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This study sought to design and deploy a torque monitoring system using an artificial

neural network (ANN) with mechanomyography (MMG) for situations where muscle

torque cannot be independently quantified. The MMG signals from the quadriceps

were used to derive knee torque during prolonged functional electrical stimulation

(FES)-assisted isometric knee extensions and during standing in spinal cord injured (SCI)

individuals. Three individuals with motor-complete SCI performed FES-evoked isometric

quadriceps contractions on a Biodex dynamometer at 30◦ knee angle and at a fixed

stimulation current, until the torque had declined to a minimum required for ANN model

development. Two ANN models were developed based on different inputs; Root mean

square (RMS) MMG and RMS-Zero crossing (ZC) which were derived from MMG. The

performance of the ANN was evaluated by comparing model predicted torque against

the actual torque derived from the dynamometer. MMG data from 5 other individuals

with SCI who performed FES-evoked standing to fatigue-failure were used to validate

the RMS and RMS-ZC ANN models. RMS and RMS-ZC of the MMG obtained from the

FES standing experiments were then provided as inputs to the developed ANNmodels to

calculate the predicted torque during the FES-evoked standing. The average correlation

between the knee extension-predicted torque and the actual torque outputs were 0.87

± 0.11 for RMS and 0.84 ± 0.13 for RMS-ZC. The average accuracy was 79 ± 14% for

RMS and 86 ± 11% for RMS-ZC. The two models revealed significant trends in torque

decrease, both suggesting a critical point around 50% torque drop where there were

significant changes observed in RMS and RMS-ZC patterns. Based on these findings,

both RMS and RMS-ZC ANN models performed similarly well in predicting FES-evoked

knee extension torques in this population. However, interference was observed in the

RMS-ZC values at a time around knee buckling. The developed ANN models could be

used to estimate muscle torque in real-time, thereby providing safer automated FES

control of standing in persons with motor-complete SCI.

Keywords: functional electrical stimulation, mechanomyography, neural network, spinal cord injuries, torque
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INTRODUCTION

Individuals with spinal cord injury (SCI) often require
rehabilitation strategies and assistive technologies to facilitate

their daily tasks. Functional electrical stimulation (FES)

enables these individuals with neuromuscular disability to
execute functional activities such as walking, cycling, and

standing up, as well as improving their blood flow and sensory
awareness (Petrofsky, 2004). FES activates the nerves using
small electrical currents, thereby recruiting muscles to produce
non-physiologically evoked contractions and retrain atrophied
muscles, thereby partially or fully regaining lost functions
(Hamid and Hayek, 2008). Electrical stimulation can be applied
through the skin surface or via intramuscular electrodes to
evoke contractions of the non-innervated muscles (Ferrarin and
Pedotti, 2000). The intensity and temporal characteristics of the
stimulation must be regulated to prevent rapid-onset muscle
fatigue that leads to failure to perform the desired movement.

When an able-bodied individual performs exercise, over time
the muscles becomes fatigued due to repetitive muscle activity,
and thus are not be able to reach a set level ofmaximum voluntary
contraction (MVC) force to maintain the current task (Barry and
Enoka, 2007). The definition of muscle fatigue in an engineering
context is when the muscle’s physiological performance change
before being finally unable to produce any more force (Barry and
Enoka, 2007). This can be used as the basis for determining the
muscle fatigue threshold whereby a certain percentage from the
MVC during an experiment can be used to determine that the
muscle has become fatigued. Another parameter that can be used
to quantify muscle fatigue is a change of joint angle (Barry et al.,
1985; Guo et al., 2008).

Apart from torque and angle measurements, a physical
sensor to measure muscle activity and performance is the
mechanomyogram (MMG). MMG records mechanical changes
of the muscle during its contraction (Weir et al., 2000). Unlike
electromyography, MMG does not have power line interference
and has high signal to noise ratio (Islam et al., 2013). MMG also
provides information such as forces the muscle can produce, the
stiffness and the fluid pressure (Barry et al., 1985). MMG signals
during specific activities such as walking, standing and reaching
are recorded in order to monitor the muscle fatigue by placing
the MMG sensors on the skin surface of the muscle to provide
a measure of the mechanical activity of contracting muscles by
detecting the muscular sound (Islam et al., 2013). The amplitude
of the MMG is related to the force produced by the muscle,
whereby even a small change of force is reflected in the MMG
amplitude (Beck, 2010).

