative diseases
exists but metformin’s therapeutic use is not yet accepted since
the results are often conflicting. These different outcomes are
dependent on disease, model system, species and the underlying
biological pathways involved, which are now briefly reviewed.

DEMENTIA

Dementia is a common neurological disease of heterogeneous
origin and the most important risk factor is aging. Dementia
affects memory and other cognitive functions, interfering with
a person’s ability to carry out routine daily activities. According
to the UN world population prospects, the number of persons
aged 60 or over on the globe is estimated to grow approximately
four times over the next 30 years (13) bringing the prediction that
diagnoses of dementia will also rise. The most common form of
dementia is AD but there are other types of dementia including
vascular dementia, mixed dementia, frontotemporal dementia,
dementia with Lewy bodies, and Parkinson’s disease dementia.

Alzheimer’s Disease
Alzheimer’s disease (AD) is themost common neurodegenerative
disease, with 45 million people worldwide affected (14). AD
is characterized by progressive memory loss and decline of
cognitive function.

Neurofibrillary tangles (NFTs, composed of abnormal tau
protein) and amyloid plaques [composed of extracellular
aggregates of amyloid-β (Aβ)] are pathological hallmarks of
the AD brain (15–17). The NFT protein tau is associated with
microtubules and is responsible for their stabilization (18).
Tau pathology and synaptic loss correlates with cognitive
impairments in AD patients (19). The amyloid plaque
component Aβ derives from the sequential cleavage of the
membrane protein APP (Amyloid precursor protein) by β-
secretase BACE1 (β-site amyloid precursor protein cleaving
enzyme 1) and the γ-secretase complex (20). Dysregulation,
abnormal modification, and build-up of these protein
structures in the brain are thought to be the major pathologies
underlying AD.

From a genetic standpoint, most forms of AD are sporadic
and of late onset but familial forms of early onset AD exist
and are commonly caused by mutations in APP or presenilin
(21–23). The underlying biological mechanisms leading to
sporadic forms of AD have still not been defined. Inflammatory
response, hormone regulation, mitochondrial dysfunction, and
lysosomal dysfunction have been implicated, to name only a few
processes. There is also growing genetic evidence for microglial
involvement (24–26). Still, the main risk factors for developing
AD are aging, genetic risk factors including being an APOE-
ε4 allele carrier, variants in TREM2, and several GWAS loci,
traumatic brain injury, cardiovascular risk factors, and several
environmental risk factors (27–31).

Diabetes and Dementia: Animal Models
Most of the rodent models used to investigate the role of insulin
and glucosemetabolism in dementia have focused on AD. Insulin
signaling and glucose tolerances are altered in APP/PS1 mice
fed a high fat diet (32, 33), in partially leptin deficient (db/+)-
APP/PS1 mice (34) and APP23-(ob/ob) mice (35). APP load
may therefore boost susceptibility to disturbances of energy
metabolism.

A high fat diet induces insulin resistance and promotes
amyloidosis and memory impairment in both the Tg2576 mouse
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FIGURE 1 | Timeline of major advances in the treatment of Parkinson’s disease and Alzheimer’s disease in the last century. AADC, Aromatic L-amino acid

decarboxylase; AChE, Acetylcholinesterase; GLP-1, Glucagone-like Peptide 1; HCL, Hydrochloride; MAO-B, Monoamine oxidase B; NMDAR, N-Methyl-D-Aspartate

Receptor.

model of AD as well as in APP transgenic mice (36, 37). High
fat diets or obesity could contribute to memory deficits even in
wild type animals. However, some studies reviewed by Agusti
and colleagues had no effect on cognition at all (38) leaving
the topic still debated because of conflicting data. Diabetic rats
show increased levels of APP, Aβ, and phosphorylated tau (39).
These data suggest that alteration of energy metabolism via
insulin signaling may contribute to Aβ generation and altered tau
phosphorylation, two well know biochemical events associated
with dementias. The modulation of insulin has been proven to
be an effective strategy to protect neurons and synapses against
toxic Aβ oligomers and to improve cognition in other AD animal
models (40, 41). For example, glucagon-like peptide-1 (GLP-1),
insulin-like growth factor 1 (IGF-1) as well as caloric restriction
have all been shown to exert neuroprotective effects (42–44).

Metformin and Dementia: Animal Models
Until now only few animal studies have assessed the effect of
metformin on cognitive decline and the results are not in line
(Table 1). There are many different ways in which researchers
can modulate energy metabolism in rodents to try to induce
cognitive impairments and perhaps this has contributed to the
variable data on metformin in this context. Some animals are
fed high fat diets, others such as the (db/db) mice have a
spontaneous mutation that cause them to be insulin resistant
and obese. In three such high fat diet studies, metformin
treatment reduces cognitive deficits (57, 58, 60), but one study
found no improvement (59). In (db/db) mice, one study
found metformin improved memory (53) whereas another study

found no effect (55). It should be noted that in one study
looking at normal aging in wild type mice, metformin had a
detrimental effect on memory impairment (61). In this study
activation of AMPK by phosphorylation was not measured and
therefore it is not clear whether the metformin diet in these
animals was optimal. More studies with proper controls are
clearly needed to understand the effect of metformin in normal
aging.

It also seems that metformin is capable of simultaneously
having both a negative and positive impact on specific
biochemical events within the same disease model. For example,
in a P301S tauopathy mouse model, metformin treatment
reduced tau phosphorylation but promoted tau aggregation
(37). The authors suggest that metformin could be beneficial
as a dephosphorylating agent but could promote protein
aggregation, the latter being unquestionably the more widely
accepted neurodegenerative disease pathology. Similarly, short
term metformin treatment again reduced tau phosphorylation
but had negative effects since it activates APP and BACE-1 (54,
56). Metformin again seems to have positive effects on reducing
total tau and tau phosphorylation at serine 236, whereas the
sulfonylurea type diabetes drug glibenclamide performed much
better in similar tests (53, 55).

Sex may also influence metformin action, which could
complicate the interpretation of animal data. Male rodents are
often favored and sometimes the sex of the animals used is either
overlooked or omitted entirely. In one metformin study already
mentioned, male mice showed impaired cognitive function while
female mice were improved after treatment (36).
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Diabetes and Dementia: Human Studies
Changes in cognition have been reported in type 2 diabetes
mellitus (T2DM) patients who have not received a diagnosis of
dementia and meta-analyses have found moderate but significant
deficits across cognitive domains (64–66). T2DM also seems to
increase the risk of conversion from mild cognitive impairment
to dementia and the conversion from amnestic mild cognitive
impairment to AD (67).

Brain imaging studies in T2DM patients have shown a
reduction of whole and regional gray matter volume including
hippocampal volume when compared to non-diabetics (68, 69).
Taken together, the clinical data mostly shows that T2DM
patients have an increased likelihood of developing dementia
(10, 70–73). The relationship between diabetes and dementia
is further strengthened by reports that reversely, AD patients
have an increased risk of developing T2DM or impaired glucose
tolerance (74–76). Furthermore, post mortem brain pathology in
AD shows decreased insulin receptors and IGF protein levels,
and insulin levels and markers of insulin signaling are altered
in the brain (77–80). Hyperglycemia and hyperinsulinemia
have also been positively correlated with AD pathology (75,
81, 82). However, it must be stated that the vast majority of
neuropathological studies did not find any association between
T2DM or indeed glucose levels and extent of AD pathology
(83–87) and two studies even suggest a negative association
(88, 89).

