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Abstract. Material loading is one of the most critical operations in earthmoving projects. A number of different equip-
ment is available for loading operations. Project managers should consider different technical and economic issues at the 
feasibility study stage and try to select the optimum type and size of equipment fleet, regarding the production needs and 
project specifications. The backhoe shovel is very popular for digging, loading and flattening tasks. Adequate cost estima-
tion is one of the most critical tasks in feasibility studies of equipment fleet selection. This paper presents two different 
cost models for the preliminary and detailed feasibility study stages. These models estimate the capital and operating cost 
of backhoe shovels using uni-variable exponential regression (UVER) as well as multi-variable linear regression (MVLR), 
based on principal component analysis. The UVER cost model is suitable for quick cost estimation at the early stages of 
project evaluation, while the MVLR cost function, which is more detailed, can be useful for the feasibility study stage. In-
dependent variables of MVLR include bucket size, digging depth, dump height, weight and power. Model evaluations 
show that these functions could be a credible tool for cost estimations in prefeasibility and feasibility studies of mining 
and construction projects. 
Keywords: loading equipment, backhoe shovel, cost estimation, multi-variable linear regression, principal component 
analysis, mining and construction. 

 
1. Introduction 
Earthmoving operations are an important part of con-
struction and mining projects, and mainly include excava-
tion, loading, site preparation, embankment construction, 
compacting, backfilling, surfacing and hauling. These 
operations are equipment-intensive, characterized by the 
development of large fleets (Hassanien, Moselhi 2002). 
Earthmoving is therefore often one of the most important 
operations in many mining and construction projects in 
terms of its effect on costs and productivity (Gransberg et 
al. 2006; Tatari, Skibniewski 2006; Park et al. 2010).  

The owning and operation of these equipment fleets 
represent a considerable part of the early costs for large 
contractors involved in heavy construction engineering 
and mining projects (Skibniewski, Armijos 1990; Fan 
et al. 2008). Moreover, machine owners seek to minimize 
the cost of operation by optimum selection of the 
equipment (Zavadskas, Vilutienė 2006). Consequently, it 
is a main concern of equipment managers to limit and 
reduce the overall cost of this task. Their responsibilities 
include selecting and optimizing the equipment fleet, as 
well as reducing the cost and optimizing productivity.  

In equipment planning for an earthmoving operation, 
a decision should be made on what machines to employ 
in the operation. Most assessment utilise an average 
operting cost over the life of the equipment (Noakes, 

Lanz 1993). In making such a decision, many interactions 
between engineering and economic considerations must 
be taken into account. The process of selecting appropria-
te machines, however, can generally follow a decision-
making path with the individual steps of selection of the 
type and model of the machine, determination of the nu-
mber of machines and choice of the most appropriate 
machine.   

The decision-maker should consider all the alterna-
tives, as well as the project specification and economic 
issues, in order to choose the most appropriate loading 
equipment fleet. This decision has a significant impact on 
the results of the feasibility study. Therefore, managers 
need to have an accurate and simple cost estimation tool 
to select the most suitable equipment fleet, which will 
meet production targets and minimize overall cost 
(Twort, Rees 2004).  

The selection and evaluation of material handling 
equipment is a complex procedure that requires working 
knowledge and experience of the techniques of cost esti-
mation as well as knowledge of equipment management, 
because the work of providing cost evaluations needs the 
manager to be familiar with equipment management to 
present precise cost estimations. 

In the first stages of mining and construction project 
evaluation, no adequate estimation of expenses is possib-
le, because access to an expert who is knowledgeable in 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201883722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Journal of Civil Engineering and Management, 2012, 18(3): 378–385 379 

 

both equipment management and cost estimation is not 
simple, adequate data is not available, and many different 
alternatives need to be considered. Moreover, this evalua-
tion is time consuming and costly. Accordingly, an accu-
rate and rapid estimation tool is beneficial for equipment 
managers. 

A variety of equipment can be used in material 
handling operations. Based on its operational function, 
earthmoving equipment can be classified as loading 
(excavating) and hauling machines and some types of 
machines can function as both (Nichols, Day 1999). Cab-
le shovels, hydraulic shovels, wheel loaders and backhoe 
shovels are the most common equipment used in loading 
operations.  

The level of detail required in any assessment can 
be dependent on many factors, such as management gui-
delines, data source and evaluation time and budget (No-
akes, Lanz 1993). It is important that the desired or ne-
cessary level of details as well as data source are 
clarified, prior to proceeding with cost estimation.  