MMG has been used as a development tool to find the
abnormalities from the designated baseline. MMG is useful
in the detection of muscle fatigue during sustained voluntary
contraction (Jensen et al., 1994). Even though MMG has been
commonly used to quantify muscle fatigue during isometric
contractions, the usability of MMG for postural control after
fatigue made it significant in various fields such as occupational
therapy and ergonomics (Beck, 2010).

Researchers have not been able to measure muscle
performance during activities such as standing because

there is no adequate tool to directly quantify knee and hip
extensor torques in stance. With the use of MMG, the muscle
activity can be quantified over time and thus its performance
assessed. Therefore, in this study, the aim was to design an
artificial neural network (ANN) that could predict the torque
exerted around the knee joint by the quadriceps muscle by
taking inputs from certain MMG parameters, namely the root
mean square (RMS) and zero crossings (ZC). The models were
designed to predict the muscle torque during FES isometric
knee extension. Second, we sought to apply the ANN models
to multiple sessions of FES standing challenges. This was done
to determine the accuracy and reliability of the ANN models
based on RMS and RMS-ZC inputs to predict the knee torque
produced by the quadriceps in FES isometric knee extension and
standing. Finally, this study aimed to compare the ANN model’s
performance to determine the input(s) that best predicted
of performance of isometric knee extension and standing.
In other words, the ANN’s accuracy to predict knee torque
produced by the quadriceps was tested during FES isometric
knee extension and the developed model was then deployed
in an FES standing activity. It was hypothesized that the knee
extension torque could be modeled through MMG-derived RMS
and ZC, which would enable the prediction of torque in activities
where torque cannot be physically measured, such as upright
stance.

METHODOLOGY

The study was performed in three phases, the first being
data collection where the SCI participants performed electrical
stimulation-evoked isometric knee extensions to obtain their
muscle MMG signal parameters and torques. The second phase
was ANN model development and signal processing of the
captured previously acquired MMG data from the first phase
to process the signal as input for the ANN model. In the third
phase the ANN models were deployed in FES-evoked standing
performed by the SCI participants. In this study, 3 subjects with
SCI were employed in the ANN design and 5 subjects with
SCI were used for the standing protocol. Subject 1, Subject 2
and Subject 3 test data were used to train and test the ANN
in seated evoked contraction while all 5 subjects were used to
test ANN model to estimate torque in evoked contraction in
standing environment. The study was approved by the University
of Malaya Medical Centre Medical Research Ethics Committee
[Ethics Number: 1003.14 (1)].

Phase 1: Knee Extension Training Data
Collection
This experiment was conducted to obtain the mechanical signal
and torque during isometric FES contractions of the quadriceps
muscle in three SCI individuals. The torque data were recorded
with a dynamometer (System 4; Biodex Medical System, Shirley,
NY, USA) and the MMG data were recorded using MMG sensor
(Sonostics BPS-II VMG transducer, sensitivity 30 V/g). The
subjects were asked to repeat the same isometric knee extension
protocol in two sessions with 48 h between each. The experiment
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was conducted at the Department of Rehabilitation Medicine,
University Malaya Medical Centre.

The data obtained from the experiment were then used as
the foundation to design a neural network system in MATLAB
toolbox to predict torques. The neural networks were tested
on with the MMG data obtained during the FES standing
contraction without torque data in Phase 3. The next phase of
the experiment involved training the system and validating the
system.

Equipment and Materials
The validation of the ANN model was done by comparison
with isometric knee torque data obtained from the commercially
available dynamometer (System 4; Biodex Medical System,
Shirley, NY, USA). The test protocol set on the dynamometer
was Isometric knee extension and 900 seconds recovery between
each trial. Three trials were conducted for each of the left and
right leg. The isometric contraction angle was set at 30◦ from the
straight leg position. The subjects for this experiment were three
individuals with SCI (International Standards for Neurological
Classification of Spinal Cord injury (ISNCSCI) of A and B) who
were trained FES users and non-sensate due to the sensory deficit
of their injury. The subjects were briefed about the research
protocol before providing their informed consent to participate.

