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Trauma remains a leading cause of death worldwide. Hemorrhagic shock and direct 
injury to vital organs are responsible for early mortality whereas most delayed deaths 
are secondary to complex pathophysiological processes. These processes result from 
imbalanced systemic reactions to the multiple aggressions associated with trauma. 
Trauma results in the uncontrolled local and systemic release of endogenous media-
tors acting as danger signals [damage-associated molecular patterns (DAMPs)]. Their 
recognition by the innate immune system triggers a pro-inflammatory immune response 
paradoxically associated with concomitant immunosuppression. These responses, 
ranging in intensity from inappropriate to overwhelming, promote the propagation of 
injuries to remote organs, leading to multiple organ failure and death. Some of the 
numerous DAMPs released after trauma trigger the assembly of intracellular multiprotein 
complexes named inflammasomes. Once activated by a ligand, inflammasomes lead 
to the activation of a caspase. Activated caspases allow the release of mature forms 
of interleukin-1β and interleukin-18 and trigger a specific pro-inflammatory cell death 
termed pyroptosis. Accumulating data suggest that inflammasomes, mainly NLRP3, 
NLRP1, and AIM2, are involved in the generation of tissue damage and immune dys-
function after trauma. Following trauma-induced DAMP(s) recognition, inflammasomes 
participate in multiple ways in the development of exaggerated systemic and organ-spe-
cific inflammatory response, contributing to organ damage. Inflammasomes are involved 
in the innate responses to traumatic brain injury and contribute to the development of 
acute respiratory distress syndrome. Inflammasomes may also play a role in post-trauma 
immunosuppression mediated by dysregulated monocyte functions. Characterizing the 
involvement of inflammasomes in the pathogenesis of post-trauma syndrome is a key 
issue as they may be potential therapeutic targets. This review summarizes the current 
knowledge on the roles of inflammasomes in trauma.
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iNTRODUCTiON

According to the World Health Organization and the Global Burden of Disease study, injuries are 
responsible for five million deaths per year worldwide (1, 2). Trauma-related mortality is usually 
described as trimodal: immediate (minutes), early (hours), and late (days to weeks) (3–5). Immediate 
and early mortalities, mainly due to overwhelming brain injuries, massive bleeding, and critical  
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injuries to vital organs, have remained stable over the past three 
decades, accounting for approximatively 60 and 25% of overall 
trauma-related mortality, respectively (2–4). Interestingly, a 
decline in late deaths has been observed in high-income coun-
tries, suggesting that improvement in care is successful to reduce 
mortality. However, post-trauma care remains challenging, as 
late mortality still accounts for 10–30% of all trauma-related 
deaths (3, 5). Trauma patients often develop a “post-injury 
syndrome,” resulting from an imbalanced systemic reaction to 
the multiple insults occurring after trauma (6). Initial tissue 
damage, blood loss and subsequent secondary tissue injuries, 
lead to the local and systemic release of endogenous mediators 
acting as danger signals [damage-associated molecular pat-
terns (DAMPs)] (7, 8). Recognition of DAMPs by the innate 
immune system triggers both an intense pro-inflammatory 
immune response and a concomitant anti-inflammatory 
response (9–11). While excessive inflammation promotes the 
development and propagation of secondary tissue injuries 
beyond the initial traumatic foci, the anti-inflammatory 
response leads to host defense impairment and sepsis, contrib-
uting altogether to multiple organ dysfunctions, and ultimately,  
death (12).

To date, treatment of the “post-injury syndrome” is limited 
and mainly supportive. However, a greater understanding of 
the underlying pathophysiology has led to the development of 
adjuvant therapeutic strategies. Treatments aiming to control 
excessive inflammation, monitor immune cell functions, and 
restore immune responses have emerged, with sometimes 
encouraging results (9, 11, 13). Among the potential mecha-
nisms involved in the “post-injury syndrome,” inflammasomes 
could become promising targets. Indeed, some of the trauma-
induced DAMPs are recognized by NOD-like receptors (NLRs) 
leading to the assembly of intracellular multiprotein complexes 
named inflammasomes (Figure  1). Accumulating data suggest 
that inflammasomes are involved in the generation of tissue 
damage as they promote an exaggerated systemic and organ-
specific inflammatory response (14). Inflammasome activation 
in immune cells, endothelial cells, and platelets contribute to 

microcirculatory dysfunctions and play a critical role in tissue 
injuries after ischemia and reperfusion (15). Inflammasomes are 
involved in the development of traumatic brain injury (TBI) (16) 
and acute respiratory distress syndrome (ARDS) (17). Finally, 
inflammasomes may also play a role in monocyte dysfunctions 
involved in post-trauma immunosuppression (18).

In this review, we put into perspective how inflammasomes 
contribute to the pathophysiology of early post-trauma organ 
dysfunction, systemically and at specific organ levels. We also 
discuss the involvement of inflammasomes in the development 
of post-trauma immunosuppression. Finally, based on existing 
data from therapeutic strategies targeting inflammasomes in 
inflammatory diseases, we propose therapeutic perspectives 
highlighting the challenges of research on inflammasomes in 
trauma.

DeSCRiPTiON AND FUNCTiONS OF 
iNFLAMMASOMeS

General Description
Inflammasomes were initially described in 2002 as caspase-1 
activating multiprotein complexes (19). Since this seminal report, 
multiple distinct inflammasomes have been identified. Both 
pathogen-associated molecular patterns (PAMPs) and endog-
enous damage-associated molecular patterns (DAMPs) can 
trigger inflammasome activation. In the context of trauma, we 
will focus on the inflammasome-mediated response to DAMPs. 
Inflammasomes are highly expressed in immune cells, especially 
monocytes and macrophages where they were first discovered. 
However, inflammasomes are also expressed in a wide range of 
parenchymal, endothelial (20, 21), and epithelial cell (22, 23) 
types. Beyond modulation of inflammation, inflammasomes are 
involved in many physiological processes such as metabolism, 
cell survival, or tumorigenesis. Consequently, disturbances of 
inflammasome activity have been involved in a wide range of 
diseases associated with inflammatory disorders (24). In depth, 
recent reviews describe inflammasome structures, functions, 
and regulatory mechanisms providing a translational overview 
of their role in health and disease, and their potential in develop-
ment of new immunomodulatory therapeutics (25–30). Here, we 
provide a brief description of inflammasome biology to introduce 
their role in post-trauma immune disorders.

Structure and Functions of 
inflammasomes
Inflammasome assembly results from the oligomerization of sen-
sor complexes in response to an intracytoplasmic trigger, allowing 
procaspase 1 recruitment and activation through interactions of 
homotypic caspase recruitment domains (CARDs). Depending 
on the sensor, an adaptor protein known as ASC (apoptosis-
associated speck-like protein containing a CARD) is required for 
caspase recruitment (19). Inflammasomes are named after their 
intracellular receptor, including NLRs, AIM2-like receptors, RIG-
I-like receptors, or pyrin (28). NLRs, the most studied receptors 
to date, are highly conserved throughout evolution, suggesting 
an important role in host defense to aggression. NLRs contain 