Backhoe shovels are very popular for digging, loa-
ding and flattening operations. In this paper, two different 
cost models for backhoe shovels are presented, based on 
uni-variable exponential (UVER) and multi-variable li-
near regression (MVLR). The UVER cost model is useful 
for quick cost estimation at the early stages of a project. 
This model is particularly suited for making quick cost 

estimates where only one specific design parameter is 
available. While the MVLR, based on principal compo-
nent analysis (PCA), is suitable for detailed estimates at 
the feasibility study stage.  

In order to demonstrate the capabilities of proposed 
cost estimation models, a case example of a real world 
project was performed using a particular project’s condi-
tions. The estimated costs are compared with those of the 
actual project records. 

 

2. Literature review 
A number of models have been established in attempts to 
shortcut the construction and mining cost estimating pro-
cess (Table 1). These relate the cost to certain factors in a 
process or a unit. In these models, machine capacity usu-
ally has been used as independent variables in univariate 
functions (Mular, Poulin 1998; Camm 1994; O’Hara, 
Suboleski 1992). For instance, the cost of an excavator 
may be related to its bucket capacity. The relationship 
may be expressed in a formula or a graph. Some of these 
models are old, and therefore subject to modern review. 
Moreover, as the capital or operating cost models are uni-
variable, the roles of the other effective parameters have 
simply been disregarded. Multivariate cost estimation 
models, on the basis of up-to-date data, will overcome 
these shortcomings. 

 
Table 1. The various applications of construction and mining cost estimation 

Proposed by Year Application 
Hwang 2011 Prediction of cost indexes for construction projects using time series 
Asmar et al. 2011 Estimation of highway project costs using project evaluation and review tech-

nology 
Thal et al. 2010 Prediction of the required cost contingency for air force construction projects, 

using multiple linear regression 
Sayadi et al. 2010a Estimating maintenance cost of loading and hauling equipment using multiple 

linear regression 
Sayadi et al. 2010b Estimation of hoisting equipment cost for underground mines 
Sonmez and Ontepeli 2009 Cost estimation of urban railway projects 
R.S. Means Company 2005 Presenting cost data for all phases of building construction 
Wilmot and Mei 2005 Estimation of highway construction costs indexes using neural network 
Pratt 2004 Pricing construction equipment 
Mular  
Mular and Poulin 

1982 
1998 

Estimation of capital costs of mining and mineral processing equipment using 
UVER method 

Camm 1991, 1994 Development of UVER cost functions for surface and underground mining 
Noakes and Lanz 1993 Estimating the costs of  mining and milling industry, using graphical or for-

mulation methods 
O’Hara and Suboleski 1992 Development of cost formulas as estimators of capital and operating costs of  

mining and milling 
Petrich and Dewey 1987 A computer model which utilizes O’Hara’s cost estimation model 
Stebbins 1987 Using univariate exponential regression method for   small placer mines cost 

prediction 
USBM 1987 Estimation of mining and milling cost items, using regression analysis 
Collier 1987 Fundamentals of building and construction estimating and cost accounting  
Mular 1982 Estimation of mining and milling costs using regression analysis 
O’Hara 1980 

1981 Surface and underground mining cost estimation using exponential regression 
Infomine1 Annually Cost estimation guide for mine and mile equipment 

                                                 
1 Cost.infomine.com 
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3. Data and method 
3.1. Data 
32 different sizes of backhoe shovels, working in 
construction and mining projects in the United States are 
considered and  their economic data as well as machine 
specifications are considered (InfoMine 2007, 2010). The 
economic data are classified into two types, as capital 
(CC) and operating costs (OC). The CC is based on the 
US dollar (2010) while the OC is based on US dollars per 
hour. The operating costs items include overhaul (parts 
and labor), maintenance (parts and labor), power, 
lubrication and wear on parts (the cost of the operator’s 
time is not included here) and the technical parameters 
are bucket size (BS), digging depth (DD), dumping 
height (DH), weight (W) and power (HP) (Noakes, Lanz 
1993). The average and standard deviation of all the 
parameters and data ranges are given in Table 2. 