FES Evoked Muscle Contractions and Knee Torque

Measurement
The subjects were familiar with the FES activity and therefore
no familiarization session was needed prior to data collection.
The FES stimulation of square-wave pulses was provided at 30Hz
and 200 µs pulse durations with a stimulation current amplitude
of 100mA. The stimulation was provided by a commercial
neurostimulator (RehaStimTM, Hasomed GmbH, Magdeburg,
Germany). Electrodes used in this experiment were 9 × 15 cm2

self-adhesive electrodes.

Data Collection Procedure
The subjects were seated on the dynamometer seat and seatbelts
were strapped around them to prevent movement from muscles
other than the quadriceps interfering the reading of the MMG.
The knee attachment was applied to the right leg to measure
the torque exerted around the right knee. The subject’s ankle
was strapped to a cushion of the knee attachment to hold the
leg at a 30◦ knee angle. Since the armature prevented the leg
from moving, the torque signal obtained from the dynamometer
fully originated from the subject’s muscle and not affected by the
gravity. The maximum andminimum flexion and extension were
set on the Biodex. The Biodex recorded knee torque at a sampling
rate of 500Hz.

The FES electrodes were placed at both ends of quadriceps
muscles but not on the tendon area which was around 5 cm near
the position of the patella and around 8 cm distal to the groin area
(Levin et al., 2000). Figure 1 illustrates the setup for FES induced
isometric knee torque measurement. The subject was seated on
the Biodex seat such that the lateral femoral condyle was parallel
to the dynamometer axle. This body position and the lever arm
of the dynamometer were consistent throughout the study.

FIGURE 1 | FES electrodes and MMG sensor placement on the quadriceps

muscle.

Once the settings were set, the dynamometer guided the
knee attachment to 30◦ knee flexion. The MMG recording
was initiated first while the dynamometer torque recording
and FES stimulation were started simultaneously after. The
recording of the dynamometer, the MMG, and the simulation
was stopped once the torque reading reached well below 50% of
the maximum torque and the recovery period began thereafter.
The same procedure was repeated for the left knee once the third
trials had ended with the same settings for dynamometer and
neurostimulator as well the recovery period. The subject then
repeated the same procedure after 48 h. To ensure high day-
day reproducibility of the protocol, the same researchers and
physiotherapists were involved in the experiment for all subjects.

MMG Acquisition and Processing
Muscle mechanical signals were recorded with the MMG sensor
placed right on the muscle belly and held onto the muscle
belly with a double-sided tape (3M 157 Center St. Paul, MN,
USA). Acqknowledge v4.3 data acquisition and analysis software
(MP150, BIOPAC Systems, Santa Barbara, CA, Inc) were used to
collect the data at 1 k Hz frequency. The signal was then filtered
with a bandpass filter (20Hz lower cutoff frequency and 200Hz
higher cutoff frequency). The MMG amplitude is a recognizable
way to see the relation between MMG and net torque as the
decrease of the net torque correlated to decrease ofMMG (Gobbo
et al., 2006).

The dataset processed from the MMG signal could be in the
time or the frequency domain. In the time domain, the amplitude
was identified as voltage values and the amplitude was used
to calculate RMS. The MMG RMS is reported as a variable in
describing motor unit recruitment during a contraction process
(Orizio et al., 2003).

The RMS was the magnitude of the measurement obtained by
the MMG and the data was in the time domain. Both parameters
(RMS and torque) were then scaled to values in the range of
0–1 to simplify the data for preprocessing step for the ANN.
The MMG RMS were obtained from MATLAB at 1 s epochs.
Normalization of MMG and torque data, as well as the designing
process of the ANN, was done using MATLAB version R2015a
(2015) toolbox.
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FIGURE 2 | Standing Experiment. (A) At the beginning of the experiment the legs were straight due to FES stimulation. (B) The knee approaching 30◦ flexion

“knee-buckle”.