Abbreviations: AIM, absent in melanoma; AKI, acute kidney injury; ALR, 
AIM2-like receptor; ASC, apoptosis-associated speck-like protein containing 
CARD; ARDS, acute respiratory distress syndrome; ATP, adenosine triphosphate; 
BALF, bronchoalveolar lavage fluid; CARD, caspase recruitment domain; CARS, 
compensatory anti-inflammatory response syndrome; CIRP, cold-inducible RNA-
binding protein; CLR, C-type lectin receptor; CNS, central nervous system; DAMP, 
damage-associated molecular pattern; DNA, deoxiribonucleic acid; HMGB1, high 
mobility group box 1; HS, hemorrhagic shock; IFN, interferon; IL, interleukine; 
I/R, ischemia/reperfusion; LPS, lipopolysaccharide; MODS, multiorgan dysfunc-
tion syndrome; MV, mechanical ventilation; NFκB, nuclear factor-kappa B; 
NLR, nod-like receptor; NLRC, nucleotide-binding oligomerization domain, 
Leucine rich repeat and caspase domain containing; NLRP, nucleotide-binding 
oligomerization domain, Leucine rich repeat and pyrin domain containing; 
NOD, nucleotide oligomerization binding domain; PAMP, pathogen-associated 
molecular pattern; PRR, pattern recognition receptor; PYD, pyrin domain; RAGE, 
receptor for advanced glycation endproducts; RLR, RIG-I-like receptor; RNA, 
ribonucleic acid; ROS, reactive oxygen species; SARS, systemic anti-inflammatory 
response syndrome; SCI, spinal cord injury; SIRS, systemic inflammatory response 
syndrome; TBI, traumatic brain injury; TLR, toll-like receptor; TNF, tumor necro-
sis factor; TRALI, transfusion-related acute lung injury; VILI, ventilator-induced 
lung injury.
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FiGURe 1 | Molecular mechanisms of damage-associated molecular pattern mediated inflammasome activation. Inflammasome activation requires two signals. The 
first signal ultimately leads to the translocation of NFκB transcription factor to promote the expression of pro IL-18 and pro-IL-1β. The second signal is mediated by 
a nod-like receptor (NLRP3, AIM2, or NLRP1). Upon activation, NLR activates caspase-1 with or without recruitment of adaptor protein ASC. Activated caspase-1 
leads to inflammasome formation and to the secretion of mature forms of IL-18 and IL-1β, and the release of HMGB1. In addition, inflammasomes promote a 
specific pro-inflammatory cell death, called pyroptosis that contributes to tissue damage in various cellular subtypes. Abbreviations: CIRP, cold-inducible RNA-
binding protein; CLR, C-type lectin receptor; ROS, reactive oxygen species; ATP, adenosine triphosphate; TLR, toll-like receptor; IL, interleukine; AIM, absent in 
melanoma; NFκB, nuclear factor-kappa B; HMGB1, high mobility group box 1.

TAbLe 1 | Inflammasome activators and activated inflammasomes in trauma.

inflammasome 
activators

NLRP3 NLRP1 AiM2 Reference

ATP + Gombault et al. (36)
K+ fluxes + + Pétrilli et al. (37)

Reactive oxygen 
species

+ Tschopp and Schroder (38)

Uric acid + Gasse et al. (39)

Mitochondrial DNA + Shimada et al. (40)

dsDNA + Hornung et al. (34)

CIRP + Yang et al. (41)

Heme + Dutra and Bozza (42)

CIRP, cold-inducible RNA-binding protein; ATP, adenosine triphosphate; AIM, absent in 
melanoma; DNA, deoxiribonucleic acid.
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an N-terminal signaling domain supporting effector functions, 
and a C-terminal domain containing leucine rich repeat (LRR) 
sequences which is usually involved in the interaction with 
ligands (Table  1). N-terminal and C-terminal domains flank a 
nucleotide-binding domain that defined NLRs (28) (Figure 1). 
NLRP3 and NLRP1 inflammasomes may be activated by a wide 
range of exogenous and endogenous compounds, making them 
the perfect candidates for inflammasome-mediated inflamma-
tory response in trauma (Table  1) (31, 32). Among non-NLR 
inflammasomes, absent in melanoma (AIM)2 is one of the most 
studied. Specifically triggered by cytosolic deoxiribonucleic acid 
(DNA), AIM2 activation has been reported in trauma. Like 
NLRP3, activated AIM2 receptor nucleates ASC through PYD–
PYD interactions to form AIM2 inflammasome. The structure 
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of NLRP1 slightly differs as it contains both PYD and CARD 
domains, resulting in the ability to recruit procaspase 1 with or 
without ASC (33, 34) (Figure 1). Other non-NLR receptors have 
been shown to assemble inflammasomes, but their roles in critical 
injury have rarely, if ever, been studied. Of note, some differences 
in the structural characteristics or mechanisms of assembly have 
been observed between mouse and human. Thus, the interpreta-
tion of results from in vivo animal models should always take into 
account such possible discrepancies (35).

Specific Features of inflammasomes as 
innate immune Receptors
Like toll-like receptors (TLRs), inflammasomes were recently 
demonstrated to orchestrate innate immune responses to aggres-
sion (25). However, the localizations, mechanisms of activation, 
and signaling pathways differ between these two pattern recogni-
tion receptors (PRRs) (43). TLRs are transmembrane proteins 
localized either to the cell surface or within endosomes. Thereby, 
TLRs mainly recognize extracellular compounds via their 
extracellular or intra-endosomal LRR motif (44). Conversely, 
inflammasomes are intra-cytosolic sensors detecting mostly 
intracellular stimuli (25). Whereas TLRs activation results from 
binding to well described specific ligands, the triggers for inflam-
masome activation are more heterogeneous, ranging from the 
recognition of specific ligands to the sensing of disturbances in 
the intracellular environment (29). Activation of TLRs mainly 
leads to a transcriptional immune response via either the MyD88/
nuclear factor-kappa B, mitogen-activated protein kinase, or 
TRIF pathways, resulting in the synthesis of pro-inflammatory 
proteins, cytokines, and type I Interferon (IFN) (45). Conversely, 
inflammasome activation does not support any direct transcrip-
tional activity but allows the caspase-1 dependent cleavage of 
pro-interleukine (IL)-1β and pro-IL-18 into mature forms (27). 
Importantly, inflammasome activation generally requires a prim-
ing step allowing the transcription of the inflammasome compo-
nents genes (46, 47), in which TLRs are critically involved (47). 
The second signal comes from the detection of an intracellular 
“danger” by the cytoplasmic sensor (31). Finally, TLR-signaling 
was demonstrated to promote various forms of programmed cell 
death such as autophagy, apoptosis, or necrosis, whereas inflam-
masomes trigger specific caspase-1-dependent pyroptotic cell 
death (45, 48).

inflammasomes: A Double-edged Sword 
in Host Defense
Inflammation is an evolutionarily conserved, protective response 
to harmful stimuli mounted to preserve or restore the integrity of 
the body. However, the intensity, duration, and compartmentali-
zation of the inflammatory response needs to be tightly regulated. 
Excessive, extensive, or prolonged inflammation is responsible 
for secondary damage, as observed during ARDS or trauma (12). 
Beyond their critical role in detection and control of intracellular 
pathogens (49, 50), studies suggest that inflammasomes contrib-
ute to tissue regeneration through inflammasome-dependent 
cytokines which promote effective clearance of damaged cells 

and tissue repair (22, 51). Alongside these beneficial roles, there 
is evidence that inflammasome activation is also responsible for 
unbalanced, excessive inflammation (52). Some of the numerous 
DAMPs released in trauma are known activators of inflammas-
omes, suggesting the potential role of inflammasome activation 
in the pathogenesis of trauma-associated immune disorders (10).

DAMP-MeDiATeD iNFLAMMASOMe 
ACTivATiON iN TRAUMA

The emergence of the concept of danger rather than “non-self ” as 
the trigger of the innate immune response was a turning point in 
the history of immunology (53). From this perspective, it is not 
surprising that various pathologic conditions associated with 
inflammatory disorders, such as trauma, sepsis, or ARDS, share 
common pathophysiologic features (54, 55). Through the activa-
tion of identical PRRs, PAMPs initiate the immune response to 
infection whereas DAMPs trigger “sterile inflammation” (10). 
Conversely to PAMPs that are exogenous compounds of infectious 
origin, DAMPs are mostly endogenous self-molecules reflecting 
the alteration of cellular integrity. This explains why some authors 
proposed the term “alarmin” to specifically designate damage-asso-
ciated endogenous compounds and broaden the DAMP acronym 
to “danger-associated molecular pattern” including both alarmins 
and PAMPs (56, 57). In this review, we chose to use the term DAMP 
as “damage-associated molecular pattern,” equivalent to alarmin.