 
Table 2. Description of data 

Parameter  Min Max Mean St. dev. 
Capital cost (CC) M$ 0.113 16.2 3.69 3.67 
Operating cost (OC) $/h 12.14 656 220.23 191.04 
Bucket size (BS) cu m 0.28 39.8 12.61 11.45 
Digging depth (DD) m 4.1 16.2 9.248 2.68 
Dump height (DH) m 5.1 15.9 10.22143 3.16685 
Machine weight (W) ton 8.03 811 240.5 210.6 
Power (HP) hp 54 3800 1109.8 983.16 

 
The statistical analysis is applied and the results 

confirm the normal distribution of different variables, but 
a significant correlation is observed between independent 
variables (Eq. (1)):  

 

           BS      DD      DH       W        HP
BS 1.000 0.865 0.921 0.976 0.949
DD 0.865 1.000 0.901 0.868 0.850
DH 0.921 0.901 1.000 0.886 0.856
W 0.976 0.868 0.886 1.000 0.939
HP 0.949 0.850 0.856 0.939 1.000

        

. (1) 

One of the key assumptions of linear regression 
analysis is that there is no multi-collinearity (mutual 
correlation) among the independent variables of the 
regression model (Sharma 1996). In multiple regression, 
one of the major diffculties with the usual least squares 
estimators is the problem of multi-collinearity, which 
occurs when there are near-constant linear functions of 
two or more of the predictor, or regressor, variables 
(Gunst 1983). When highly correlated explanatory 
parameters are used in a MVLR model, multi-collinearity 
causes unstable prediction of regression coefficients, 
numerical inaccuracies in calculating the estimates of 
regression coefficients, inaccurate rejection of parameters 
and statistical imprecision (Jennrich 1995). Consequent-
ly, the present correlation should be considered and 
eliminated before applying the MVLR (Gujarati 2003).  

 
 

3.2. Research framework 
This paper presents two different cost models for backhoe 
shovels. Figure 1 shows a normal material loading 
operation using a backhoe shovel  and dump truck.  

These models help the cost estimators to make a 
quick and up-to-date estimation of capital and operating 
costs with an acceptable level of accuracy for the 
different stages of the feasibility study. The first model 
estimates the costs based on the bucket size of the 
backhoes, using the UVER technique.  

The second model is useful for in-depth estimations, 
and estimates the costs as functions of different specifi-
cation parameters of backhoe shovels, including the 
bucket size (BS), digging depth (DD), dump height (DH), 
power (HP) and weight (W) of the machine. This model 
is presented using MVLR, based on PCA. 

The PCA technique can be used to eliminate the 
correlation between independent variables. This is 
attained by transforming the original variables into a new 
set of variables, called the Principal Components (PCs). 
A PC is a weighted linear combination of all the original 
variables, which is uncorrelated with the other PCs. PCs 
are ordered so that the first few preserve most of the 
variation in all of the initial parameters. The direction of 
highest variance of the independent variables is 
represented by the first PC (PC1). The direction of the 
second highest variance (PC2) would be orthogonal to 
PC1 and the contribution of the PCs to the overall 
variation decreases from step to step. PCs are orthogonal 
by definition, so any pair of PCs will have zero 
correlation. The variance of the data in the corresponding 
PCs is represented by the eigenvalues, and the 
eigenvector of each PC is equal to the loading on it 
(Jolliffe 1986). PCs are used in conjunction with a variety 
of other statistical techniques. One area in which this 
activity has been extensive is regression analysis. In this 
hybrid method, the values obtained by PCA are used as 
inputs in the MVLR.  

 

 
Fig. 1. A normal material loading operation by using backhoe 
shovel and dump track (www.komatsu.com) 



Journal of Civil Engineering and Management, 2012, 18(3): 378–385 381 

 

The selection of a subset of PCs to use as 
independent variables of MVLR depends on the nature of 
the data. The main objective in many applications of PCA 
is to replace the elements of original variables by a much 
smaller number of PCs, which nevertheless discard only a 
small amount of the variation of the original variables and 
useful information. In these cases the number of PCs 
selected to use as independent variables in the MVLR is 
an important issue. But, in the cases in which the major 
objective of using the PCA technique is to solve the 
problem of multi-collinearity, all PCs can be contributed 
to the MVLR model (Jolliffe 1986). Concerning the 
present study, all scores obtained from the PCA technique 
are used as regressor variables in the MVLR model. 
Performing the MVLR, the relationship between costs (as 
dependent variables) and PCs (as independent variables) 
are established.  

In order to estimate the cost as a function of the 
original variables, the eigenvectors of the correlation 
matrix are multiplied in MVLR coefficients (B coeffi-
cients). Since, when applying the PCA technique, all the 
variables are standardized, it is necessary to transform 
them to their initial positions with actual means and 
standard deviations as follow:  
 * ( ) /x m sdx −= , (2) 
where: *x  is the standardized value of the original 
variable ( x ) and m  and sd represent the mean and 
standard deviation of x . 