RMS was correlated to load as increasing MVC increased
the RMS value of the MMG (Akataki et al., 2003). RMS value
represents the motor activation (Weir et al., 2000). RMS has also
been reported to be an important parameter to monitor muscle
fatigue due to its association with the force of contraction of the
muscle (Barry et al., 1985). The equation for the RMS processing
was defined as:

RMS =

√

1

N

∑N−1

k=1
x2
k
, for k = 1, . . . ,N (1)

where xk is the raw signal from each segment andN is the number
of samples.

In isometric contractions, an increase of MMG amplitude was
observed when force production was low which was around 10–
40% of the MVC. During high level of muscle torque which
was around 50–80% of MVC, there was no change in MMG
amplitude (Perry et al., 2016). The same observation was reported
by another research group (Rodriguez-Falces and Place, 2013).

A lower level of muscle torque resulted to decrease in MMG
amplitude (Orizio et al., 2003) due to a linear relationship
reported between the contractionmuscle and the RMS amplitude
of theMMG (Oster and Jaffe, 1980). The correlation of amplitude
of MMG signal and motor unit activation was reported during a
voluntary contraction as well as FES contraction (Beck, 2010).

The mean frequency shows the frequency feature of the MMG
(Cescon et al., 2004). Zero crossing (ZC) was used due to the fact
that unlike mean frequency, ZC does not require the use of Fast
Fourier Transform (FFT) to obtain and the calculation used to
obtain ZC is a simple one (Hägg, 1991). ZC has been defined as
the number of times that the MMG signal passed through the

horizontal amplitude axis (Zecca et al., 2002). The Equation (2)
for ZC was as follows:

ZC =

∑N

k=1
sgn

(

−xkxk+1

)

, for k = 1, . . .N

sgn (x) =

{

1 if x > 0
0 otherwise

(2)

where xk is the raw signals of the of the segment and N is the
number of samples.

Both MMG RMS and ZC were taken at the sample rate
of N = 1,000. While the torque data from the Biodex were
averaged to get the mean torque for every 500 torque samples.
This was done to obtain the reading of torque, MMG RMS
and ZC for every second during the stimulated contraction for
synchronization.

Phase 2: Neural Network Development
Training Data Processing and Neural Network

Development
The Neural Network system was designed using MATLAB 2015
using the Neural Network fitting toolbox. The ANN system takes
MMG inputs to predict the onset of muscle fatigue with the
output of normalized torque ranging from 0 to 1. Two types of
ANN models were developed based on the two types of data sets
used to train the model, the first was normalized MMG RMS
only and the second type was normalized MMG RMS together
with normalized MMG ZC; i.e., RMS-ZC. RMS and RMS-ZC
were used as the input for the neural network training and the
normalized torque was used for the target data for the desired
output of the network. The ANN was trained by feeding the
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RMS and RMS-ZC signals along with the desired signal data, i.e.,
the torque output from the Biodex, to the models. The samples
obtained from the first session from the 3 subjects were used as
training samples. Based on a priori correlation test considering
0.91 correlation of probability, alpha error probability of 0.05, 0.2
beta error probability, and 0.84 effect size, at least 6–8 samples
were minimally required statistically thus this study employed
18 training data and 12 testing samples of various sample size
to test the accuracy of the neural network system. The testing
samples were obtained from the second session of the experiment
for two of the subjects. The samples were arranged in matrix
row. A feed-forward network with sigmoid hidden neurons and
linear output neurons was used for the development of the ANN.
Sigmoid transfer function was utilized as a transfer function
due to the transfer function introduced non-linearity to the
network’s calculations as well as it is a simple derivative function
(Calcagno et al., 2010). The type of ANN model developed was
the multi-layer Perceptron which contained multiple layers of
computational units that were interconnected in a feed-forward
manner. The three layers used were the input layer, hidden layer
and the output layer. ANN model training technique involved
the output values of the system to be compared with the correct
values thus producing the error between the output and the
correct answer are computed in an error function (Calcagno
et al., 2010). Adjustments were made to the weights on every
connection to obtain a smaller value of error function. The
percentage of testing data was set at 70% training samples, 15%
validations samples and 15% testing samples. These were the
default settings for ANN. The number of hidden neurons was
set at 10. The number of hidden neuron was chosen based on
the number of hidden neurons that gave the best results of
the training data (r > 0.8) The network was trained with the
Levenberg-Marquardt algorithm (Levenberg, 1944):