The definition and classification of DAMPs are still debated, 
as any intracellular compound could potentially be a DAMP. 
DAMPs should be released after cell stress or damage and 
reflect damage intensity. In addition, DAMPs should trigger an 
inflammatory response through identified receptors, measurable 
at physiological concentrations. However, all the endogenous 
molecules supporting a pro-inflammatory role cannot always be 
strictly classified as DAMPs based on these criteria (10, 56, 58). 
Because the nature of DAMPs is extremely heterogenous, and the 
receptors involved in their recognition are often redundant with 
other DAMPs or PAMPs, the conceptual framework of DAMPs 
is not constrained to specific molecular groups or unique signal-
ing pathways. Pragmatically however, the concept of DAMPs 
provides the opportunity to distinguish exogenous danger signals 
such as microbial patterns, from endogenous danger signals that 
can be recognized through innate immune sensors and/or trig-
ger an immune response. Consistently, it has been proposed to 
take into account the clinical relevance of the compounds in the 
pathogenesis of the inflammatory response to injury to define 
DAMPs (10, 56, 58). Indeed, some of these molecules can trigger 
inflammation through direct interaction with host cells, but also 
indirectly via complement activation for example. Direct interac-
tions with host cells occurs either via cell surface and extracellular 
milieu receptors, such as TLRs or receptor for advanced glycation 
endproducts (RAGE), or via intracellular receptors such as NLRs 
(10, 59). The intra- versus extracellular compartmentalization of 
DAMPs determines the nature of activated PRRs (56). In trauma, 
mechanical tissue injuries and blood loss, associated with second-
ary events including ischemia/reperfusion (I/R), hypothermia, 
hypoxia, coagulopathy, or neuroendocrine disorders, lead to 
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FiGURe 2 | Contribution of inflammasomes to remote tissue damage after 
trauma. The initial trauma injury induces the release of a large amount of 
different damage-associated molecular patterns (DAMPs). DAMPs can 
activate inflammasomes in various cell types such as hematopoietic cells 
(platelets, neutrophils, monocytes, and macrophages), epithelial cells, or 
endothelial cells. This dramatic inflammasome activation leads to increase the 
release of new DAMPs, maintaining a vicious circle, that contributes to 
worsen organ damage and propagate the pro-inflammatory response.
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cell stress and cell death (9–11). Both cell stress and cell death 
lead to the active or passive intra- and extracellular release of 
intracellular compounds that are the major source of DAMPs 
(56). Several classes of compounds have been identified ranging 
from the small uric acid or adenosine triphosphate (ATP) mol-
ecules to large proteins over 50 kDa. This tremendous structural 
diversity associated with the extensive variety of PRRs and their 
mechanisms of interaction highlights the complexity of DAMP 
signaling, which was previously reviewed (56).

Here, we focus on characterized DAMPs involved in the 
trauma-related, inflammasome-dependent inflammatory 
response.

DAMPs are classified depending on their origin, mitochon-
drial, cytosolic, or nucleic. Mitochondrial DAMPs identified in 
trauma-induced response are: mitochondrial DNA, reactive oxy-
gen species (ROS), and ATP, which promote NLRP3 inflamma-
some activation, and NLRP1 inflammasome activation for ATP 
(38). Cytosolic DAMPs are mostly represented by uric acid, and 
cold-inducible RNA-binding protein (CIRP), a highly conserved 
chaperone protein that belongs to the family of cold shock pro-
teins, both of them activating the NLRP3 inflammasome pathway 
(39, 41). Heme is also reported to activate NLRP3 inflammasome, 
participating in hemolysis-induced lethality in trauma (42).

Two main nucleic DAMPs are demonstrated to participate 
in trauma-induced immune response: histones (60) and host 
DNA (61). Host DNA interacts directly with AIM2 inflam-
masome, through its HIN domain (46). Histones activate 
the NLRP3 inflammasome, but the precise pathways are not 
characterized (60).

The diversity of stimuli described as NLRP3 and NLRP1 
activators makes the hypothesis of direct interaction unlikely, but 
rather supports the existence of common intracellular pathway(s) 
leading to inflammasome assembly. DAMP-mediated NLRP3 
and NLRP1 activation remains poorly understood despite years 
of research. However, the reduction of intracellular potassium 
levels through K+ efflux channel is recognized as a downstream 
convergence point (37) (Figure 1).

Interestingly, inflammasome activation could result from 
extracellular DAMPs released by surrounding stressed or dying 
cells, or via intracellular nucleic and mitochondrial DAMPs 
translocating into the cytosol in response to cell stress (56).

The nature of these DAMPs and the inflammasomes to which 
they are related are summarized in Table  1. Importantly, one 
should keep in mind that other uncharacterized ligands could 
also be potential activators of the inflammasomes after trauma.

Priming and activation of inflammasomes through DAMPs 
have been proven in trauma-like models. In proof-of-concept 
experiments, Iyer et al. show that murine macrophages exposed 
to necrotic cells produced by pressure disruption, hypoxic injury, 
or complement-mediated damage, elicit NLRP3 inflammasome 
priming and activation (62). Likewise, injection of necrotic cells 
in the peritoneum of wild-type mice leads to NLRP3 activation 
(62). Consistently, recent studies show the priming and activation 
of the NLRP3 inflammasome in the injured tissues of rodents in 
response to mechanical stress (63, 64). Similar observations have 
been made in the brain, heart, kidney, and testis of mice exposed 
to hypoxia–ischemia (15). Here, we describe how inflammasome 

signaling participates in the pathogenesis of remote tissue and 
organ damage in this context.

iNFLAMMASOMeS iN THe 
PATHOGeNeSiS OF ReMOTe TiSSUe 
AND ORGAN DAMAGe AFTeR TRAUMA

The pathogenesis of remote organ injury after trauma is a multi-
factorial process that has already been expertly reviewed (9, 11, 
12, 55, 65). The post-trauma period is often associated with an 
intense pro-inflammatory response termed “systemic inflamma-
tory response syndrome” or SIRS. SIRS often exceeds its functions 
of clearing and repair, promoting tissue damage independently 
of the initial injury (12, 55). The concomitant dysfunction of 
endothelium, coagulation, and immune system promotes the 
onset and the self-perpetuation of secondary damages to tissues 
(Figure 2). The extreme expression of this immune deregulation 
is multiorgan dysfunction syndrome (MODS) which occurs in 
approximately in one to four trauma patients, and represents the 
leading cause of “late” death in trauma (66). Because DAMPs 
both drive and result from tissue damage, they play a central 
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role in the pathogenesis of trauma-related critical illness, sup-
porting a vicious cycle of injury (55). Multiple studies suggest 
that inflammasome activation, notably NLRP3, is involved in the 
pathogenesis of SIRS and MODS after trauma.

