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Abstract. This study compares several well-known machine learning techniques for public-private partnership
(PPP) project dispute problems. Single and hybrid classification techniques are applied to construct models for PPP
project dispute prediction. The single classification techniques utilized are multilayer perceptron (MLP) neural
networks, decision trees (DTs), support vector machines, the naı̈ve Bayes classifier, and k-nearest neighbor. Two
types of hybrid learning models are developed. One combines clustering and classification techniques and the other
combines multiple classification techniques. Experimental results indicate that hybrid models outperform single
models in prediction accuracy, Type I and II errors, and the receiver operating characteristic curve. Additionally,
the hybrid model combining multiple classification techniques perform better than that combining clustering and
classification techniques. Particularly, the MLP�MLP and DT�DT models perform best and second best,
achieving prediction accuracies of 97.08% and 95.77%, respectively. This study demonstrates the efficiency and
effectiveness of hybrid machine learning techniques for early prediction of dispute occurrence using conceptual
project information as model input. The models provide a proactive warning and decision-support information
needed to select the appropriate resolution strategy before a dispute occurs.
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management; dispute prediction.
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Introduction

During the last decade, many PPP projects were not as

successful as expected due to project disputes occur-

ring during the build, operate, and transfer (BOT)

phase. According to the Taiwan Public Construction

Commission (TPCC), the dispute rate was 23.6%

during 2002�2009 (PCC 2011). These disputes were

resolved by mediation and non-mediation procedures.

Non-mediation procedures include arbitration, litiga-

tion, negotiation, and administrative appeals. In

Taiwan, up to 84% of PPP projects disputes are

settled by mediation or negotiation within 1�9 months

(PCC 2011). Notably, arbitration or litigation costs to

all parties are considerably more in time and money

than those associated with mediation or negotiation.

Most research has focused on predicting litiga-

tion outcomes (Arditi, Tokdemir 1999a, b; Arditi,

Pulket 2005, 2010; Arditi et al. 1998; Chau 2007;

Pulket, Arditi 2009a, b) rather than providing a

proactive dispute warning. Additionally, most studies

examined the relationship between the project owner

and general contractor; however, PPP projects involve

many stakeholders, including the government, parti-

cipating private investors, and financial institutions.

This study intends to provide early dispute warnings

by predicting when disputes will occur based on

preliminary project information.
For effective control of PPP projects and to

design proactive dispute management strategies, early

knowledge of PPP project dispute propensity is

essential to provide the governmental PPP taskforce

with the information needed to implement a win-win

resolution strategy and even prevent disputes. Further,

depending on possible dispute outcomes, precaution-

ary measures can be implemented proactively during
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project execution. Additional preparation in preven-

tive actions can prove beneficial once a dispute occurs

by reducing future effort, time, and cost to multiple

parties during dispute settlement processes.
To achieve this goal, this study compares different

prediction models using a series of machine learning

techniques for predicting PPP dispute likelihood and

thereby eliminates future adverse impacts of disputes

on project delivery, operation, and transfer. Particu-

larly, this study uses single and hybrid machine

learning techniques. The single machine learning

models are based on neural networks, decision trees
(DTs), support vector machines (SVMs), the naı̈ve

Bayes classifier, and k-nearest neighbor (k-NN). Two

hybrid learning models are developed, one combining

clustering and classification techniques and the other

combining multiple classification techniques.

The rest of this paper is organized as follows.

Section 1 thoroughly reviews artificial intelligence (AI)

literature and its accuracy in predicting conventional
construction disputes and litigation outcomes. Section

2 then introduces the single and hybrid machine-

learning schemes. Next, Section 3 discusses the

experimental setup and results from comparing the

single and hybrid machine learning techniques for

dispute outcome prediction. Conclusions are finally

drawn in the final section, along with recommenda-

tions for future research.

1. Literature review

Management personnel typically benefit when the

taskforce has a decision-support tool for estimating

dispute propensity and for early planning of how

disputes should be resolved before project initiation

(Marzouk et al. 2011). Several studies have attempted

to minimize construction litigation by predicting the

outcomes of court decisions. In Arditi et al. (1998), a

network was trained using data from Illinois appellate
courts, and 67% prediction accuracy was obtained.

Arditi et al. (1998) argued that if the parties in a dispute

know with some certainty how a case will be resolved in

court, the number of disputes can be reduced markedly.