w = w+ 1w (3)

w =

[

JTJ + µI
]−1

JTe (4)

e = R− z (5)

where w was the weight vectors, 1w was the differences between
the weight vectors, J was Jacobian matrix that included the first
derivatives of the network errors according to the weight, µ was
a scale parameter, I was the identity matrix, R is the vector of
measured torque, z is the vector of predicted torque, and e is a
vector of the network errors. Post neural training, the network
was deployed with the MATLAB compiler and Builder tools to
generate a MATLAB function. The training and testing data sets
for ANN building can be found at these repositories: figshare |
figshare.

Neural Network Accuracy Test
In order to quantify the performance of the two ANN models,
a correlation between the predicted torque output and the
actual torque output as well as the accuracy of the models were
identified. To achieve the objective, the network was tested with
all the normalized RMS and RMS-ZC from the second session of
the 3 subjects. The output torque was then compared with the

actual torque obtained from the Biodex with the “fitlm” function
on MATLAB to obtain the correlation (r). A critical point of 50%
torque drop was chosen in order to test the accuracy of the ANN
model by comparing the time for the actual torque in each test
data samples to reach 50% torque drop and the time for predicted
torque (RMS and RMS-ZC) to reach 50% drop to determine the
reliability of the models to detect a specific torque value. The
accuracy was obtained from the equation (6). The results from
the Neural Network test with the isometric knee extension was
presented in Table 2.

1−

∣

∣predicted torque time − actual torque time
∣

∣ × 100

actual torque time
% (6)

Phase 3: Testing the Neural Network Model
in FES Standing
Standing Protocol
A standing protocol was executed in order to validate the
effectiveness of the ANN model to predict the onset of muscle
fatigue by predicting muscle torque during an FES standing
stance in SCI subjects. Five individuals with sensory complete
SCI (ISNCSCI A and B) participated in this study phase. This
protocol has been developed to measure different stimulation
frequency effects during a prolonged FES standing (Ibitoye,
2016, unpublished) and had been approved by the University
of Malaya Medical Centre Medical Research Ethics Committee
(MECID.NO: 20164-2366). All 5 subjects had been familiarized
with the FES training and were able to undergo the stimulation
as intended in the protocol. The FES stimulator that was
used in the standing experiment was a commercially available
neurostimulator (RehaStimTM, Hasomed GmbH, Magdeburg,
Germany). The stimulation was channeled to the targeted muscle
by 9 × 15 cm2 surface adhesive electrodes (RehaStimTM,
Hasomed GmbH, Magdeburg, Germany). This protocol was
adapted from the procedure reported by Braz and colleagues
(Braz et al., 2015). A harness (Biodex Offset Unweighing System)
was used to support the subject’s body and prevent the subject
from swaying and tumbling. Handle bars were available on
the subject’s sides for upper body balancing. This is because
the torque generated by FES was sufficient to maintain the
balance of the lower limbs. However, to stabilize the upper
body trunk the SCI subject had to hold on to the handle
bars to maintain balance due to lack of abdominal and chest
voluntary strength. To ensure that the harness did not influence
the subject’s weight, researchers ensured that both subject’s feet
were flat on the ground and their heels not hanging above
the ground. The muscle mechanical signal during the standing
protocol was recorded with the same MMG accelerometer
used in the knee extension experiments. Data acquisition and
signal processing were done digitally through Acqknowledge v4.3
software (MP150, BIOPAC Systems, Santa Barbara, CA, Inc). FES
standing was achieved by continuous stimulation of both left and
right quadriceps and gluteal muscles. The quadriceps muscles
were stimulated to achieve stabilization in the knee extension
and glutei was stimulated for hip extension and upright posture
stabilization. The subject was stimulated at quadriceps (80mA)
and glutei (64mA) at 200 µs pulse width. The frequency of
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the stimulation was 35Hz on the one trial and 20Hz on the
other trial. During the stimulation, the changes in the knee bend
were observed and verified using a goniometer. The goniometer
was used as to identify the end-point for the experiment as
the stimulation and MMG recorded was then stopped when
the knee reached 30◦ flexion. The subject was then given a 30-
min recovery period between the two trials. The MMG signals
obtained from the standing protocol was processed similarly
to the signal processing in isometric knee extension. Figure 2
illustrates (a) the setup for the experiment and (b) the moment
where the subject was approaching the fatigue point which was
the 30◦ knee bend.