One explanation for the discrepancy between clinical and
neuropathological studies in AD is the influence of vascular
pathology. It is now established that concomitant pathologies in
the aging brain are rather the rule than the exception (90). The
fact that most studies show no association between T2DM and
Aβ deposition therefore seems to hint that there is no major
effect of T2DM on Alzheimer’s pathology. An additional effect
of small vessel disease on cognition in patients with T2DM and
Alzheimer’s pathology could explain the higher likelihood to
develop dementia in this group. This implies that even if T2DM
does not have a large impact on Alzheimer’s pathology the proper
management of diabetes in AD is relevant (67, 91). An interplay
between T2DM and Alzheimer’s beyond vascular pathology
should not be disregarded though especially considering evidence
on shared pathophysiological features.

Metformin and Dementia: Human Studies
Results from clinical studies assessing the effect of metformin use
on cognitive decline and AD mostly show a positive influence
(Table 2). Metformin use is associated with significantly lower
risk of cognitive impairment in T2DM (102, 107). The
incidence of dementia in general is lower in T2DM patients
receiving metformin, sulfonylurea or a combination of both
drugs compared to those not receiving oral anti-hyperglycemic
agents (96). The risk of developing AD was lower in diabetics
receiving metformin than in patients receiving sulfonylurea
or thiazolidinediones in two studies (97, 101). However, in a
single study, long-term use of metformin for T2DM (though
not sulfonylureas or thiazolidinediones) was associated with
higher risk of developing AD (103). One informative study
used latent class analysis to identify groups of men with

T2DM receiving metformin who develop different profiles of
comorbidities including dementia. They concluded that the effect
of metformin may in fact differ depending on the risk-profile of
patient receiving the drug (100).

In an interventional study, Luchsinger and colleagues
investigated the effect of metformin given daily for 12 months
compared to placebo in overweight patients with amnestic mild
cognitive impairment. There was improvement in the selective
reminding test in the group receiving metformin but not in
other cognitive or biomarker outcomes (108). The results were
only marginally significant and there was no correction for
multiple measurements which at least suggests that the observed
improvement must be confirmed in an independent trial. In
another interventional, short-termmetformin study, nondiabetic
patients with mild cognitive impairment or mild dementia due
to AD took metformin or a placebo for 8 weeks. Those taking
metformin significantly improved in a measure of executive
function but not in other cognitive tests or biomarkers. Again, a
multitude of test was performed without correction for multiple
testing (105).

Although the majority of data on metformin use in
dementia with or without T2DM is generally positive, it should
be considered that the effect of metformin likely depends
on complex underlying pathological processes and may to
some extent be related to an effect on vascular rather than
neurodegenerative processes. In some instances, metformin
could even exert detrimental effects. Prospective interventional
studies have not been able to show convincing evidence of a
positive effect ofmetformin inmild cognitive impairment ormild
Alzheimer’s dementia but were likely underpowered or of too
short duration. More, long-term, controlled metformin studies
in large, well-defined dementia cohorts are needed.

PARKINSON’S DISEASE

Background
Parkinson’s disease (PD) is a common neurodegenerative disease,
affecting over 1% of the population above the age of 60
and around 4% older than 85 (109). PD is characterized by
bradykinesia and a combination of rigidity, resting tremor,
postural instability, and a large range of non-motor symptoms
(110). Like other neurodegenerative diseases, PD is clinically and
pathologically heterogeneous, with a large variation in disease
onset and progression. Progressive loss of dopamine-containing
neurons in the substantia nigra pars compacta, located in the
mid brain, results in a deficit of dopamine in the striatum
(111, 112). Insoluble protein inclusions in neurons, termed Lewy
bodies, mainly consisting of aggregated α-synuclein (aSyn) are
the main neuropathological hallmark of PD (113). Lewy bodies
and protein aggregates are found in multiple brain regions and
spread with disease progression (114, 115). The exact biological
mechanism leading to aSyn aggregation and neuronal loss
remains unknown and currently only the symptoms of PD are
treated with dopamine-replacement therapy and in some cases
deep brain stimulation.

Approximately 5–15% of PD cases can be attributed to
disease-causing genetic variants and around 15% of patients have
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TABLE 2 | Studies evaluating the effect of metformin on incidence and progression of neurodegenerative diseases.

Study Disease Characteristics Result

(92) PD Retrospective cohort study, 800,000 individuals of whom

61,166 were diabetics, among the latter 41,003 received

OAA therapy

Higher PD incidence for patients with T2DM without (HR

2.18) and with (HR 1.30) OAA compared to controls. HR for

treatment with metformin alone was lower (0.95) than for

sulfonylurea alone (1.57) and the combination showed the

lowest HR (0.78)

(93) PD Population-based retrospective cohort study with 93,349

T2DM patients receiving metformin (FU of 657,537 patient

years) and 8,346 T2DM patients receiving glitazones with or

without metformin (FU of 69,338 patient years)

Incidence of PD significantly lower in T2DM receiving

glitazones compared to those receiving metformin (HR 0.72),

no incident PD in long-term glitazone users who were still

taking glitazones

(94) PD Population-based retrospective cohort study with 41,362

patients receiving metformin alone, 316,210 patients

receiving simvastatin alone, and 52,311 receiving both,

metformin and simvastatin

Lower incidence of PD for patients receiving simvastatin alone

(HR 0,64) or in combination with metformin (HR 0.74)

compared to metformin alone

(95) PD/Dementia Retrospective cohort study, 4,651 patients with T2DM with

metformin treatment, 4,651 patients with T2DM with

metformin treatment; >21,000 person-years of FU

Higher incidence density for PD (HR 2.27), AD (2.13), and VD

(2.30) in the metformin group compared to those in the

non-metformin group

(96) Dementia Retrospective cohort study, 127,209 dementia-free

individuals aged ≥50 years, of which 25,939 w/T2DM, 1,864

w/Metformin only, 9,257 w/Sulfonylureas + Metformin

Higher incidence of dementia in T2DM than controls, higher

incidence in T2DM wo/ OAA compared to sulfonylurea (HR

0.85), metformin (HR 0.76), or a combination of metformin

and sulfonylurea (HR 0.65)

(97) Dementia 67,731 non-demented, nondiabetic individuals aged ≥65

years observed for 5 years and observation of onset of

T2DM, antidiabetic medication and dementia

Increased risk of dementia onset for new-onset T2DM

compared to non-T2DM (HR 1.56), risk to develop dementia

was higher for thiazolidinedione users than for sulfonylurea

and metformin

(98) Dementia 189,858 individuals with 122,036 receiving metformin and

67,822 not receiving metformin, dementia incidence rate per

1,000 person-years

Patients with diabetes taking metformin had significantly lower

dementia incidence rates than those not taking metformin

(21.79 vs. 31.58 per 1,000 person-years, p < 0.001)

(99) Dementia Meta-analysis including 544,093 participants, risk of

dementia in patients with T2DM taking insulin sensitizers

Incidence of dementia reduced with metformin (RR 0.79)

compared to those not taking insulin sensitizer but not

significant (p = 0.064)

(100) Dementia Latent class analysis to identify subgroups with differential

effect of metformin on risk of age related comorbidities in

41,204 men with T2DM with 8,393 metformin users,

Identified 4 latent classes of patients who showed different

effects of metformin on risk to develop ARC including

dementia

(101) Dementia Retrospective cohort study, 17,200 new metformin users vs.