Limits to the Study of Host Response 
Pathophysiology in Trauma
In adult trauma studies, the variability in the timeframes of bio-
logical sampling, in patients’ underlying conditions, and in patient 
management, particularly in the late phase of trauma in which 
patients are variably addressed to critical care units, intensive 
care units, step down units, or surgical wards leads to excessively 
challenging interpretation of results. To address these problems, 
strictly controlled animal models greatly simplify addressing 
physiopathological questions, albeit with inherent limitations. 
The advantages and limitations of animal models of trauma were 
reviewed by Tsukamoto and Pape (67) and Deitch (68). Regardless 
of the limitations of animal models, some can provide informa-
tion even on late phase of trauma and may corroborate clinical 
observations. For instance, while in adult patients with trauma 
brain injury, a significant reduction in phagocytosis capacity has 
been observed more than 3 weeks after the first insult, in a murine 
brain injury model, a reduced amount of phagocytic cells and a 
decline of the thymic mass were observed after 2 months post-
injury (69, 70). Considering this example, promising data from 
animal models may be useful even in studying the later phases of 
trauma and trauma-induced long-term immune disorders.

inflammasomes in Uncontrolled 
inflammation After Trauma
Both inflammasome-mediated pro-inflammatory mediator 
release and pyroptotic cell death contribute to initiating, enhanc-
ing, and propagating inflammation after trauma (30, 71). In 
a rat model of acute severe stress, Maslanik et  al. demonstrate 
that caspase-1 activity promotes the production of IL-1β and 
IL-18 in the circulation and in peripheral tissues (72). In a 
mouse model of tissue contusion, Starzl et al. show that NLRP3 
inflammasome activation is associated with the severity of the 
inflammatory response through IL-1β and IL-18 secretion (64). 
Through multiple systemic and local effects, IL-1β is an essential 
actor of the inflammatory and immune response (73). IL-1β 
induces the expression of multiple pro-inflammatory genes 
such as IL-6, IL-8, MCP-1, IL-1α and β, platelet activating fac-
tor, and eicosanoids. IL-1β is responsible for the production of 
acute phase proteins such as CRP and coagulation factors. By 
enhancing the production of cell surface adhesion molecules 
and chemo-attractants, IL-1β promotes leukocyte recruitment 
and activation to the site of inflammation (74, 75). Although 
less studied than IL-1β, IL-18 also promotes the expression of 
adhesion proteins, pro-inflammatory cytokines, and chemokines 
beside its major role as an IFNγ inducer (76). Interestingly, it has 
been shown that inflammasome activation also plays a critical 
role in the passive and active extracellular release of high mobility 
group box 1 (HMGB1), a well-characterized DAMP in trauma 
(77). HMGB1, a ubiquitously expressed DNA-binding protein 
located in the nucleus, increases in patients serum and CSF after 

trauma (78, 79), triggering both pro-inflammatory response and 
leukocyte recruitment via its main receptors RAGE and TLR2/4 
(80, 81). HMGB1 is also been involved in post-trauma immu-
nosuppression (82). Therefore, HMGB1 has been proposed as 
a prognostic biomarker and as a potential therapeutic target in 
trauma (82, 83).

Together with inflammasome-dependent pro-inflammatory 
mediators, pyroptosis contributes to the overwhelming inflam-
matory response. Pyroptosis is characterized by cytoplasm swell-
ing and plasma membrane rupture (84). Pyroptosis allows the 
destruction of disturbed cells (85), but also leads to the release of 
the intracellular content into the extracellular space, contribut-
ing to “sterile” inflammation. Further inflammasome-dependent 
mechanisms allow the amplification of the inflammatory burst 
(27). First, the inflammasome apparatus per se, by promoting a 
large amount of active caspase 1 in response to a single trigger, 
contributes to amplify the signal (30, 86). Second, inflammasome 
components themselves, by releasing activated ASC into the 
extracellular environment, induce further inflammasome activa-
tion in surrounding cells (30, 71).

Altogether, inflammasome-mediated inflammation also pro-
motes the recruitment and activation of immune cells through 
a concentration gradient of DAMPs, cytokines, and chemokines 
(87). Inflammatory leukocytes are major effectors of post-injury 
secondary damage (88). When exposed to inflammatory media-
tors, immune cells start activating. This “priming” step promotes 
leukocytes adhesion to the microvascular endothelium and their 
extravasation into tissue through the vascular wall (89). The 
release by activated leukocytes of a wide array of mediators such 
as ROS, proteases, cytokines, chemokines, and lipid mediators 
into ischemic tissues promotes further endothelial barrier and 
parenchymal tissue damage (90).

inflammasomes and endothelial 
Dysfunction
Systemic release of DAMPs triggers the diffuse activation of 
endothelial cells in an organ-specific manner. Endothelial cells do 
not just form a mechanical barrier but rather constitute an active 
regulatory organ which plays an essential role in vascular homeo-
stasis and host defense (91). Under physiological conditions, the 
endothelium continuously maintains an antithrombotic environ-
ment by regulating platelet activation, and balancing inhibitors and 
activators of coagulation and fibrinolysis (91). Under pathological 
conditions such as trauma, endothelial functions are critical to 
control hemorrhage by promoting a procoagulant environment 
while preventing massive thrombosis (92). Vasoconstriction trig-
gered by the decrease in endothelial nitric oxide (NO) produc-
tion, platelet adhesion, and expression of procoagulant proteins 
such as endothelial tissue factor, allow the formation of adherent 
thrombi (Figure  2) (92). The endothelium also regulates the 
homing and recruitment of leukocytes. Activated endothelium 
overexpresses cell surface adhesion molecules, chemotactic and 
activating factors, setting the stage for immune cell recruitment 
even in non-injured, non-infected remote organs (92). Both 
clot formation and leukocyte infiltration are mandatory for the 
control of bleeding and the secondary tissue repair. However, 
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these mechanisms also contribute to worsen, disseminate, and 
perpetuate injury as well (Figure 2) (92).

There is evidence for the involvement of inflammasomes 
in endothelial dysfunction, even though specific studies in the 
context of trauma remain scarce. It has been shown in vitro that 
several DAMPs such as ATP or CIRP activate the NLRP3 inflam-
masome in endothelial cells (41, 93). The most striking data on 
the topic arise from studies performed in lung endothelium. 
Three recent studies using in vivo mouse models show that hem-
orrhagic shock (HS) induces NLRP3 priming and activation in 
lung endothelial cells, enhancing the pro-inflammatory response 
through pyroptosis and IL-1β secretion (20, 94, 95). Yang et al. 
demonstrate that endothelial cell pyroptosis leads to increased 
inflammation and injury in the lung of mice subjected to a “two-
hit” model of HS followed by lipopolysaccharide (LPS). In this 
model, major neutrophil alveolar recruitment and interstitial 
edema are attenuated in caspase-1-null mice (94). Xiang et al. find 
a role for hemorrhage-related ROS production in the activation of 
endothelial NLRP3 inflammasome, leading to increased levels of 
IL-1β in BAL (Figure 3) (20). A similar result is found by Xu et al., 
showing an increase in NLRP3 expression in endothelial cells 
responsible for higher IL-1β level in bronchoalveolar lavage fluid 
(20, 94, 95). These inflammasome-mediated responses contribute 
to endothelial damage associated with vascular leakage, edema, 
increased leukocyte infiltration, and cytokine release in the lungs 
(84, 87). Besides their effects on endothelial cells, inflammasomes 
also modulate other actors of vascular dysfunction and secondary 
damages, including platelets and coagulation.

inflammasomes, Platelet Functions, and 
Coagulation
Because they are anucleate, platelets were initially considered as 
simple procoagulant effectors. However, recent research estab-
lished that platelets also support critical pro-inflammatory and 
anti-infectious properties beside their role in hemostasis (96, 97). 
Indeed, activated platelets play a critical role in the inflammatory 
response, especially in ischemia-reperfusion. Platelets possess 
various immune receptors, cell surface adhesion molecules, and 
a broad spectrum of immunomodulatory mediators contained 
in preformed granules (98). When activated by circulating 
DAMPs, platelets adhere to endothelial cells and leukocytes to 
form aggregates. Adherent platelets can either release the content 
of their granules or synthetize pro-inflammatory mediators (99). 
Platelets modulate endothelial and immune cell functions. For 
instance, platelets enhance adhesion molecule expression and 
chemokine secretion of endothelial cells (98). Most importantly, 
platelets strongly promote leukocyte activation and adhesion to 
post-ischemic microvessels, enhancing their recruitment to sites 
of tissue damage (100). Platelets also directly modulate neutrophil 
functions such as phagocytosis and degranulation. Thus, platelets 
play a critical role in reinforcing the pro-inflammatory cycle lead-
ing to and perpetuating organ injury (97, 100).