In another series of studies, AI techniques

achieved superior prediction accuracy with the same

dataset � 83.33% in a case-based reasoning study

(Arditi, Tokdemir 1999b), 89.95% with boosted DTs
(Arditi, Pulket 2005), and 91.15% by integrated

prediction modeling (Arditi, Pulket 2010). These

studies used AI to enhance prediction of outcomes

in conventional construction procurement litigation.

However, Chau (2007) determined that, other

than in the above case studies, AI techniques are rarely

applied in the legal field. Thus, Chau (2007) applied

AI techniques based on particle swarm optimization
to predict construction litigation outcomes, a field in

which new data mining techniques are rarely applied.

The network achieved an 80% prediction accuracy

rate, much higher than mere chance. Nevertheless,

Chau (2007) suggested that additional case factors,

such as cultural, psychological, social, environmental,

and political factors, be used in future studies to

improve accuracy and reflect real world.
For construction disputes triggered by change

orders, Chen (2008) applied a k-NN pattern classifica-

tion scheme to identify potential lawsuits based on a

nationwide study of US court records. Chen (2008)

demonstrated that the k-NN approach achieved a

classification accuracy of 84.38%. Chen and Hsu

(2007) further applied a hybrid artificial neural net-

works case-based reasoning (ANN-CBR) model with

dispute change order dataset to obtain early warning

information of construction claims. The classifier

attained a prediction rate of 84.61% (Chen, Hsu 2007).

Despite the numerous studies of CBR and its

variations for identifying similar dispute cases for use

as references in dispute settlements, Cheng et al.

(2009) refined and improved the conventional CBR

approach by combining fuzzy set theory with a novel

similarity measurement that combines Euclidean dis-

tance and cosine angle distance. Their model success-

fully extracted the knowledge and experience of

experts from 153 historical construction dispute cases

collected manually from multiple sources.

Generally, all previous studies focused on either

specific change order disputes or on conventional

contracting projects using a single accuracy perfor-

mance measure. Characteristics and environments of

construction projects under the PPP strategy, however,

differ markedly from the general contractor and

owner relationships and require machine learning

techniques with rigorous model performance measures

to assist governmental agencies in predicting disputes

with excellent accuracy.

Since disputes always involve numerous complex

and interconnected factors and are difficult to ratio-

nalize, machine learning techniques is now among the

most effective methods for identifying hidden relation-

ships between available or accessible attributes and

dispute-handling methods (Arditi, Pulket 2005, 2010;

Arditi, Tokdemir 1999a; El-Adaway, Kandil 2010;

Kassab et al. 2010; Pulket, Arditi 2009b). Approaches

based on machine learning are related to computer

system designs that attempt to resolve problems

intelligently by emulating human brain processes

(Lee et al. 2008) and are typically used to solve

prediction or classification problems.

Researchers in various scientific and engineering

fields have recently combined different learning tech-

niques to increase their efficacy. Numerous studies

have demonstrated that hybrid schemes are promising

applications in various industries (Arditi, Pulket 2010;

Chen 2007; Chou et al. 2010, 2011; Kim, Shin 2007;

Lee 2009; Li et al. 2005; Min et al. 2006; Nandi et al.

2004; Wu 2010; Wu et al. 2009). However, selecting
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the most appropriate combinations is difficult and

time consuming, such that further attempts are not

worthwhile unless significant improvements in accu-

racy are achieved. This study constructs PPP project
dispute-prediction models using single and hybrid

machine learning techniques.

2. Machine learning techniques

2.1. Classification techniques

2.1.1. Artificial neural networks

ANN consists of information-processing units that

resemble neurons in the human brain, except that a

neural network consists of artificial neurons (Haykin

1999). Generally, a neural network is a group of neural

and weighted nodes, each representing a brain neuron;

connections among these nodes are analogous

to synapses between brain neurons (Malinowski,
Ziembicki 2006).

Multilayer perceptron (MLP) neural networks

are standard neural network models. In an MLP

network, the input layer contains a set of sensory

input nodes, one or more hidden layers contain

computation nodes, and an output layer contains

computation nodes.