11,440 new sulfonylurea users aged ≥65 years, average FU 5

years

Individuals <75 years of age on metformin had a lower risk to

develop dementia than those on sulfonylurea (HR 0.67, 95%

CI 0.61–0.73)

(102) Cognitive

impairment

Longitudinal population-based study, 365 persons aged ≥55

years with T2DM of which 204 received metformin

Metformin use inversely associated with cognitive impairment

(OR 0.49), longer use associated with lower risk of cognitive

impairment

(103) AD Retrospective case-control study, 7,086 AD patients and

controls were compared for previous use of metformin/other

antidiabetic drugs

Higher risk to develop AD for longterm users of metformin

(AOR 1.71) but not sulfonylurea (AOR 1.01), thiazolidinediones

(AOR 0.87), or insulin (AOR 1.01) compared to non-users

(104) AD 71,433 patients newly diagnosed with diabetes and 71,311

nondiabetic controls, follow up of up to 11 years

Higher incidence of AD in diabetic patients compared to

non-diabetics (0.48 vs. 0.38%), no positive effect of

anti-hyperglycemic treatment on risk

(105) AD Randomized placebo-controlled crossover study, 20

nondiabetic patients with MCI or mild dementia and AD

received mg metformin or placebo for 8 weeks and then

switched to the other treatment for 8 weeks

Metformin was measurable in CSF, in pooled post-hoc

analysis significant increase in superior and middle

orbitofrontal CBF after 8 weeks metformin exposure in

ASL-MRI, significant improvement in Trail making test part B,

a measure of executive function

(106) HD Observational study; 4325 HD patients, of which 121 had

T2DM and received metformin

HD patients on metformin fared better in test for verbal and

executive function but not in motor assessments

AD, Alzheimer’s disease; AOR, adjusted Odds Ratio; ARC, age related comorbidities; ASL-MRI, Arterial Spin Label Magnetic Resonance Imaging; CBF, Cerebral Blood Flow; FU,

Follow-up; HD, Huntington’s disease; HR, Hazard ratio; MCI, Mild cognitive impairment; OAA, Oral anti-hyperglycemic agents; PD, Parkinson’s disease; T2DM, Type 2 Diabetes; VD,

Vascular dementia.

a first degree relative who is also affected (116). The genetic
architecture of PD has been well studied but it is complex.
23 loci and 19 genes have so far been associated with familial

forms of PD (117). Like in most neurodegenerative diseases, the
majority of cases probably result from a complex interplay of risk
modifying genetic variation, environmental factors and chance.
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Knowledge about the genes involved in PD have allowed insight
into the underlying biological pathways. Together with multiple
environmental factors and epidemiological data, the genetic data
has highlighted several cellular functions and pathways including
mitochondrial dysfunction, lysosomal function, inflammation,
build-up of aggregation-prone proteins and oxidative stress (118,
119).

Despite large investments in research for neuroprotective
compounds for PD, none have so far shown any convincing
effects in clinical trials (120).

Diabetes and PD: Animal Studies
Rodent studies have shown that there is a link between insulin
resistance and development of PD. A high fat diet enhanced
vulnerability to the neurotoxins 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA)
as measured by increased nigrostriatal neurodegeneration and
motor deficits (121, 122). Likewise, in an aSyn mouse model of
PD a high fat diet led to an accelerated development of locomotor
phenotype and earlier onset of neurodegeneration (123).

Insulin resistance can directly interfere with dopamine
signaling. Rats fed a high fat diet exhibit impaired nigrostriatal
dopamine function (124) and overweight and diabetic mice show
degeneration of dopaminergic neurons (125).

Metformin and PD: Animal Studies
Only a handful of rodent studies have so far assessed the effects
of metformin as a neuroprotective agent in PD. These studies
have focused mainly on metformin treatment in combination
with acute MPTP induced parkinsonism. Although experimental
designs in these studies are quite similar, the results are variable,
arguing against differences in modeling as the major cause of
metformin’s variable effects. However, differences in the dose and
duration of MPTP and metformin treatments may be important
(Table 1).

Most studies in rodents find that metformin reduces the
damaging effect of MPTP on dopaminergic neurons, shown
by tyrosine hydroxylase staining (a marker for dopaminergic
neurons) in the substantia nigra pars compacta (49, 50), striatum
(45), or both (48). Two studies suggest that metformin’s
protective effect may not be specific. A study by Ismaiel and
colleagues however, reported that metformin had no protective
effect against MPTP-induced neuronal loss in the SN (46) and
Bayliss reported no protective effect on dopaminergic neurons in
the SN, only in striatum (45).

Metformin’s supposed ability to protect against dopaminergic
neuronal death induced by the neurotoxin MPTP correlates in
three studies to improvements in the motor function of rodents
(48–50). Given that both, MPTP and metformin act on complex
1 of the respiratory chain, a mutual influence of the drugs on
mitochondrial survival cannot be excluded. It is possible that
in these studies metformin primarily reduced the damaging
effects of MPTP itself rather than restoring damaged neurons.
Therefore, examination of metformin’s action in transgenic
mouse models rather than acute toxin models of PD might give
better insight about its potential. An interesting first hint comes

from a study using healthy non-transgenic mice that showed that
metformin could reduce aSyn phosphorylation in the brain (51).

Diabetes and PD: Human Studies
Studies assessing the risk of developing PD in patients with
diabetes have very mixed outcomes (126–132). In one meta-
analysis comprising 14 case-control studies, PD risk was
decreased in T2DM patients (133). Conversely, Cereda and
colleagues describe an increased risk for developing PD in
diabetics in four prospective cohort studies but not a higher
prevalence of diabetes in in patients with PD in five case-control
trials (134). It has to be noted that the case-control trials with the
largest populations did consistently show a similar of even higher
prevalence of diabetes in PD compared to controls. More recently
a meta-analysis including seven population-based cohort studies
which also found an increased PD risk in patients with diabetes
(135). Taken together the meta-analyses seem to hint toward
an increased incidence of PD in T2DM. A potential pitfall is
the inclusion of vascular PD in some of the studies. T2DM
does contribute to cerebral small vessel disease and therefore
non-exclusion of patients with vascular lesions may skew the
results toward more patients with T2DM exhibiting signs of
parkinsonism. This particular problem was addressed in some
studies showing an increased incidence of PD in T2DM and
therefore cannot sufficiently explain the discrepancies. From
a neuropathological view one study describes an association
between increased blood glucose levels with increased risk of
Lewy body formation in the substantia nigra pars compacta
and locus coeruleus further supporting a role of T2DM in the
pathogenesis of PD (136).

Dementia with Lewy bodies (DLB) and Parkinson’s disease
dementia (PDD) are common causes of dementia in the elderly
(137). PD patients with T2DM are reported to have a greater
rate of cognitive decline and lower gray matter and white matter
volume, although the group was small (138). PDD patients
are more likely to show insulin resistance in an oral glucose-
tolerance-test than PD patients without dementia (139). DLB
and PDD were less common in patients with diabetes in one
study using data from the Swedish Dementia Registry (140), yet
T2DM was not significantly associated with PDD in many others
(141–144).

Metformin in PD: Human Studies
Clinical studies have not looked solely at metformin, but rather
metformin compared to, or in combination with other oral anti-
hyperglycemic agents (see Table 2). Taken together all the studies
look at different medications and are hardly comparable. There is
lack of clinical data that suggests a positive effect of metformin
on PD risk. Wahlqvist and colleagues tried to determine the
effect of sulfonylurea, metformin or a combination of both
drugs on the incidence of PD in patients with T2DM. Patients
with T2DM receiving sulfonylurea had an increased PD risk
compared to those not receiving oral anti-hyperglycemic agents.
Metformin alone or in combination with sulfonylurea had no
impact, suggesting that metformin might rescue the harmful
effect of sulfonylurea (92).
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Brakedal and colleagues compared the incidence of PD in
patients with T2DM from the Norwegian Prescription Database
(NorPD) receiving glitazones with or without metformin or
metformin alone. Patients taking glitazones had a significantly
lower incidence of PD compared to patients on metformin alone.
There was no risk reduction in past users of glitazones, indicating
the necessity of long-term or even permanent exposure to
glitazones for risk reduction (93). Looking at patients from
the NorPD receiving statins, metformin or both showed a
lower hazard ratio to develop PD for patients using statins
in combination with metformin when compared to metformin
alone and the risk was lowest in patients only taking statins
(93). The positive effect of statins may come through their anti-
inflammatory effect and a reduction of microglial inflammatory
response, which has been shown to have a positive effect on
striatal dopamine activity (145). The question why metformin
seems to have a positive effect when added to sulfonylurea
while it has a negative effect when taken together with
statins must be addressed. The combination of T2DM and
hypercholesterolemia might increase the risk of developing PD
more than hypercholesterinemia alone and this risk may not be
lowered sufficiently by a combination of statins and metformin.
The addition of metformin to sulfonylurea may result in a
better control of T2DM than the therapy with sulfonylurea
alone thereby reducing effects that promote PD risk. Also, the
complex interplay between the different drugs has to be taken
into account.