Inflammasomes have been recently shown to be involved in 
the pro-inflammatory roles of platelets in both infectious and 
non-infectious diseases (97, 98). The effects of inflammasome 
activation on platelets, reviewed by Hottz et  al., are essentially 
mediated by the production of IL-1β (97). Briefly, it has been 
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recently discovered that platelets are capable of assembling func-
tional NLRP3 inflammasomes leading to the synthesis of IL-1β 
(101). Although anucleate, platelets possess a fully functional 
translational apparatus associated with constitutively present 
mRNA transcripts, including IL-1β (99, 102). These properties 
allow rapid synthesis of mature IL-1β after platelet activation (99). 
Although no study exists in the specific field of trauma, the role 
of inflammasomes on platelet functions has been studied in vitro 
in models of vascular injury or thrombin-induced platelet activa-
tion. These studies show that inflammasome-mediated IL-1β 
secretion, either in a paracrine fashion or through the release of 
IL-1β-rich microparticles, activate endothelial cells, with subse-
quent increase in endothelial permeability, neutrophil adhesion, 
and endothelial transmigration (97). Aside from their effects 
on platelet functions, inflammasomes are involved in driving a 
procoagulant response. Rothmeier et  al. show that ATP-driven 
inflammasome activation in murine bone marrow-derived mac-
rophages promotes the intracellular trafficking of tissue-factor 
onto the surface of MPs and thus facilitates the release of highly 
procoagulant MPs (103). These results suggest a deleterious role 
of DAMP-induced inflammasome activation in the onset of 
coagulopathy.

inflammasome in ischemia-Reperfusion
Endothelial, platelet, and coagulation dysfunction together with 
leukocyte activation actively contribute to worsen initial tissue 
ischemia. While changes in cell physiology under short-acting 
ischemic conditions represent an appropriate protective process, 
prolonged or intense ischemia unconditionally leads to cell dam-
age and death (100). In addition, reperfusion of either primary 
injured or distant ischemic organs is also a critical actor of tissue 
damage and DAMP production through “ischemia-reperfusion 
syndrome” (104). At the cellular level, reperfusion triggers mas-
sive production of ROS, calcium overload, and severe mitochon-
drial dysfunction, which are all critical events in the progression 
of cell death (100). The active contribution of inflammasomes to 
I/R-induced injuries has been demonstrated in vivo using experi-
mental models of mice deficient for inflammasome components 
or IL-1β and IL-18 signaling pathways. The inflammasomes have 
been involved in the pathogenesis of injury in the heart, liver, 
kidneys, central nervous system (CNS), and lungs exposed to I/R.

In the heart, I/R-related phenomenon are responsible for 
cardiac cell death, enhancing the size and severity of myocardial 
infarction, and promoting fibrosis after ischemic events (105). 
The NLRP3 inflammasome has been reported to play a major 
role in this process via IL-1β and IL-18 secretion (95–98) 
(Figure  3). It has been shown in mouse models of myocardial 
I/R that inflammasome activation in cardiac fibroblasts (106), 
cardiomyocytes (107), and cardiac endothelial cells (108) are 
essential to the inflammatory response driving myocardial I/R 
injury. Inflammasome activation promotes myocardial inflam-
matory cell infiltration and increased pro-inflammatory cytokine 
expression in cardiac tissue. Consistently, myocardial infarct size, 
contractile dysfunction, and fibrosis are decreased in ASC and 
caspase-1 deficient mice (106, 109). Likewise, pharmacological 
inhibition of NLRP3 or IL-1β/IL-18 signaling protects the heart 
from I/R injury in a rodent model of cardiac ischemia (110–114) 

(Figure 3). In this context, the role of ROS as activators of the 
NLRP3 inflammasomes seems predominant (15).

As for the heart, the critical role of inflammasomes is well 
documented in several acute and chronic human kidney diseases 
(115). As a result, inflammasome signaling is already an effective 
therapeutic target for some selected patients with chronic renal 
failure (115). Inflammasomes are involved in the pathogenesis 
of acute kidney injury (AKI) related to I/R (15) (Figure 3). With 
crucial functions in maintaining water and sodium homeosta-
sis, overall plasma electrolyte regulation and detoxification, the 
kidneys receive more than 20% of the cardiac output. To sup-
port their functions, the kidneys and particularly renal tubular 
epithelial cells have a high mitochondrial density which requires 
a high continuous energy supply. Thus, they are vulnerable to 
oxygen and energy deprivation. The release of mitochondrial 
components, ROS, and other DAMPs from damaged tubular 
epithelial cells promotes acute cell death (Figure  3). CIRP is 
also highlighted to participate in I/R-induced damage during 
AKI, in a murine model using CIRP-KO mice (116) (Figure 3). 
The subsequent pro-inflammatory burst promotes fluid leakage 
and parenchymal infiltration of inflammatory cells, worsening 
renal dysfunction and injury (117). Subsequent tubular necrosis 
and loss of functional nephrons lead to the clinical syndrome 
of AKI, explaining the high frequency of acute renal failure in 
critical illness (118). Once again, DAMPs are the initiators of 
the inflammatory response. There is substantial evidence that 
the inflammasome–IL-1β axis plays a key role in the primary 
mechanisms leading to renal necroinflammation. Macrophages 
and dendritic cells, in addition to most renal parenchymal cells, 
express inflammasomes (115). DAMPs released from necrotic 
cells have been shown to activate the NLRP3 inflammasome 
in renal tissue. Indeed, Iyer et  al. observe an upregulation of 
Nlrp3 and Asc gene expression in a mouse model of nonlethal 
renal I/R injury, associated with intense acute tubular necrosis 
(62). Nlrp3, Asc, and Casp1/11 deficient animals are consistently 
protected from renal necroinflammation (115, 119). Nlrp3-
deficiency dramatically improves the survival of animals in 
lethal renal ischemic injury and provides functional protection 
against renal failure as suggested by significantly lower plasma 
urea and creatinine levels. This protection is associated with 
reduced neutrophil infiltration and IL-1β levels in the renal 
interstitium of Nlrp3-deficient mice (62, 120, 121). The role of 
IL-1β and IL-18 in acute renal failure is still debated as the results 
of blockade experiments are controversial (122). Shigeoka et al. 
find that blocking these cytokines fails to improve creatinine 
levels and histopathological damage in murine models (120). 
However, Wu et al. demonstrate that IL-18-null mice show bet-
ter kidney function, less tubular damage, and reduced necroin-
flammation. The same observations have been made when mice 
are pretreated with the IL-18 antagonist IL-18BP (123). Last, 
NLRP3 might impair tissue repair during the reperfusion phase, 
as Nlrp3-null mice show reduced tubular necrosis and apoptosis 
together with increased proliferation of tubular epithelial cells 
after I/R injury (124).

A similar role for NLRP3 and AIM2 inflammasomes has been 
recently reported in hepatic I/R injury (87, 125, 126) (Figure 3). 
DAMPs locally released during I/R, namely ROS, ATP, or 
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extracellular histones, have been shown to trigger inflammasomes 
activation (Figure 3) in Kupffer cells, which critically contribute 
to the exacerbation of the local inflammatory response (87, 125, 
126). Inflammasome-mediated liver injury in I/R arises from 
mechanisms involving pro-inflammatory cytokines and excessive 
neutrophil infiltration (127). McDonald et al. and others demon-
strate that the I/R-related pro-inflammatory environment leads 
to the adhesion of circulating neutrophils within liver sinusoids, 
and facilitates their migration through healthy tissue toward 
damaged tissue (87). Consistently, both the inhibition of NLRP3 
inflammasome activity in mice exposed to liver I/R is associated 
with decreased levels of cytokines and neutrophil infiltration in 
hepatic tissue, with a dramatic reduction in histological damage 
and transaminase release (87, 125, 128, 129). Similar results are 
found when inhibiting IL-1β signaling via blocking antibodies or 
IL-1-receptor antagonist (87, 127, 128). Finally, blocking inflam-
masome activators such as CIRP increases the overall survival in 
a mouse model of hepatic I/R, by decreasing neutrophils recruit-
ment and nitrosative stress level (130).