The filteredMMG signal data was then processed to obtain the
normalized RMS and ZC. The time taken for the RMS to drop
to 70, 50, and 30% of the maximum RMS was taken for t-test
comparison with the time taken for the knee bend to reach 30◦.
This was to determine if the RMS alone was sensitive enough to
the changes in torque to maintain the knee angle above the 30◦

mark. The RMS and RMS-ZC data set were then used as inputs
for the ANNmodels respectively to obtain the predicted torque.

A point where changes in the gradient of the predicted
output had been selected as a critical point from both sets of
predicted torque to determine the consistency between both
models to predict the critical point at a similar time and

FIGURE 3 | Normalized MMG RMS and Normalized MMG ZC against time used to be as training data for ANN development from Subject 4 Session 1, Left leg trial 1.

FIGURE 4 | Normalized torque measurement from Biodex dynamometer and the predicted torque from two ANN models from Subject 4 Session 1, Left leg trial 1.
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predicted torque value. The time taken to the critical point
was normalized in the range of 0–100% stimulation time for
all subjects because the overall experiment time differed for
each trial and the torque value at the critical point from each
standing subject were used in t-test to determine its significance.
In order to determine the effectiveness of the ANN to predict
muscle torque and to compare between the two types of input,
few hypotheses had been established to determine the behavior
of ANN in standing protocol was similar to isometric knee
extension.

The hypotheses were (i) the initial torque predicted would be
higher than the final torque predicted, (ii) the predicted torque

TABLE 1 | Average correlation (R) and accuracy test for the two ANN models to

predict torque during FES isometric knee extension.

ANN model input

Model 1: RMS Model 2: RMS-ZC

R 0.87 ± 0.11 0.84 ± 0.13

Accuracy (%) 79 ± 14 86 ± 11

TABLE 2 | T-test significance values for time to reach 30, 50, and 70% of MMG

RMS drop compared to the time to 30◦ knee buckle.

MMG RMS % p-value

30% MMG RMS drop vs. 30◦ knee angle 0.01

50% MMG RMS drop vs. 30◦ knee angle 0.01

70% MMG RMS drop vs. 30◦ knee angle 0.02

output pattern would be reduced throughout the stimulation and
(iii) the pattern of RMS and ZC before and after the 50% torque
drop point would not be the same. To confirm the hypotheses,
t-test was used to identify the P values of the following pairs;
Initial and Final predicted torque, the gradient of MMG RMS
and MMG ZC before and after the point where the ANN
models predicted a 50% torque drop where there should be a
noticeable change to the gradient of MMG RMS and MMG
ZC once the predicted torque from each model had reached
a 50% torque drop from the maximum, and the gradient of
the predicted torque. The statistical analysis was done using
PSPP (1.0.1, GNU operating system, 2017). The results from
the t-test for consistency test for both models are presented in
Table 3 while the hypothesis testing results are summarized in
Table 4.

RESULTS

Testing the ANN Model With Isometric FES
Contraction to Predict Torque
The MMG data were processed into MMG RMS and MMG ZC
and then normalized. The final MMG dataset is presented in
Figure 3 while Figure 4 illustrates the predicted output torque
produced by the neural network model and the actual output
torque measured by the dynamometer during the data collection
part of the research where Model 1 is the ANN model that uses
RMS as input andModel 2 uses RMS-ZC as input. Figure 3 shows
RMS gradually decreased from the maximum as the stimulation
continues and ZC shows a dramatic increase in the frequency of

FIGURE 5 | Normalized predicted torque for a standing protocol for Subject 5 Trial 1.
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muscle contraction after a certain period toward the end of the
session. The gradient of the RMS decrease differed from the start
and toward the end of the contraction.