To our knowledge there is no data available on metformin use
and disease progression. It is also unclear whether metformin use
in individuals without insulin resistance may have a beneficial
effect on PD development.

OTHER NEURODEGENERATIVE DISEASES

There are to our knowledge very few or no reports of metformin
studies in other, rarer neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS), Huntington disease (HD),
motor neuron disease, or atypical parkinsonian disorders. Here
we briefly note relevant studies concerning association with
diabetes or use of drugs targeting energy metabolism.

Amyotrophic Lateral Sclerosis
ALS is a progressive neurodegenerative disease that is
characterized by degeneration of the first and second motor
neuron resulting in spasticity and muscle atrophy. Eventually
this results in difficulty speaking, swallowing, and breathing
and often leads to death within a few years after diagnosis.
Neurochemical imbalance and genetic mutations are known
to cause ALS, but most cases are sporadic and old-age is an
important risk factor. Most drugs available for ALS relieve
symptoms only, although the drug riluzole and more recently
edaravone have been shown to slow progression of the disease
(146, 147).

A protective effect of diabetes in older patients and an
increased risk of developing ALS in younger patients with
diabetes has been described which is thought to reflect differences
in association of ALS with T1DM and T2DM (148, 149). Most

studies have shown a decreased risk for developing ALS in
patients with T2DM (150, 151). However, other studies reported
no significant effect on ALS risk or progression and even a higher
risk of developing ALS in T2DM in patients below 65 years of age
(152–154). Nutritional status is negatively associated with ALS
severity (155) and hypercaloric nutrition has even been suggested
as a potential treatment option for ALS. Two trials with the
PPAR-γ agonist Pioglitazone (which reduces insulin resistance)
(156, 157) have not shown any benefit in disease progression
(158).

Huntington Disease
HD is a progressive neurodegenerative disease that causes
choreatic movements, psychiatric symptoms, and cognitive
decline. The most common form of the disease is of early onset,
usually diagnosed around 30–40 years of age. HD is caused by
defects in the gene HTT, which encodes the protein huntingtin
and the mode of inheritance is autosomal dominant. Expansion
of CAG repeats in the HTT gene leads to the production of an
abnormally long version of the huntingtin protein. This results
in the protein being broken down by the cell into small, toxic
fragments and these protein fragments aggregate and accumulate
in neurons causing the disease.

Altered glucose metabolism and increased rates of T2DM
have been reported in patients with HD (159, 160) and a high
prevalence of T2DM has been reported in a Chinese family
with HD (161). However, other studies were not able to identify
differences in oral glucose tolerance test or pancreatic tissue
between HD patients and controls (162, 163). HD patients with
T2DM receiving metformin had better cognitive test results than
HD patients without diabetes not taking metformin. This was
in stark contrast to the non-HD control group where people
with T2DM taking metformin fared worse in the cognitive test
compared to non-diabetic controls (106).

METFORMIN: MECHANISM OF ACTION IN
NEURODEGENERATIVE DISEASES

The in vivo studies conducted so far, regarding the effect of
metformin have generated conflicting results. Besides the large
differences in study design, these outcomes are probably also due
to the many biological pathways influenced by metformin. Here
we will discuss some of the biological signaling pathways and
biological mechanisms that are the most relevant for metformin’s
potential as a therapy in neurodegenerative disease (Figure 2).

Central Metabolism and Signaling
Central metabolism is tied to the overarching cell signaling
pathways involved in proliferation, stress and survival, which
are heavily implicated in human diseases including cancer
and neurodegeneration. Metformin acts on central metabolism
and several major signaling pathways including energy sensing
(glucose metabolism and AMPK signaling), mTOR signaling,
and inflammatory signaling. Mitochondrial signaling will be
addressed separately.
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FIGURE 2 | Metformin’s potential as a neuroprotective agent. Metformin can counteract protein hyperphosphorylation, oxidative stress and neuroinflammation,

processes known to drive neurodegeneration. Metformin can act on neurons, but also targets astrocytes and microglia. Consequently, metformin can influence

inflammatory status, along with glucose metabolism in the entire brain and thereby reduce neuroinflammation and act as an antioxidant, leading to protein

dephosphorylation. PPP, Pentose phosphate pathway.

Energy Sensing and Metabolism
The brain constitutes only 2% of the total body mass, but it
is one of the main energy-demanding organs in the human
body utilizing around 20% of total energy expenditure. Brain
cells incorporate (i) the neurons (70–80% of brain energy
expenditure) and (ii) glial cells, comprising oligodendrocytes,
astrocytes and microglia (accounting for the remaining 20–
30% of energy expenditure). The high energy demand of
neurons is one of several factors partially explaining the selective
vulnerability of certain neuronal subtypes in neurodegenerative
diseases. Energy metabolism has long since been thought to play
a role in the etiology of neurodegenerative diseases and here
we will briefly mention some of the related signaling pathways
and biological mechanisms that are relevant for metformin’s
therapeutic potential in neurodegeneration.

AMPK signaling
AMPK is an evolutionarily conserved sensor of cellular energy
status. AMPK is activated by increasing AMP levels in
conditions of energy deprivation and the enzyme consequently
inhibits energy consumption and stimulates catabolic pathways.
Activation of AMPK has a wide range of effects, including
inhibition of mTor and PI3K-Akt signaling (two important
pathways discussed later).

Dysregulation of AMPK is associated with insulin resistance
and T2DM (164, 165) and neuroinflammation (166–168). AMPK
signaling plays a major role in AD disease progression since
AMPK has been shown to regulate both Aβ generation and
tau phosphorylation. Inhibition of Aβ production and tau
phosphorylation in neuronal cultures is dependent on AMPK
activation (169) and activation of AMPK lowers extracellular Aβ

accumulation (170). Conversely, in neurons, AMPK activation
has been linked to tau phosphorylation as a response to Aβ

toxicity (171, 172).
Metformin inhibits complex I of the electron transport chain

needed for mitochondrial respiration, thereby leading to an
energy deficit and indirectly activating the AMPK pathway
(173–175). Thus, stimulation of AMPK can be seen as a key
consequence of metformin administration, explaining many of
the known effects of the drug (Figure 3).

However, in the context of AD especially, more studies
are needed to understand the complex role of AMPK
signaling and the action of metformin. A study conducted
in human neuronal stem cells proposed that activation of
AMPK via metformin is neuroprotective against Aβ (176)
and other in vitro studies showed that metformin is able
to reduce tau phosphorylation via mTOR/PP2A (Protein
phosphates 2A) signaling (54) and that it can reduce molecular
pathologies associated with AD (177). An additional level
of modulation via AMPK by metformin could come from
metformin’s ability to reduce BACE1 protein levels in neurons
(178). Conversely, metformin was also reported to upregulate
BACE1 in neurons and increase the generation of Aβ (179),
suggesting detrimental effects of activating AMPK in diseased
neurons.