In addition to their roles in I/R-related injury, inflammasomes 
are involved in brain and lung dysfunction following trauma.

CONTRibUTiON OF iNFLAMMASOMeS 
TO SPeCiFiC ORGAN DYSFUNCTiONS 
AFTeR TRAUMA

brain injury
Damage to CNS structures is a major determinant of vital and 
functional prognosis in trauma patients. Thus, studying the 
mechanisms leading to CNS injuries following trauma is crucial. 
While the primary traumatic insult directly leads to immediate 
tissue damage, the pro-inflammatory innate immune response 
to injury, termed “neuroinflammation,” is responsible for addi-
tional secondary cellular damage and extension of the lesions 
(131, 132). Among the multiple actors involved in neuroinflam-
mation following trauma, the inflammasomes, specifically 
NLRP1 and NLRP3, play a major role (133, 134) (Figure  3). 
Although it has been shown that inflammasome-mediated 
IL-1β production contributes to CNS tissue repair after trauma 
(135), the pro-inflammatory response resulting from inflamma-
some activation, together with glial and neuronal pyroptotic cell 
death, promote the secondary insult that contributes to worsen 
and extend initial damage (131). Many cell types, including 
endothelial cells (21), microglia (136), astrocytes, and neurons 
(133) are capable of assembling inflammasomes. The role of 
inflammasomes in TBI and spinal cord injury (SCI) has been 
recently reviewed (133, 134).

NLRP1 retains a special interest in the context of neurotrauma 
as a major actor of induction and diffusion of inflammation 
(16). Importantly, the NLRP1 inflammasome is already preas-
sembled before any stimulation in neurons and other CNS cells 
(133). It has been proposed that this preassembly of the NLRP1 
inflammasome in the CNS may facilitate rapid innate immune 
response after CNS trauma, or may serve to maintain a constant 
low level of IL-1β in these cells (133) (Figure 3). CNS NLRP1 
activation is triggered by multiple stimuli including the activation 

of pannexin-1 channels, triggered by high extracellular potas-
sium concentrations (137). Likewise, P2X4 purinergic receptors 
activated by extracellular ATP induce NLRP1 inflammasome 
activation (133) (Figure 3).

de Rivero Vaccari et  al. report the increased expression of 
NLRP1 inflammasome, ASC, caspase-1, and subsequent IL-1β 
in the brain and spinal cord motor neurons following trauma 
(138, 139). Consistently, Satchell et  al. observe that caspase 1 
and IL-1β proteins are increased in cerebrospinal fluid in infants 
and children after severe TBI (140). Moreover, de Rivero Vaccari 
et  al. find that NLRP1 inflammasome proteins are present in 
exosomes derived from cerebral spinal fluid of patients with SCI 
and/or TBI (141). These exosomes, by exposing neighboring cells 
to their cargo of proteins such as IL-1β as well as inflammasome 
components, contribute to the diffusion of inflammation in the 
CNS (142).

NLRP3 expression and activation also increase in the brain 
after direct trauma or following ischemia in rodent models, 
and NLRP3 knockdown leads to a reduction of brain dam-
age and inflammatory mediators in animal models (143, 144). 
Consistently, Wallisch et al. report increased NLRP3 levels in CSF 
from children with severe TBI, which is independently associated 
with poor outcome (145).

Considering the role of inflammasomes in the particular 
case of cerebral ischemia, it has been shown that activated 
inflammasomes, namely NLRP3 and AIM2, increase inflam-
mation, infarct size, and neurovascular damage (144, 146). 
IL-1β-triggered inflammation is a major contributor to 
cell death in the ischemic brain, but some studies report 
inflammasome-mediated effects that are independent of 
IL-1β production. Consistently, inflammasome inhibition or 
blockade of IL-1β both significantly decrease neuronal cell 
death in the brain or spinal cord of ischemic animals (147). 
The link between inflammasome activity, CNS inflammation, 
and functional outcome leads some authors to suggest the 
use of inflammasome protein levels in cerebrospinal fluid of 
brain-injured patients as biomarkers of functional prognosis 
(148). Interestingly, regulatory mechanisms that downregulate 
NLRP1 or NLRP3 activity exhibit a protective role against CNS 
injury (133, 134). For example, Lin et al. show that the down-
regulation of NLRP1 activity by heme oxygenase-1 decreases 
NLRP1 inflammasome-induced neuronal death and improves 
functional recovery in a rat model of spinal cord compression 
(149). Experimental inhibition of inflammasomes in rodent 
models of TBI or SCI, targeting either the inflammasome 
components ASC or NLR, caspase-1 or IL-1β, shows promising 
results in term of histopathological improvement and improved 
functional outcome (132, 138, 149–153) (Figure 3).

However, in TBI, inflammasome activation is not the only 
driver of organ dysfunction. It has indeed been shown that the 
CNS, particularly through the Hypothalamic–Pituitary–Adrenal 
axis, drives control of the peripheral immune response (154). 
This topic has been previously extensively reviewed (155, 156). In 
brief, the studies suggest that CNS injury impacts both circulating 
immune cells populations and function, potentially contributing 
to secondary damage to remote organs and susceptibility to infec-
tion (88, 157).
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Acute Lung injury
The lung is a vital organ supporting blood oxygenation and 
decarboxylation necessary to aerobic life. Gas exchange between 
blood and air is highly dependent on the integrity of the alveolar-
capillary membrane. Any event leading to tissue damage may 
impair oxygenation and compromise survival. Thus, lung immune 
responses and inflammatory processes have to be tightly regulated 
to deal with aggression while maintaining lung structure and 
homeostasis compatible with respiratory function. The lungs are 
exposed through the pulmonary vessels to central venous blood 
conveying systemic DAMPs from injured tissues. Thus, the lungs 
are highly susceptible to developing innate responses leading to 
acute lung injury in response to systemic inflammation encoun-
tered in critical illness. Accumulating evidence in the literature 
suggests that inflammasome-dependent excessive inflammation 
is involved in the pathogenesis of acute lung injury (158, 159).

It has been shown that trauma-related acute respiratory condi-
tions lead to systemic and local NLRP3 inflammasome activation. 
Dolinay et al. report the increase of caspase 1, IL-1β, and IL-18 
mRNA and subsequent IL-18 and caspase 1 protein levels in 
peripheral blood of patients with trauma-related ARDS (160). 
Other teams report NLRP3 inflammasome expression and activa-
tion in the lungs of mice undergoing I/R acute lung injury (20, 95, 
159) (Figure 3). Various conditions encountered in trauma, such 
as HS, lung contusion (150, 151), burns (161), ventilator-induced 
lung injury (VILI), or transfusion-related acute lung injury 
(TRALI), have been shown to activate the NLRP3 inflammasome 
in the lung. Animal studies report NLRP3 inflammasome activa-
tion in lung endothelial cells and alveolar macrophages (AMs) 
after HS, resulting in the amplification of local inflammation 
and IL-1β secretion (20, 94, 95). Consistently, inhibition of the 
NLRP3 inflammasome attenuates acute lung injury, attested by 
the decrease in histopathologic damages, reduction in myeloper-
oxidase activity and inflammatory cytokines in lung tissue (161) 
(Figure 3).