Actual Torque and Predicted Torque From Isometric

Contraction Testing
The accuracy of the ANN model to predict the measurement
of torque was first tested on isometric knee extension prior to
the standing experiment. The correlation and the accuracy of
the ANN model to predict the torque in both subject 1 and
2 as presented in Table 1 which shows the mean accuracy and
correlation between the two types of inputs.

Testing the ANN Model in FES Standing
Protocol to Predict Torque
A series of 2-tailed t-test was performed to determine whether
the time taken for MMG RMS to drop to a certain level was
significantly different than the time taken for the knee angle to
reach 30◦ at the end of stimulation. The results from the t-test
are presented in Table 2.

Figure 5 shows the predicted torque, which was the output
from the ANN model, where model 1 was based on RMS as
input and model 2 was from the RMS-ZC input. Both torque
series mostly satisfied the set hypotheses where (i) the initial
predicted torque was higher than the final predicted torque,
(ii) the predicted torque output pattern descended throughout
the stimulation in most cases, and (iii) the gradient of RMS
and ZC before and after the 50% torque drop point were
different.

The results from t-test statistical analysis of the standing
protocol based on the said hypotheses are shown in Tables 3, 4.

DISCUSSION

This study sought to investigate the practicality of using ANN
models to predict the knee extension torque during isometric

contraction and standing stance using RMS and RMS-ZC as
inputs to the ANN. The testing on isometric knee extension
revealed that the ANNmodel used to predict muscle torque from

FIGURE 6 | Biomechanics of Standing. Left: non- fatigued, quiet standing

motion. Small knee extension moment. Right: fatigued, 30◦ knee angle bend.

Large knee flexion moment due to gravity.

TABLE 3 | Summary of the t-test done for time to reach a critical point (RMS and RMS-ZC) and the predicted torque at a critical point (RMS and RMS-ZC).

Critical Points at which gradient changes ANN model input p-value

Model 1: RMS Model 2: RMS-ZC

Normalized time (%) 44 ± 21 45 ± 17 0.93

Predicted torque (%) 54 ± 14 58 ± 17 0.33

TABLE 4 | Summary of t-test statistical analysis for standing protocol from devised hypotheses.

Hypothesis Torque initial vs. Torque

final

RMS gradient before and after

50% torque drop

ZC gradient before and after 50%

torque drop

Predicted torque gradient before

and after 50% torque drop

Model Input RMS RMS-ZC RMS RMS-ZC RMS RMS-ZC RMS RMS-ZC

Mean ± SD Initial Torque Pre50% drop

0.95 ± 0.4 0.93 ± 0.1 −0.02 ± 0.1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.10 0.01 ± 0.00

Final Torque Post50% drop

0.53 ± 0.16 0.51 ± 0.15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

p-values 0.00 0.00 0.00 0.04 0.18 0.66 0.00 0.01
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the MMG muscle signal of the quadriceps muscle was reliable.
RMS-ZC input ANNmodel revealed a higher accuracy compared
to RMS input ANNmodel which suggested that in isometric knee
extension, RMS-ZC was more suitable than RMS only as input
to the ANN model. This also suggests that ANN is a feasible
strategy to predict torque without the need of dynamometer.
However, when frequency of the stimulation is increased, the
initial frequency of the MMG would also increase. This can be
seen in Figure 3, whereby when the muscle is fatigued there is a
rise in the initial frequency.

The effect of pulse width on the MMG or fatigue was not
studied in this research, however other literature suggested that
the pulse width has no significant effect on the muscle fatigue
but it affects the maximum muscle force production (Jailani and
Tokhi, 2012).

Higher accuracy from RMS-ZC input was due to an increase
of ZC value past ∼50% of maximum knee torque. This was
due to SCI muscle are more fatigable compared to able-bodied
especially during low-frequency FES (Mahoney et al., 2007).
This could be explained by the transformation of slow twitch
muscle fiber to fast twitch muscle fiber (Bickel et al., 2004). The
transformation explains the ZC graph where the increase of the
number of contraction leads to decrease of torque recorded by
the dynamometer.