To assess the performance of the models, the Mean 
Absolute Error Rates (MAER) of different functions are 
calculated as follows (Kim et al. 2004): 
 ( )     /  .100 /  e a aMAER C C C n = ∑ −  , (3) 
where: Ce is the estimated backhoe shovel cost, Ca is the 
actual backhoe shovel cost, and n is the number of data. 
 
4. Results  
4.1. Univariate exponential regression 
Applying the UVER, two different sets of functions are 
developed for estimation of the capital and operating 
costs of backhoe shovels as functions of different 
machine specific parameters. The UVER functions are in 
the form of Y = a×(parameter)m, where Y is the 
estimated cost. Whereas a and m are constants deter-
mined by the regression analysis. Eqs (4) and (5) show 
UVER functions to calculate capital and operating costs 
as functions of bucket size of backhoe shovels and the 
relationships are expressed as graphs in Figs 2 and 3. 
 0.932 2($) 34076 ,   95.0%CC BS R= × = ; (4) 

 0.765 2($ / ) 32.91 ,   93.7%OC h BS R= × = . (5) 
The following equations show UVER functions based on 
the other backhoe shovel specification parameters: 
 4.256 2($) 164.3 ,   68.6%CC DD R= × = ; (6) 

 
Fig. 2. UVER result for capital cost 

 
 

 
Fig. 3. UVER result for operational cost 

 
 3.698 2($) 435.8 ,   85.1%CC DH R= × = ; (7) 
 1.096 2($) 4.279 ,    97.1%CC W R= × = ; (8) 
 1.176 2($) 878.2 ,   93.9%CC HP R= × = ; (9) 
 3.340 2($ / ) 0.091 ,   R 74.8%OC h DD= × = ; (10) 
 3.268 2($ / ) 0.079 ,   R 85.4%OC h DH= × = ; (11) 
 0.893 2($ / ) 0.003 ,   R 94.5%OC h W= × = ; (12) 
 0.971 2($ / ) 0.238 ,   R 93.7%OC h HP= × = . (13) 

 
4.2. Multiple regression analysis 
Performing the PCA technique on these five backhoe 
shovel parameters to describe their interrelation pattern, 
the number of PCs will usually be equal to the number of 
independent original variables. Table 3 shows the 
eigenvectors of the correlation matrix that represent the 
matrix of the weights for the PCs, which demonstrates the 
relative importance of each standardized parameter in the 
PC calculations (He, Ma 2010). 
 
Table 3. Eigenvector of correlation matrix 

 BS DD DH W HP 
PC1 –0.4577 –0.2837 0.2550 –0.1631 0.7864 
PC2 –0.4348 0.6541 –0.5865 –0.1340 0.1452 
PC3 –0.4430 0.4333 0.6805 0.2903 –0.2620 
PC4 –0.4538 –0.3275 –0.0078 –0.6497 –0.5145 
PC5 –0.4463 –0.4434 –0.3576 0.6701 –0.1648 
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The eigenvalue of the correlation matrix is shown in 
Table 4. There are no multi-collinearities between PCs, 
because they are uncorrelated, and the regression 
calculations are also simplified. If all the PCs are 
submitted to the MVLR, then the outcome is equal to the 
model attained by least squares, so the significant 
variances caused by multi-collinearities have not 
departed. However, estimation of the least squares 
predictions via MVLR based on PCA may be more stable 
than common calculation (Flury, Riedwyl 1988). 
Therefore, in this study all five PCs ware selected as 
inputs to the MVLR model.  
 
Table 4. Eigenvalue of correlation matrix 

 Eigenvalue Total  
Variance % 

Cumulative 
Eigenvalue Cumulative % 

PC1 4.61 92.14 4.61 92.14 
PC2 0.21 4.22 4.82 96.36 
PC3 0.11 2.16 4.93 98.52 
PC4 0.06 1.18 4.99 99.70 
PC5 0.01 0.30 5.00 100.00 