Inflammasomes have also been implicated in the development 
of VILI. VILI is caused by lung overinflation during mechanical 
ventilation (MV) responsible for baro- and volo-trauma that 
induce overwhelming inflammation (162) (Figure  3). Recent 
studies demonstrate that sterile inflammation in response to 
MV is NLRP3-dependent. In mice, MV increases inflamma-
some gene expression in lung tissue and AMs (160, 163–165). 
Concomitantly, MV enhances IL-Iβ and L-18 protein levels in 
the lung and bronchoalveolar lavage. Genetic deletion of Nlrp3, 
Caspase-1, or Il-18 is associated with reduced MV-induced lung 
injury, assessed by alveolar neutrophil infiltration, alveolar-
interstitial edema, BAL fluid protein content, and pulmonary cell 
apoptosis (160). Likewise, IL-18 or IL-1β neutralizing antibodies 
significantly reduce MV-induced inflammatory lung injury. The 
authors show that AMs are the main cell type involved in IL-1β 
and IL-18 production (160). Though the exact mechanisms 
remain to be completely elucidated, it is hypothesized that bio-
mechanical cell trauma related to MV may lead to the release of 
intracellular DAMPs inducing inflammasome activation (163). 
Indeed, Wu et al. show that NLRP3 inflammasomes are activated 
in mouse AMs exposed to cyclic stretch in vitro. They report that 

mitochondrial generation of ROS, together with uric acid release, 
are responsible for stretch-induced NLRP3 inflammasome acti-
vation (164). Consistently, Kuipers et al. find increased uric acid 
levels in BAL fluid of ventilated mice (163). Finally, patients suf-
fering from ARDS also show increased IL-18 concentration in the 
serum, whose levels were correlated with lactate concentration, 
APACHE II score, and mortality (160).

Last, inflammasomes may play a role in the pathogenesis of 
TRALI (Figure 3). Patients with severe trauma often require blood 
transfusions. TRALI is a rare but severe complication occurring 
within 6 h of blood transfusion (166). The pathogenesis of TRALI 
remains unclear, but might arise from the injury of the pulmonary 
microvasculature in a “two-hit” model (167). The “first hit” or 
priming step is an initial injury to the pulmonary endothelium 
that promotes endothelial cell activation. Mechanisms of this 
initial pulmonary endothelial injury may be as diverse as MV, 
direct traumatic injury, and/or sepsis. Endothelial activation leads 
to adherence, activation, and sequestration of neutrophils in the 
pulmonary capillary beds. The “second hit” is mediated by the 
blood transfusion itself. Indeed, blood storage is associated with a 
varying degree of hemolysis, which releases DAMPs into the stored 
blood units. The second exposure of the primed lung circulation 
to DAMPs is thought to further activate neutrophils, triggering the 
intense pro-inflammatory response that leads to acute lung injury 
(167). Some authors propose that the NLRP3 inflammasome plays 
a role in this inflammatory process, linking the two-hit patho-
genesis of TRALI with the two-step activation of inflammasomes 
(167). Indeed, the priming step of TRALI may coincide with the 
expression of NLRP3 inflammasome in the different types of 
immune and endothelial cells in the lung, while the second step 
involving DAMPs such as heme or extracellular ATP, may trigger 
inflammasome activation and subsequent inflammation (168). 
However, this hypothesis remains to be confirmed (167).

iMPAiRMeNT OF iNFLAMMASOMe 
FUNCTiONS AS A COMPONeNT OF 
TRAUMA-iNDUCeD 
iMMUNOSUPPReSSiON

After severe injury, an anti-inflammatory response named com-
pensatory anti-inflammatory response syndrome (CARS), occurs 
concomitantly to the pro-inflammatory response. When excessive 
or persistent, CARS leads to the severe systemic anti-inflamma-
tory response syndrome, which promotes immunosuppression, 
secondary infections, and late or persisting organ dysfunctions 
(12, 169). The deactivation of monocytes/macrophages is an 
important component of immunosuppression following trauma 
(157–160). Interestingly, inflammasomes are major effectors of 
monocyte/macrophage immune functions. Although no direct 
proof exists, two studies suggest that inflammasome function 
impairment in immune cells may be involved in post-trauma 
immunosuppression.

Relja et al. show that NLRP1 gene expression after LPS stimu-
lation is reduced in monocytes isolated from trauma patients 
compared to healthy volunteers (18). The decrease in mRNA 
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levels of NLRP1 exists upon admission to the emergency depart-
ment and persists over 10 days of immune monitoring. Although 
NLRP1 protein levels are not assessed in this study, the release 
of IL-1β from monocytes of trauma patients decreases but is 
restored with NLRP1 transfection. The authors hypothesize that 
restoring NLRP1 activity may improve the immune response to 
PAMPs/DAMPs in this context. However, the role of the other 
critical inflammasomes such as NLRP3 is not concomitantly 
assessed (18). In a non-trauma study that enrolled 51 patients 
who had undergone cardiopulmonary resuscitation after car-
diac arrest, the levels of AIM2 gene expression and activity are 
downregulated in monocytes of resuscitated patients compared 
to control patients (170). Conversely, NLRP3, ASC, and IL-1β 
are upregulated at 12, 24, and 48  h following cardiac arrest. 
Interestingly, a time-dependent decrease in monocyte NLRP1, 
NLRP3, ASC, and IL-1β mRNA expression levels is observed 
in patients who die during the first 30 days after CPR, whereas 
survivors have stable expression of these transcripts over time. 
Non-survivors at 30 days have significantly lower mRNA levels of 
NLRP3 and CASP1 48 h after return of spontaneous circulation 
following resuscitation, with the same trend observed for NLRP1. 
The authors also find a reduced ability to release IL-1β in whole 
blood and monocytes isolated from patients after CPR (170). The 
impaired systemic IL-1β response of leukocytes from trauma 
patients was already observed prior to the discovery of inflam-
masomes although they were yet to be supported by a physiologi-
cal explanation. Indeed, a decrease in IL-1β protein levels in a 
group of 14 trauma patients compared to healthy controls was 
observed until day 5 post-trauma (171). Likewise, other studies 
on the early inflammatory response in multiple-trauma patients 
found that blood IL-1β levels in post-trauma patients weakly 
increased compared to other pro-inflammatory cytokines like 
tumor necrosis factor α or IL-6 (172). At the time, it was therefore 
concluded that IL-1β was not a good candidate in the search of 
potential early predictive markers for systemic inflammatory 
response after trauma (172).

The impairment of inflammasome activation found in trauma 
patients is consistent with the data observed in the post-septic 
immunosuppression syndrome. Alterations in NLRP1 mRNA 
expression are detectable in human monocytes isolated from 
patients with septic shock and seem associated with monocyte 
deactivation. Monocytes from patients in the early phase of 
septic shock show alterations of caspase-1 gene expression. Also, 
relative mRNA copy numbers for ASC, caspase-1, and NLRP1 
are significantly lower. Finally, NLRP1 mRNA levels are linked 
to survival in patients with sepsis and correlated with SAPS II 
scores. In accordance with the observations made in trauma 
patients, these data suggest that impairment of inflammasome 
functions in immune cells occurs during the earliest stages of the 
illness and are involved in monocyte deactivation (173).

The dampening of inflammasome signaling in circulating 
immune cells is the opposite of what appears to happen in tis-
sues and organs. This is similar to discrepancies reported in the 
cytokine profiles between blood and injured organs in post-
injury patients. Most studies show that IL-1β level increases 
in damaged tissue while remaining stable or decreasing in 
blood (156). This illustrates the challenging nature of dynamic 

host response monitoring, beginning with the selection of the 
best clinical samples in which to assess the immune response. 
Whole blood samples are readily and repeatedly accessible 
and allow characterization of circulating immune cell popula-
tions and activation through increasingly clinically available 
flow cytometry. However, due to the compartmentalization 
of inflammation in severe injury (156, 174), the information 
obtained from whole blood may not be extrapolated to injured 
tissues/organs.

Whether the impairment of inflammasome signaling in 
monocytes of severely injured patients plays a role in the post-
trauma immunosuppression phenotype or only represents a 
biomarker for severity or immune impairment is uncertain. Data 
focusing on the involvement of inflammasomes in preserving an 
effective immune response against secondary infection have yet 
to be provided.