In PD mouse models the AMPK involvement is similarly
multifarious. Administration of the neurotoxin MPTP activates
AMPK signaling (180). Interestingly, both AMPK overexpression
and AMPK inhibition have promoted survival in neurotoxin
treated PDmodels (180) but another study provided evidence for
a protective function of AMPK activation in in vivo PD models
(181).
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FIGURE 3 | Cellular targets of metformin. Metformin inhibits mitochondrial complex I, thereby increasing AMP/ATP ratio. This lack of energy leads to an activation of

AMPK, which, amongst others, inhibits mTor signaling. Furthermore, metformin can activate PP2A and inhibit neuroinflammatory processes. Results of these events

are reduced production of pro-inflammatory cytokines and reactive oxygen species (ROS), decreased oxidative stress, inhibition of protein synthesis and augmented

autophagy of toxic oligomers. Additionally, protein dephosphorylation, protein aggregation, and cell death are affected.

Overexpression of aSyn in cell culture reduced AMPK activity,
while inhibition of AMPK lowered resistance to aSyn toxicity
(182). AMPK’s subunits α1 and α2 have neuroprotective effects
against aSyn toxicity with low but continuous AMPK activity
almost completely preventing loss of dopaminergic neurons
(183). Accordingly, in rodent PD models dietary metformin
influenced neuronal function via AMPK modulated aSyn
phosphorylation status (49, 51). However, several other studies
point in a different direction. Over-active AMPK promotes aSyn
accumulation (184) and hyperactivation of AMPK leads to aSyn
binding to the GTPase PIKE-L and dopaminergic cell death (47).
These studies show that lower AMPK activity may in fact be
beneficial at least in aSyn models of PD.

As is the case in many neurodegenerative diseases, the
underlying genetic and biological causes are heterogeneous,
often causing multiple pathologies that can overlap across the
disease spectrum. The action of metformin primarily via the
mitochondria could have numerous and potentially opposite
effects on AMPK depending on the amount of involvement and
type of mitochondrial signaling in each patient or disease model
at any given moment. One important aspect to consider here
is that biological pathways are not necessarily fixed in a single
state throughout the disease course. Neurons especially have
evolved to carefully adapt to energetic needs in order to survive
since they are seldom replaced. Sophisticated compensatory
mechanisms are initiated for the purpose of mitochondrial
rejuvenation and adaption. Such complexity has made modeling

neurodegenerative diseases in human neurons challenging and
has contributed to the current situation where no causative or
“cure all” therapies are available.

Glucose metabolism
Glucose is an essential energy substrate needed to sustain
neuronal activity and is taken up via glucose transporters
expressed in the brain endothelium, astrocytes, and neurons
(185). Neurons mostly rely on glucose for energy but utilize
ketone bodies during fasting. In contrast to other cell types, in
neurons the rate limiting glycolytic enzyme Phosphofructokinase
B3 is highly turned over by the proteasome, resulting in the
preferential metabolism of glucose via the pentose phosphate
pathway (PPP) as opposed to glycolysis (119, 186).

A product of the PPP is the electron donor NADPH, which
provides reducing power for anabolic reactions and is crucial
for maintaining antioxidant potential. The PPP helps neurons to
meet high energy demands, but since neurons are predominantly
oxidative, maintaining a fine balance between glycolysis and PPP
is essential for counteracting oxidative damage and conserving
energy.

Glial cells on the other hand, predominantly metabolize
glucose via glycolysis producing lactate and have only very low
rates of mitochondrial oxidation. Glia metabolically support
axons and lactate can be shuttled across a gradient from glia
to neurons (Figure 2) (187, 188). Interestingly, in cell culture,
neurons favor lactate over glucose (189) preferring a fast supply
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of energy over metabolic efficiency. In the human brain, energy
demand must be tightly regulated to offset oxidative damage and
therefore cell culture and cell culture media effects should be
taken into consideration when considering the conflicting data
on metformin performed in situ.

Inhibiting the PPP and glutathione pathways causes increased
levels of oxidative stress and cell death similar to that
seen during neurodegeneration (119). Glucose hypometabolism
has been shown in PD brains (190) and deregulation of
glucose metabolism has been proposed as an early event in
the pathogenesis of PD (119). Dunn et al. proposed that
dysregulation of glucose metabolism occurs via dysregulation of
the PPP, which causes oxidative stress because of less efficient
glutathione recycling, and it is this event that underlies the
increased levels of oxidative stress observed in PD (119).

Metformin can act in these pathways by slowing oxidative
phosphorylation via inhibition of complex I in mitochondria
and by inhibiting gluconeogenesis, having the effect of further
aiding neurons to reduce their oxidative burden by minimalizing
NADH utilization.

Insulin signaling
Insulin plays an important role in the brain. It is used
as a hormonal signal to control body weight, food uptake,
and metabolic homeostasis (191–193). Insulin has also been
shown to influence expression of dopamine receptors and
concentration of dopamine (194–196). Disturbances in insulin
signaling have been implicated in several neurodegenerative
diseases including AD, PD, and HD (197–200). Insulin is
secreted in response to high blood sugar and acts in different
organs including the brain. Activation of the Phosphoinositide-
3-kinase (PI3K)—Akt pathway via insulin receptor activation
and insulin receptor substrates plays a central role in the
metabolic actions of insulin (201). Akt activation regulates
proteins such as mTOR, FOXO, and BAD. Overall, Akt
has over 100 known substrates and has diverse effects on
cellular growth, cell proliferation, glucose uptake, protein
synthesis, glycogen synthesis, and apoptosis (202). Akt is
inhibited by PP2A (203), PHLPP1/2 (204), and indirectly
by PTEN (205). Insulin resistance has been associated with
disturbances in signaling up and downstream of Akt (206–
208).

Insulin has been administered to patients to try to improve
symptoms of neurodegeneration (209, 210) and has been shown
to protect cells from Aβ induced death (211–213). The Insulin
Degrading Enzyme (IDE), originally found to play an important
role in insulin turnover (214) is involved in Aβ degradation.
IDE can degrade secreted Aβ from neurons and microglia and
mediate its clearance (215). Furthermore, IDE hypofunction can
contribute to in vivo Aβ accumulation (216). In hippocampi
of ApoE4 carriers reduced expression levels of IDE have been
measured (217) and genetic differences in IDE expression and
activity have been suggested to be involved in AD development
(218–221). Reduced levels of IDE in liver and brain have been
correlated with aging (222) and IDE can counteract damage from
oxidative stress, suggesting a neuroprotective role (223–226).

Metformin lowers blood glucose levels through inhibition
gluconeogenesis in the liver via AMPK (227, 228). AMPK inhibits
PI3K/Akt signaling, the crucial pathway downstream of the
insulin and IGF1 receptors (229).Metformin has also been shown
to act on insulin signaling independently of AMPK. Metformin
is reported to downregulate expression of insulin and IGF-1
receptors (230, 231) and reduces phosphorylation of insulin
receptors (232) including IRS-1 (230, 233).

Both acute and chronic metformin administration has been
found to increase levels of GLP-1, an incretin known to induce
insulin secretion, in humans and mice (234–236). Very recently
a randomized, double-blind, placebo-controlled trial for PD
showed that a GLP-1 agonist had positive effects on motor
symptoms in PD (237), generating a new potential mechanism
for metformin action in neurodegeneration.

mTOR Signaling
mTOR signaling is a highly conserved and central signaling
pathway integrating upstream signals such as nutrient and redox
status and then controlling downstream processes such as cellular
growth, motility, survival, and death (238). The mTor pathway is
crucial for regulating mitochondrial biogenesis and autophagy,
two processes that are defective in many neurodegenerative
diseases.

mTOR is a serine/threonine protein kinase, composed
of the protein complexes mTORC1 and mTORC2. mTOR
signaling is targeted by the PI3K/Akt pathway, the key insulin
signaling pathway (239, 240). Both PTEN (241, 242) and
AMPK (243, 244) suppress mTor signaling and rapamycin
is a well-studied inhibitor of mTORC1 (245–247). Although
mTor signaling influences many downstream events, the most
important mechanism of action is through the phosphorylation
and activation of S6K1 and 4E-BP1 and subsequent control of
RNA translation (238) (Figure 4). Interestingly, deficiency in
mTor signaling has been implicated with insulin resistance and
diabetes. Nutrient dependent stimulation of S6K1 can induce
insulin resistance (248, 249) and S6K1 deficiency protects against
high fat diet-induced insulin resistance (250).