 
To identify non-significant PCs and derive the best 

estimation functions for the costs of a backhoe shovel, 
MVLR is performed on the PC scores using stepwise 
variable selection procedures (Sousa et al. 2007). 
Tables 5 and 6 summarize the results of the MVLR 
model on the capital and operating costs of these 
equipments, respectively. The regression coefficients of 
PCs are highlighted in the “B” Column. The “Beta” 
coefficients are the standardized regression coefficients. 
It is important to note that the advantage of “Beta” 
coefficients in comparison with “B” coefficients is that 
their magnitudes facilate the assessment of the relative 
contribution of each PC in the estimation function. As 
indicated in Tables 5 and 6, PC1 is the most effective 
variable in the cost functions (with regard to “Beta” 
coefficient). A t-Test is used to assess the significance of 
the regression coefficients. The significant variables are 
given in bold in Tabes 5 and 6. Eqs (14) and (15) show 
the relationships between costs and PCs: 

1 2

3

($) 1648260 1516023
973745 3690728;

CC PC PC
PC

= − × − × −

× +
 (14) 

 1 2($ / ) 86.305 62.27 220.229.OC h PC PC= − × − × + (15) 
Table 7 summarizes the coefficients of determi-

nation for the models. As can be observed in the  
“R-square” (the coefficient of determination) column in 
Table 7, about 96.37% of variation in the operating cost 
of backhoe shovels is explained by the proposed MVLR 
model. R-square has a weakness; each additional variable 
used in the equation will, at least, result in a higher R-
Square, even when the new variable causes the equation 
to become less efficient. The adjusted R-Square (adj R2) 
value is an attempt to correct this shortcoming by 
adjusting both the numerator and the denominator of  
R-square by their respective degrees of freedom (Gujarati 
2003). It is adjusted by dividing the error sum and total 
sums of squares through their respective degrees of 
freedom (Eq. (16)) (Gujarati 2003):  

( ) ( )2  1    /   /   /  adjR Res SS df Total SS df= −    , (16) 
where Res SS is the error sums of squares, the Total SS is 
the total sums of squares and df is their respective degree 
of freedom. 

The eigenvectors of the correlation matrix (Table 3) 
are multiplied by the “B” coefficient calculated using 
MVLR (Tables 5 and 6) to obtain the costs as functions 
of the original variables. Then the new standardized coef-
ficients are transformed to their initial position, by 
Eq. (2). The final MVLR cost estimation functions are 
presented as follows: 

 81770 110325 186064
5.946 1786.3 129073;

CC BS DD DH
W HP

= + − +

+ +
 (17) 

 4.99 1.193 3.554
0.00028 0.067 10.69.

OC BS DD DH
W HP

= − + +

+ −
 (18) 

 
 

Table 5. Regression summary for capital cost ($) for backhoe shovel 
 Beta Std. Error of Beta B Std. Error of B T(26) P–value 

Intercept   3690728 111147.1 33.2058 0.000000 
PC1 –0.964430 0.030784 –1648260 52611.3 –31.3290 0.000000 
PC2 –0.189797 0.030784 –1516023 245890.3 –6.1654 0.000002 
PC3 –0.087324 0.030784 –973745 343269.2 –2.8367 0.008716 
PC4 –0.038305 0.030784 –578859 465197.5 –1.2443 0.224479 
PC5 –0.010976 0.030784 –330291 926394.0 –0.3565 0.724318 

 
Table 6. Regression summary for operating cost ($/h) for backhoe shovel 

 Beta Std. Error of Beta B Std. Error of B T(26) P–value 
Intercept   220.229 7.029 31.331 0.000 
PC1 –0.970 0.037 –86.305 3.327 –25.939 0.000 
PC2 –0.150 0.037 –62.272 15.551 –4.004 0.000 
PC3 –0.015 0.037 –8.592 21.709 –0.396 0.695 
PC4 0.014 0.037 11.025 29.420 0.375 0.711 
PC5 –0.024 0.037 –37.833 58.587 –0.646 0.524 
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Table 7. MVLR coefficients of determination 
 R-square Adjusted R-square 

Capital Cost 0.754 0.9706 
Operating Cost 0.9637 0.9567 

 
The estimated costs can be updated as follows:  

 ( )2010 2010/  x xC I C I= × , (19) 
where C indicates cost and x and I are proposed year and 
cost index, respectively. 
 
4.3. Model performance 
In this study, each model’s performance is measured with 
the MAER, which was determined with Eq. (3). The 
MAER obtained from the UVER and MVLR models for 
cost estimation functions are presented in Table 8. As is 
observed, the MAER values are smaller for the multiple 
regression analyses for both the capital and the operating 
costs, therefore, by using MVLR functions the capital and 
operating costs can be estimated with a error no more that 
13.85% and 11.44% in cases of capital and operating 
costs, respectively, while these bounds for UVER func-
tions is about 19.49 and 20.89 for capital and operating 
costs, respectively. 
 