From Table 3, the t-test results of P = 0.93 indicated no
significant difference between the time taken for the predicted
knee torque output pattern to reach the point where there are
significant changes to the pattern of the actual knee torque
obtained from the Biodex dynamometer. The value of the
predicted torque at the critical time from both models were
not significantly different from the value of the torque obtained
from the dynamometer with a p-value of 0.33. This indicated
that in general both models performed with a consistent level of
prediction.

Individually, for the first hypothesis in the standing protocol
which states that the initially predicted torque was significantly
different than the final predicted torque, both RMS input and
RMS-ZC input ANN model outcome revealed that they are
significantly different (P < 0.01). The difference was due to the
rapid muscle fatigue which lead to decrease of RMS and an
increased frequency of muscle contraction based on the findings
in isometric knee extension (Barry et al., 1985).

The second hypothesis which stated that at the point where
the ANN predicted 50% quadriceps torque or lower, there was
a significant change toward the pattern of RMS where the RMS
decreases at the steeper slope and ended up plateauing (gradient
is near 0). However, t-test for prediction for both RMS input
and RMS-ZC input for the gradient of ZC before and after the
predicted 50% torque drop shows that there is no significant
difference (P-valuerms = 0.18, P-valuerms−zc = 0.66). When
compared to isometric knee extension protocol, the standing
protocol did not stabilize the legs and this caused the legs to move
and this movement had possibly caused the changes in amplitude
in the ZC value.

The third hypothesis was that the gradient of predicted
torque for both models of ANN is decreasing throughout the
experiment. The RMS input showed a slightly more significant
difference compared to RMS-ZC input. Although from Table 3

both models showed the same consistency in predicting
the torque generally, RMS input showed better reliability in
predicting muscle fatigue compared to RMS-ZC input due to less
disturbance to RMS when there is a leg movement. However,
ZC input was able to provide a frequency domain of the muscle
contraction as an increased number of contraction indicated the
recruitment of fast twitch muscle fiber which had less endurance
to fatigue compared to slow twitch fiber (Karlsson et al., 1981).
Additionally, as shown in Table 3 there was significant difference
between the time taken for RMS MMG to record a drop to

FIGURE 7 | Graph of MMG RMS against Knee Bend Angle during FES Standing in SCI subjects (Mohd Rasid, 2017).
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selected level and the time for the muscle to get fatigued and
unable to maintain quiet standing. This assumption enabled
the ANN to be more useful in predicting the torque at higher
accuracy. With both ZC and RMS a better model can be
developed that combines both temporal and spectral domain of
the muscle signal.

At the end of the evoked standing session, the irregular
torque predicted by the models, as illustrated in Figure 5,
could be due to gravity effect acted during standing. The
biomechanics of standing is illustrated in Figure 6. We
hypothesized that the amplified torque due to the gravity and
the increased distance (d) between the knee joint and the
ground reaction force had affected the MMG responses. A
research done with similar protocol and SCI subject supported
this hypothesis whereby when the knee started to buckle,
the MMG amplitude started to increase. The graph from the
experiment is shown in Figure 7 (Mohd Rasid, 2017). However,
a biomechanical study which include the study procedure
involving biomechanical setup such as ground reaction force
plate and a 3D camera system is required to further ascertain
this.

This research was limited as presently the ANN model to
predict the torque was analyzed only during quiet standing
and isometric knee extension. Future studies should include a
wider movement pattern such as sit-to-standmovement, which is
another nonmeasurable knee torque movement. Different types
of inputs such as PTP and ARV in the time domain and MP in
the frequency domain could be investigated as well as different
types of computer software networks such as support vector
machine (SVM). This research also focused on a specific set of

parameters for the FES. To our knowledge, there has not been

any investigation on ANNmodel that is trained to predict torque
in FES standing experiment using MMG. Hence, this study has
demonstrated that an ANNmodel is feasible in predicting torque
during isometric knee extension and FES standing. We hope that
this study will be used as the basis for development of real-time
ANN model to predict torque and thus may contribute to the
improvement of the automated control FES during rehabilitation
in SCI.
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