The mTOR inhibitor rapamycin suppresses
neurodegeneration phenotypes in mice (251) and protects
against MPTP-induced loss of dopaminergic neurons (252).
Rapamycin also prevents the development of dyskinesia without
affecting the therapeutic efficacy of L-DOPA and thus, the
mTORC1 signaling cascade represents a promising target for the
design of anti-Parkinsonian therapies (253).

Elevated mTOR signaling has been found in AD patients and
is linked to diabetes and aging (254, 255). Rapamycin abolishes
cognitive deficits and reduces Aβ levels in a mouse model of
AD (256). It also ameliorates AD-related phenotypes by restoring
hippocampal gene expression signatures (257). Importantly,
mTor regulates tau phosphorylation and degradation (258),
making this pathway an interesting target for the treatment of
tauopathies.

If we compare the therapeutic potential of metformin, a well-
known inhibitor of mTOR signaling through activation of AMPK
(259) to that of rapamycin, which is more widely accepted in the
field, the obvious difference is that metformin action on mTOR is
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FIGURE 4 | The overlapping actions of metformin and rapamycin. Rapamycin acts by directly inhibiting mTOR and therefore translation regulation, which has a major

influence of highly regulated processes such as mitochondrial biogenesis and autophagy. Metformin acts indirectly on the mTOR pathway through inhibition of

complex I and activation of AMPK signaling. Metformin also reduces reactive oxygen species (ROS) via inhibitory action on complex I and NAD(P)H oxidase having an

overall effect as a redox regulator. Downstream of metformin action, low level ROS can indirectly trigger signals for mitochondrial biogenesis and turnover of organelles

and proteins via autophagy. Vice versa, maintenance of healthy mitochondrial networks involving autophagy and mitochondrial biogenesis further reduces build-up of

damaging levels of ROS.

relatively indirect. Rapamycin forms a complex with the FKBP12
binding protein which binds and specifically alters mTORC1.
Metformin acts on the mTOR pathway indirectly via multiple
routes. The AMPK independent routes include inhibition of
transcription factors (260), the PI3K/AKT pathway (261), and
induction of REDD (262). In direct contrast to this, one study
has shown that metformin can directly inhibit mTORC1 and is
dependent on Rag GTPases not AMPK (263). These data support
the view that metformin has more than one direct target and is
likely to havemanymore indirect targets, thus explaining why the
use of metformin and a research tool or treatment is less accepted
than rapamycin.

Nevertheless, the mTOR pathway links several biological
pathways underlying neurodegenerative diseases and therefore
the ability of metformin to inhibit this signaling cascade endorses
the argument that more mechanistic work using metformin and
its inclusion in clinical trials should be positively considered.

Inflammation
Neuroinflammation is considered a major driving force in the
progression of neurodegenerative diseases and the triggering of
innate immune mechanisms is emerging as a crucial component
in disease pathogenesis. Microglia and other cell types in the
brain can be activated in response to misfolded proteins or

aberrantly localized nucleic acids. This diverts microglia from
their physiological and beneficial functions, and leads to their
sustained release of pro-inflammatory mediators (264).

Intake of non-steroidal anti-inflammatory drugs (NSAIDs)
has been reported to decrease incidence of AD later in life
(265, 266) and activated microglia are found in brains of AD
patients (267, 268).

In AD, an integrated network-based approach identified gene
perturbations associated with innate immune pathways and
microglia cells in late onset forms of the disease (269). AD
patients show increased expression of inducible nitric oxide
synthase (iNOS, a product of neuroinflammation) in neurons and
glia, leading to augmented nitric oxide production (270, 271).
Activated microglia can further induce tau phosphorylation in
primary mouse neurons, activating IL1β receptor and p38MAPK
stress signaling (272).

In PD, patients show increased numbers of activatedmicroglia
and astrocytes (273, 274) and microglia activation has been
associated with disease progression (273, 275, 276). aSyn has
been found to activate microglia, enhancing neurotoxicity (277).
Activation of microglia increases nitration of aSyn, resulting in
neuronal cell death (278).

Immune signaling triggers transcriptional events, but also
changes in metabolic flux, redox balance, and metabolite balance

Frontiers in Endocrinology | www.frontiersin.org 13 July 2018 | Volume 9 | Article 400

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Rotermund et al. Metformin in Neurodegenerative Diseases

via mitochondria (279). Mitochondrial dysfunction is associated
with neuroinflammation (280) and evenmoderate mitochondrial
DNA stress can trigger antiviral signaling (281).

Metformin reduces general inflammation parameters and
inhibits NF-κB signaling as well as proinflammatory cytokines in
different cell types (282–285), suggesting that metformin could
protect against neuroinflammation. Interestingly, in two MPTP-
induced PD mouse models, metformin reduced levels of the
microglia marker Iba1 as well as the pro-inflammatory cytokines
TNFα, Il-1β, IL-6, and iNOS in the substantia nigra pars compacta
(46, 49). Here, more studies are needed but metformin seems
to have a wholly positive effect against general inflammation.
Neuroinflammation is a recognized event associated with
neurodegenerative diseases and therefore metformin could be
both a useful tool and therapy.

Mitochondria
Mitochondria are crucial organelles that produce energy and
perform a plethora of other functions needed for central
metabolism and cell signaling. Mitochondrial dysfunction is a
phenomenon that traverses all neurodegenerative diseases and
forms the basis of β-cell dysfunction in T2DM (286). One
important aspect of mitochondrial dysfunction in neurological
disease is that the need for tightly controlled energy metabolism
in neurons can partially explain some of the vulnerabilities
involved in their demise.

Parkinson’s Disease
In PD, the link between mitochondrial dysfunction and disease
has been proven by the identification of environmental factors
and disease genes which critically affect mitochondria. The
outcome has been a large body of work depicting the role of
mitochondrial dysfunction in PD, yet the exact mechanisms
underlying sporadic forms of PD are less defined.

Loss of function mutations in PINK1 or parkin cause PD
(287–290) as a result of mitochondrial dysfunction and this
has been elucidated in vitro (291, 292) and in vivo (293–296).
PINK1 and parkin act in a pathway that is important for
mitophagy (removal of damaged mitochondria via the lysosome)
induced bymitochondrial depolarization. Here, PINK1 functions
upstream of parkin (295, 297). Upon mitochondrial damage,
PINK1 accumulates on the mitochondrial surface and selectively
recruits parkin to mitochondria (298, 299). Mitochondrial
substrates are ubiquitinylated, leading to the removal of damaged
mitochondria. PINK1 is now known to be a ubiquitin kinase
(300) but may have other functions yet unknown. For example,
PINK1 is not required for basal mitophagy in vivo (301,
302) and has been proposed to regulate complex I (303),
mitochondrial dynamics (304), mitochondrial proteostasis (305),
and mitochondrial metabolism via TRAP1 (306, 307).