Table 8. The MAER obtained from the UVER and MVLR 

 UVER MVLR 
Capital Cost 19.49 13.85 
Operating Cost 20.89 11.44 

 
5. Case example 
Sungun Copper Mine is located in East Azerbijan prov-
ince approximately 125 Km east of the city of Tabriz is 
one of the main copper deposits of Iran. Feasibility stud-
ies were shown that open pit mining technique is the most 
appropriate method for Sungun Copper Mine (Bazzazi 
et al. 2009). By using open-pit method, the waste to ore 
ratio in this mine will be 1.8:1 and an amount of 
384 million tons of ore with 0.665 percentage of copper 
grade can be mined. Total Sungun Copper Mine’s life is 
evaluated to be 31 years with an annual production of 
7 million tons in the first 5 years and 14 million tons for 
the remaining 26 years (Karan Darya Co. 2011). Fig. 4 
shows the location map of Sungun Copper complex.  

 

 
Fig. 4. Location map of Sungun Copper Complex 

The site preparation project for Sungun Copper 
Complex, including over burden removal, access-road 
construction and smelter complex site preparation began 
in the fourth quarter of 2010. The site plan of the project 
has been shown in Fig. 5.  

 

 
Fig 5. Site plan of Sungun Copper Complex (Karan Darya Co. 
2011) 

 
This project needs about 1.3 million m3 of excava-

tion and overburden removal operation including soil and 
rocky soil removal operations. The equipment fleet used 
in this project is listed in Table 9. 

 
Table 9. Equipment fleet used in the project 

Equipment Number 
Backhoe shovel 20 
Wheel loader 14 
Dozer 17 
Truck 62 
Grader 4 
Compactor 4 
Tractor 1 
Truck, water 2 

 

Table 10 lists the model, number and specification 
of backhoe shovels used in this project. 

 
Table 10. Backhoe shovels used in the project 

Model Number BS  
(cu m) 

DD  
(m) 

DH  
(m) 

W 
(ton) HP 

Komatsu 
PC220 

5 1.28 6.7 7.035 22.84 168 
Komatsu 
PC200 

4 1.17 6.89 6.095 20.63 155 
Hyundai 
250LC 

2 1.07 6.05 6.86 25.49 163 
Hyundai 
320LC 

2 1.14 6.37 7.05 32 237 
New Holland 
E265 BJ 

1 1.1 7.01 7.7 28.27 184 
New Holland 
E215 BJ-ST 

3 1.223 6.7 9.47 21.7 150 
Daewoo  
Doosan 230 

3 0.92 6.61 6.985 21.5 163 
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MVLR model has been used to estimate operational 
cost of backhoe shovels. Table 11 shows the estimated 
cost of each machine by using proposed MVLR model 
vs. the actual operational costs calculated from in site 
operations as well as the calculated MAER values. 

 
Table 11. Estimated vs. actual operational costs 

Model 
Estimated 
operational 
cost ($/h) 

Estimated 
operational 
cost ($/h) 

MAER (%) 

Komatsu 
PC220 24.02 27.18 11.63 
Komatsu 
PC200 19.03 22.24 14.43 
Hyundai 
R250 LC 22.79 24.52 7.05 
Hyundai 
R320 LC 28.41 27.32 3.99 
New Holland 
E265 BJ 26.19 28.93 9.47 
New Holland 
E215 BJ-ST 31.18 29.75 4.81 
Daewoo 
Doosan 230 21.81 25.54 14.60 

 Average MAER: 9.43% 
 
Regarding to the number of backhoe shovels used in 

the project, the total operational cost of backhoe shovel 
fleet is estimated about 483.78 US$/hour, while the actual 
in site operational cost of these equipment is recorded as 
523.34 US$/hour.  

 
6. Conclusions 
The objective of this paper was to establish reliable cost 
estimating models for backhoe shovels which are popular 
for material handling in mining and construction projects. 
For this, regression techniques have been adopted due to 
the mathematical background and their explanatory val-
ues. Based on the collected data, two cost estimation 
models in the form of uni-variable exponential regression 
(UVER) and multi-variable linear regression (MVLR) 
have been developed. These models are quick, easy and 
accurate tools and can be useful for making accurate de-
cisions about the size of the loading equipment fleet in 
construction and mining projects. The UVER model pre-
sents a rough estimate suitable for preliminary cost esti-
mations while the MVLR model is more detailed with 
reasonable accuracy and can be appropriate for detailed 
estimates in feasibility studies. 
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