Some of the treatments that have been evaluated in the 
post-trauma immunosuppression syndrome interfere with the 
inflammasome pathway. Glucocorticoids (GC) have long been 
known as anti-inflammatory compounds. However, an increas-
ing amount of studies suggests that GC also support a pro-
inflammatory role through inflammasome priming. GC have 
been proposed as an important trigger for neuroinflammation 
through NLRP3/NLRP1 inflammasome priming in microglial 
cells (175). Moreover, GC induce NLRP3 expression in human 
macrophages in  vitro, sensitizing cells to inflammasome  
triggers, and facilitating inflammasome-mediated release of 
pro-inflammatory molecules (176). Although no evidence 
supports this hypothesis to date, the effect of GC-induced 
inflammasome priming may be a potential mechanism for the 
anti-VAP effect of GC in severe trauma patients (177, 178), 
as the role of macrophages and IL-1β in host defense against 
respiratory infections is well known (179).

Likewise, IFNγ and GM-CSF therapies have been proposed 
to restore the functions of immune cells after critical injury 
through HLA-DR induction, especially in a selected population 
of patients with slow mHLA-DR recovery (180, 181). There is 
evidence in the literature suggesting that both IFNγ and GM-CSF 
modulate inflammasome signaling. The role of IFNγ in inflam-
masome activation has been reviewed recently and remains 
ambiguous (182). On one hand, it has been shown that IFNγ 
could upregulate NLRP3 components expression (182). On the 
other hand, IFNγ has been shown to indirectly inhibit NLRP3 
assembly and activity via iNOS induction and NO production. 
Consistently, iNOS−/− mice show enhanced NLRP3 activity and 
higher mortality in a model of LPS-induced sepsis (183). A few 
studies report that GM-CSF enhances NLRP3 activity and IL-1β 
production by macrophages. Shaw et  al. show that monocyte/
macrophages from GM-CSF-neutralized mice produce less 
IL-1β in vivo and ex vivo, together with a decreased expression of 
NLRP3, pro/active IL-1β, and pro/active caspase 1. Consistently, 
in  vitro-derived GM-CSF-differentiated macrophages express 
higher levels of NLRP3, caspase 1, and IL-1β compared to 
M-CSF-differentiated macrophages (184). Similar results have 
been found when studying the inflammasome activity in human 
monocyte-derived macrophages differentiated in the presence of 
GM-CSF in vitro (185, 186).
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Taken together, these data may suggest some potential inflam-
masome-mediated mechanisms of GC, IFNγ, and GM-CSF to 
prevent secondary infections in post-injury immunosuppression 
and highlight the need for in-depth understanding of the under-
lying pathophysiology to guide the development of targeted, 
personalized therapies.

FUTURe PeRSPeCTiveS AND 
CONCLUDiNG ReMARKS

When considering another deregulated immune response in 
trauma, trauma-induced coagulopathy, one can realize how 
deeply deciphering its pathophysiology has changed the man-
agement of trauma care (24). Trauma-induced coagulopathy is 
now routinely modulated as early as prehospital care through the 
prophylactic administration of tranexamic acid to counter early 
hyperfibrinolysis, is monitored throughout patient care using 
routine laboratory exams or point-of-care thromboelastography/
metry, and is treated with a better understanding of transfusion 
thresholds and beneficial blood product ratios (187). These 
improvements in the early management of trauma care stem from 
decades of deciphering a complex innate immune response that 
goes far beyond clot formation and clearance (188).

Likewise, we have yet to fully understand the later phase 
of some trauma patients who develop organ failures and/or 
secondary infections leading to sepsis, both responsible for late 
trauma deaths. The emerging characterization of trauma-induced 
immunosuppression seems to be a major underlying mechanism 
of such late phase morbidity and mortality (189).

Given the roles of the inflammasomes we have reviewed above 
in generating the initial inflammatory burst and/or amplifying 
inflammatory responses, the inflammasomes are potentially key 
actors involved in late trauma organ failure and trauma-induced 
immunosuppression. Early post-trauma inhibition of inflamma-
some activation, by preventing pyroptosis-related DAMP release 
and IL-1β production in damaged tissues, may help to break 
the vicious cycle of injury propagation and may be useful as an 
early biological damage-control therapy (9, 156). Likewise, such 
strategies may be interesting in preventing secondary, DAMP-
mediated tissue damage and remote organ injury (156). These 
hypotheses remain to be proven clinically as the majority the 
studies are based on animal or in vitro experimental models.

Inhibitors of inflammasome signaling already exist; some of 
which are commercially available and successfully applied to 
other diseases. Most of these treatments target IL-1β or IL-18: 
recombinant IL-1R antagonist (anakinra), IL-1β blocking anti-
body (canakinumab), IL-1 receptor soluble decoy (rilonacept), 
and IL-18-binding protein soluble receptors or blocking anti-
bodies. Such treatments have transformed patient management, 
prognosis and quality of life in (auto)inflammatory diseases such 
as gout, type I diabetes or hereditary disorders like cryopyrin-
associated autoinflammatory syndrome (CAPS) (190). The recent 
discovery of small molecule inhibitors selectively targeting the 
NLRP3 inflammasome rather than IL-1β might be promising 
for future research (191, 192). As pointed out by the authors, 
the potential benefits of these molecules would be increased 
therapeutic potential through the simultaneous blockade of 
IL-1β, IL-18, and pyroptosis, and a better safety profile, by only 

inhibiting NLRP3-dependant IL-1β and IL-18 production while 
preserving their secretion by other inflammasomes or redundant 
pathways against infection (191).

Indeed, the essential role of inflammasomes in antimicrobial 
defense raises the issue of potentially increasing the risk of 
secondary sepsis when interfering with inflammasomes. The 
prospective follow-up of CAPS patients treated with anakinra 
shows a median yearly rate of 7.7 adverse events per patient, 
among which most of the severe adverse events are infections 
(193). Likewise, a systematic review finds that 129 (5.1%) severe 
infections were reported in 2,896 patients treated with anakinra 
(194). Conversely to its effect in such chronic diseases, the role of 
anakinra in severe acute infections may be less clear due to con-
comitant potential beneficial effects in sepsis. Indeed, although 
anakinra in sepsis yields no benefit on primary outcomes in a 
historic phase III trial (195), a post hoc data reanalysis shows that 
it significantly improves in survival of a subgroup of patients 
with sepsis and concurrent features of hepatobiliary dysfunction/
disseminated intravascular coagulation similar to macrophage 
activation syndrome (196). Considering that both SIRS and 
CARS severity are related to the intensity of the initial trigger 
as suggested by an increasing number of studies (181, 197, 198), 
early inhibition of the inflammasome activity may also prevent/
decrease the intensity of the post-trauma immunosuppression by 
attenuating initial biological damage (199).

In their recent review on the immune response to trauma, 
Huber-Lang et al. provide an excellent overview of the promising 
strategies that are currently evaluated to treat the post-trauma 
syndrome (9). As debated above, the constant improvement in the 
comprehension of the post-trauma syndrome pathophysiology 
enables the development of pioneering strategies which belong 
to the field of precision medicine. In a break with past treatments 
that aimed to dampen or enhance the immune response (GC, 
prostaglandin, aprotinin, pro immunonutrition, etc.) (180), 
current approaches are directed toward the main actors of the 
innate immune response involved in the early “biological dam-
age,” including DAMPs, complement, coagulation, glycocalyx, 
macrophages, and neutrophils. Such strategies could be consid-
ered as “preventive” rather than “curative” for the treatment of 
SIRS, CARS, and PICS. In addition, personalized evaluation of 
the immune profile combined with “boosting” immunotherapies 
are currently assessed for the management of the post-trauma 
immunosuppression. Because they might contribute to both 
post-trauma biological damage and immunosuppression, 
inflammasome represents a relevant pathway to explore in these 
perspectives.

This review is in favor of a trauma research framework at the 
interface with a relatively recent field of immunology that may 
lead to the characterization of a trauma-induced inflammas-
omopathy and perspectives for modulation with an impact on 
patient outcomes that remain to be determined.
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