PINK1 and parkin are upregulated under metabolic stress in
the vessel walls of obese and diabetic mice and have a protective
action by limiting reactive oxygen species (ROS) production and
mitochondrial dysfunction (308). In a diabetic mouse model,
PINK1 expression in the hippocampus was in this case reduced
following hydrogen peroxide treatment (309), further suggesting
that PINK1 plays a role as a stress sensor and functions

accordingly in diverse ways. PINK1 is generally associated with
neuroprotection since loss of function causes PD, but because
PINK1 is normally highly turned over at the mitochondrial
outer membrane and therefore overexpression and/or altered
expression might also induce unwanted downstream events. In
one study, PINK1 overexpression restrained MAPK and ROS
signaling and mitigated insulin resistance in cell models (310).
Conversely, PINK1 loss corrupts function of islet and β-cells
causing impaired glucose uptake and increased levels of plasma
insulin (311). Further evidence that PD proteins play important
roles in energy metabolism is a study showing that TP53INP1
deficient cells (TP53INP1 is a susceptibility locus in T2DM)
causes an increase in ROS that impairs mitophagy via the PINK1-
parkin pathway (312).

Parkinson’s disease mutations in aSyn are associated with
several cellular defects, including reduced mitochondrial
integrity and function. Recent work has identified a highly
neurotoxic aSyn species which induces mitochondrial damage
and mitophagy in the human and animal brain (313). However,
the consequences of thesemitochondrial changes for bioenergetic
functions remains somewhat undefined. Interestingly, aSyn
toxicity is mitigated by TRAP1 (314), a mitochondrial ATPase
that has been linked to metformin.

In this pathway, TRAP1 and themitochondrial serine protease
HtrA2 are both targets of the PD protein PINK1 (305, 306).
HtrA2 and TRAP1 genetic variants have been found in PD
patients (307, 315) but the mutations are rare and a controversial
topic (316–318). Regardless of the genetic contribution to disease,
TRAP1 at least appears to play an important regulatory role
in mitochondria that is relevant for the fine tuning of energy
metabolism. TRAP1 is well studied in cancer since TRAP1
expression is tightly regulated in tumor cells (319), TRAP1
acts as a metabolic switch (320) by targeting and inhibiting
succinate dehydrogenase (321), which is important for metabolic
re-purposing and inflammatory responses (322).

In ovarian cancer where TRAP1 expression was altered,
metformin was effective in rendering the tumor sensitive
to chemotherapy (323), suggesting that metformin might be
relevant to TRAP1 mediated signaling. On this basis, metformin
was then used to successfully rescue mitochondrial dysfunction
in a TRAP1 cell model of PD (307). In a healthy person,
fine tuning of mitochondrial energy usage via the PINK1-
HtrA2-TRAP1 pathway and other regulatory mechanisms may
allow cells to conserve energy and reduce oxidative burden.
Metformin’s ability to mimic this fine tuning role in vitro was
beneficial in one model of sporadic PD (307). However, there
are still a lot of questions that remain unanswered such as
whether metformin is beneficial in non-diseased neurons, aging
neurons and other forms of familial and sporadic PD. One
question is whether metformin could specifically target energetic
deficits in the dopaminergic neurons of the substantia nigra pars
compacta. The question is not yet answered because selective
vulnerability is still not yet fully understood. We can speculate
that oxidative or metabolic burden over time could contribute
to making these cells especially vulnerable. Many redox reactions
happen in mitochondria as a result of mitochondrial activity.
Neurons in comparison to many other cell types have a high
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energy demand and because of the autonomous pacemaking in
dopaminergic neurons of the substantia nigra (324), these cells
are thought to have a higher oxidative burden. The metabolism
of dopamine itself is highly oxidative and can form several toxic
species. Therefore, if metformin can mildly reduce the oxidative
burden at the mitochondria without interfering with normal
redox signaling and stimulate autophagy and other processes
which can become less effective over time, it could be seen
as a very useful drug to counteract neurodegenerative diseases.
Neurons have a sophisticated and unique line of quality control
defenses which allow them to compensate for stress and survive
against all odds because once they die, inflammation often ensues
and they are seldom replaced. It just depends whether metformin
treatment could be used to intervene at the right time to not
interfere with necessary compensatory responses, rather enhance
them.

Alzheimer’s Disease
The exact mitochondrial events leading to AD are less defined
than in PD, yet aging is still the greatest known risk factor.
Energy metabolism and mitochondrial dysfunction have been
proposed as a primary event in mechanisms underlying AD
such as synaptic degeneration, Aβ deposition and formation of
neurofibrillary tangles (325). There is a vast amount of evidence
that mitochondrial dysfunction occurs after the early cellular
events in AD and can contribute to the advancement of further
degeneration, but it is often unclear whether mitochondrial
dysfunction is indeed just a secondary event or whether it
might be involved in primary pathogenesis. For example, in
the case of tau, abnormal tau triggers oxidative stress and
mitochondrial defects such as mitochondrial depolarization,
impaired mitochondrial complex activities and reduced energy
output (326, 327). Tau also localizes to the microtubules, the
tracks on which mitochondria move along with the help of
adapter proteins and defective mitochondrial movement has
been shown in several models of AD (328, 329).

There is also evidence that mitochondrial metabolism is
altered in AD brains (reviewed in (330)). The tricarboxylic
acid (TCA) cycle enzymes pyruvate dehydrogenase, isocitrate
dehydrogenase, and alpha-ketoglutarate dehydrogenase are
affected in AD brain tissue and in patient-derived fibroblasts
(331). Changes in these checkpoint TCA cycle enzymes are
associated with metabolic re-wiring often in response to stress
and redox changes. In addition to matrix enzymes, deficiencies
in oxidative phosphorylation (OXPHOS) have been reported
[reviewed in (332)].

In AD research, there are few mechanistic models for
mitochondrial dysfunction, mainly due to the fact that there are
no mitochondrial causative genes for AD. The mitochondrial
mechanism of metformin action in dementia and AD is likely
similar in PD, in that metformin can act onmitochondrial quality
control via mitochondrial biogenesis and energy conservation.

The Complex I Paradox
Many of metformin’s actions are thought to be an indirect result
of complex I inhibition. The exact inhibitory mechanism of
metformin on complex I is not fully understood. The inhibitory

mechanisms of other complex I inhibitors such as MPTP
and rotenone are better known in terms of binding site and
mechanism of toxicity, especially in disease.

Complex I deficiency has long since been associated with
mitochondrial dysfunction and Parkinson’s disease risk [for a
review see (333)]. Complex I deficiencies have also been reported
in AD, HD and ALS (332). The neurotoxins MPTP and rotenone
inhibit complex I and generate toxic levels of ROS, which leads to
neuronal cell death. It is possible that sub-lethal concentrations of
mitochondrial inhibitors that do not generate ROS (or generate
less ROS) could be beneficial but little is known.

It is generally accepted that metformin does not generate
dangerous levels of ROS. Pharmacologically reducing oxidative
phosphorylation and thus the oxidative burden (at the right
moment) without generating too much ROS is certainly a
challenge. We found that sub lethal concentrations of the specific
mitochondrial complex V inhibitor oligomycin, could rescue
mitochondrial dysfunction in a TRAP1 deficient PD model to
a similar extent as metformin (307) but since metformin is an
approved compound for human consumption, we followed up
the protective effects of metformin only. It might be interesting
to assess the potential neuroprotective action and toxicity with a
titration of several respiratory chain inhibitors that act at different
sites. For example, the mitochondrial complex III inhibitor,
antimycin A is known to generate large amounts of ROS (334),
but oligomycin and other disrupters of the respiratory chain have
been shown to generate little or no ROS (335).

Aging
The main hallmarks of aging set out by Lopez-Otin are
genomic instability, telomere attrition, epigenetic alterations,
loss of proteostasis, deregulated nutrient sensing, mitochondrial
dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication (336). All of these hallmarks in
one way or another are associated with the pathogenesis of
neurodegenerative diseases. Here we will focus attention on
some specific aspects relating to these hallmarks that could be
the most relevant to metformin’s mechanism of action at the
mitochondria.

Mitonuclear protein imbalance
Human mitochondrial DNA (mtDNA) is bound inside nucleoid
bundles, has a high copy number, is inherited maternally
and has a high mutation rate (337). Mitochondrial damage
and/or depletion induces stress-signaling and adaptive metabolic
responses. MtDNA instability is a physiologically relevant stress
observed in many human diseases and aging (281). Mitonuclear
protein imbalance, is a stoichiometric imbalance between nuclear
and mitochondrially encoded proteins and is activated as a key
longevity response across many species (338). Alterations to
mtDNA are directly linked to respiratory chain dysfunction in
sporadic PD patients and it has been shown that complex I is
initially affected followed next by complex IV (339). It is thought
that imbalance in the stoichiometry between mitochondrially
translated proteins and nuclear encoded ones is both a cellular
signal and marker of mitochondrial adaption. The mTOR
inhibitor rapamycin is used as a tool to initiate mitonuclear
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protein imbalance (338) and metformin is capable of modulating
mitonuclear protein imbalance in human cells (307).

Oxidant stress and senescence
The production of reactive species is usually balanced by the
cell’s antioxidant defenses. An imbalance in the amount of ROS
to antioxidant defense results in oxidative stress and can cause
damage to proteins, lipids and nucleotides.

Mitochondria are a major source of ROS due to oxygen
use in energy production through the electron transport chain.
Electrons leak while they are being transferred along the
complexes of the electron transport chain. Leaked electrons
can react with molecular oxygen to form superoxide radicals.
Superoxide can react with Mn-SOD to form hydrogen peroxide,
a ROS and a signaling molecule. Hydrogen peroxide is either
broken down to form water or it can react with metals to
form the highly reactive hydroxyl radical. In mitochondria
the main leakage sites are at the transfer of four electrons to
oxygen at Complex IV, but also complex I, complex III and via
certain dehydrogenases of the TCA cycle in the mitochondrial
matrix. Consequences of oxidative stress include proliferation,
adaption, damage, senescence, or death depending on the cell
type and severity [for review see (340, 341)]. Neurons need to
counteract a great deal of ROS because of high energy bursts and
catecholamine neurotransmitter metabolism.

Oxidative damage is a major contributor to neurodegenerative
diseases [for a review see (342)]. Both oxidative stress and
oxidative damage can lead to stress adaption. One such
adaptive mechanism in mitochondria might be finely-tuned
inhibition of respiratory complexes or mitochondrial uncoupling
via uncoupling proteins. There is mounting evidence that
mitochondrial uncoupling proteins are neuroprotective [for a
review see (343)]. Cellular senescence can occur when adaptive
responses are unable to properly protect key molecules from
damage to the extent that a cell can no longer divide.

The PD protein DJ-1 provides a link between
neurodegeneration and energy metabolism. DJ-1 acts as a
chaperone and protease to stabilize mitochondria and protect
cells from oxidative stress (344). Several other cellular functions
have been attributed to DJ-1, including; binding of Ras as
a transcriptional co-activator (345), negative regulation of
the phosphoinositide-3-kinase (PI3K)/AKT signaling cascade
through inhibition of PTEN (309, 346, 347), chaperone function
(348, 349), and RNA binding (350). Although controversial, DJ-1
has also been claimed to have glyoxalase (351) and deglycase
(352) enzyme activities (353). DJ-1 also influences insulin
secretion as well as β cell viability in the pancreas and DJ-1
knockout mice show increased ROS levels in islet cells, impaired
glucose tolerance and decreased insulin secretion (354).

GAPS IN THE RESEARCH

Trials using metformin to treat or protect against
neurodegenerative diseases in humans and animals have
produced mostly conflicting results. The data shows either
positive, no or even detrimental effects of metformin on

neurodegenerative processes in cell cultures, animals and
humans.

The outcome may depend on the species, cell type or
underlying metabolic state. Two promising research areas
however are neuroinflammation and aging, yet more work is
needed. Very few studies have looked directly at the role of
metformin in neuroinflammation, but since this is a growing
research focus in the field, more metformin studies may arise.
The exact role of metformin in aging is a question that needs to
be at least partly understood before we can progress further in
understanding its potential to treat neurodegenerative diseases.
A major hurdle to this is the lack of good human aging models
mainly in vitro but also in vivo.

Another gap in the knowledge is whether there are potential
adverse effects of metformin use in non-diabetics. For example, it
has been well documented that long term metformin use leads
to vitamin B12 deficiency (355). Vitamin B12 and folate are
needed for transmethylation and hydroxylation reactions from
amino acids that are crucial for neurotransmitter biosynthesis.
How much influence could this have in a patient with disturbed
neurotransmitter metabolism and/or those receiving other
medications.

THE THERAPEUTIC POTENTIAL OF
METFORMIN: FEASIBILITY

There are several reasons why the use of metformin to treat
neurodegeneration could bring about doubt from clinicians and
scientists when considering its potential as a therapy or as a
research tool. The main point being that metformin seems to be
acting on a plethora of biological pathways, and therefore it is
very difficult to pin down mechanisms. The second point is the
controversial subject of “anti-aging” drugs in general. Since we
know very little about the biological underpinnings of aging and
know even less about how to efficiently model it in the laboratory,
the promotion of an “anti-aging” drug often conjures up more
questions than it answers. Then there are several other sticking
points among researchers, one being the fact that metformin acts
by inhibiting mitochondrial respiration, the exact effect that has
been shown by years of research in the Parkinson’s disease field
to in fact contribute development of disease.

In direct contrast, there are several arguments for metformin
being a feasible and useful drug. Firstly, glucose metabolism
is of central importance to neuronal redox status, therefore to
the long-term survival of neurons. Secondly, as a population
we are increasingly insulin resistant and therefore metformin is
particularly apt. Metformin is a cheap and safe drug with few side
effects and therefore more work in vitro, in vivo and in trials will
be welcomed.

Nir Barzilai, the director of the Institute for Aging Research at
the Albert Einstein College of Medicine suggests that metformin
and other related drugs can extend our years of healthy, disease-
free living by decades (356). Other scientists have not specifically
mentioned metformin but in his 2005 book on mitochondria,
Nick Lane suggests that if we live longer to rid ourselves of
diseases of old age we need more mitochondria and perhaps
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a more refined free-radical detection system (357). Whether
metformin is capable of modifying the detection system at the
right physiological moment without deleterious effects is at least
an exciting possibility.

FUTURE DEVELOPMENTS IN THE FIELD

There is potential that metformin could be beneficial in the task
of counteracting aging and clinical studies imply that metformin
may have positive effects on cognition in T2DMpatients. A better
understanding of how metformin works will help researchers in
the neurodegeneration field to successfully design future research
and trials. Upcoming studies such as TAME (358) will help in this
respect.

The anti-aging effects of metformin could be summarized
by its ability to interfere with the multistage process of energy
production without producing damaging amounts of ROS. This
action alone could be seen as neuroprotective and metformin
may further protect by activating other biological pathways.
For example, slowing mitochondrial energy production can also
trigger a cascade of signaling events in the liver that result
in reduced glucose and insulin. The key role of insulin in
nutrient sensing which balances growth and proliferation with
life-extending conservation, makes metformin an interesting
drug. The field of aging research is growing and in vivo and in
vitro aging models are advancing.

Probably due to the complexity of metformin action,
this drug will not likely serve as a potential treatment for

neurodegenerative diseases on the current stage because much
more work is needed to understand the role of aging in
different neurodegenerative disease forms. The greatest value of
metformin today might lie in its potential to help decipher those
mechanisms underlying neurodegeneration.
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