In a multilayer architecture, input vector x passes
through the hidden layer of neurons in the network to

the output layer. The weight connecting input element

i to hidden neuron j is Wji, and the weight connecting

hidden neuron j to output neuron k is Vkj. The net

input of a neuron is derived by calculating the

weighted sum of its inputs, and its output is deter-

mined by applying a sigmoid function. Therefore, for

the jth hidden neuron:

neth
j ¼

XN

i¼1

Wjixi and yi ¼ f ðneth
j Þ; (1)

and for the kth output neuron:

neto
k ¼

XJþ1

j¼1

Vkjyi and ok ¼ f ðneto
kÞ: (2)

The sigmoid function f(net) is the logistic function:

f ðnetÞ ¼ 1

1þ e�knet
; (3)

where l controls the function gradient.

For a given input vector, the network produces

an output ok. Each response is then compared to the

known desired response of each neuron dk. Weights in
the network are modified continuously to correct or

reduce errors until total error from all training

examples stays below a pre-defined threshold.

For the output layer weights V and hidden layer

weights W, update rules are given by Eqs (4) and (5),

respectively:

Vkjðtþ 1Þ ¼ vkjðtÞ þ ckðdk � okÞokð1� okÞyjðtÞ; (4)

Wjiðtþ 1Þ ¼ wjiðtÞ þ ck2yjð1� yjÞxiðtÞ�

ð
XK

k¼1

ðdk � okÞokð1� okÞvkjÞ: ð5Þ

2.1.2. Decision trees

DTs have a top-down tree structure, which splits data

to create leaves. In this study, the C4.5 classifier, a

recent version of the ID3 algorithm (Quinlan 1993), is
used to construct a DT for classification. A DT is

constructed in which each internal node denotes a test

of an attribute and each branch represents a test

outcome. Leaf nodes represent classes or class dis-

tributions. The top-most node in a tree is the root

node with the highest information gain. After the root

node, the remaining attribute with the highest infor-

mation gain is then chosen as the test for the next
node. This process continues until all attributes are

compared or no remaining attributes exist on which

samples may be further partitioned (Huang, Hsueh

2010; Tsai, Chen 2010).

Assume one case is selected randomly from a set

S of cases and belongs to class Cj. The probability that

an arbitrary sample belongs to class Cj is estimated by:

Pi ¼
freq Cj;S

� �
Sj j

; (6)

where jSj is the number of samples in set S and, thus,

the information it conveys is -log2pi bits.
Suppose a probability distribution P �{p1,

p2, . . . , pn} is given. The information conveyed by

this distribution, also called entropy of P, is then:

Info Pð Þ ¼
Xn

i¼1

�pi log2 pi: (7)

If a set T of samples is partitioned based on the value

of a non-categorical attribute X into sets T1, T2, . . . ,
Tm, then the information needed to identify the class

of an element of T becomes the weighted average of

information needed to identify the class of an element

of Ti, that is, the weighted average of Info(Ti):

Info X ;Tð Þ ¼
Xm

i¼1

Tij j
T
� Info Tið Þ: (8)

Information gain, Gain(X,T), is then derived as:

GainðX ;TÞ ¼ InfoðTÞ � InfoðX ;TÞ: (9)

This equation represents the difference between in-

formation needed to identify an element of T and
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information needed to identify an element of T after

the value of attribute X has been determined. Thus, it

is the gain in information due to attribute X.

2.1.3. Support vector machines

SVMs, which were introduced by Vapnik (1998), per-

form binary classification, that is, they separate a set
of training vectors for two different classes (x1, y1),

(x2, y2), . . . , (xm, ym), where xi � Rd denotes vectors in a

d-dimensional feature space and yi � {�1, �1} is a class

label. The SVM model is generated by mapping input

vectors onto a new higher dimensional feature space

denoted as F : Rd 0 Hf , where dBf. In classification

problems, SVM identifies a separate hyperplane that

maximizes the margin between two classes. Maximizing
the margin is a quadratic programming problem, which

can be solved from its dual problem by introducing

Lagrangian multipliers (Han, Kamber 2001; Tan et al.

2006; Witten, Frank 2005). An optimal separating

hyperplane in the new feature space is then constructed

by a kernel function K(xi,xj), which is the product of

input vectors xi and xj and where K(xi,xj) �F(xi) �F(xj).

2.1.4. Naı̈ve Bayes classifier

The naı̈ve Bayes classifier requires all assumptions be

explicitly built into models that are then utilized to
derive ‘optimal’ decision/classification rules. This

classifier can be used to represent the dependence

between random variables (features) and to generate a

concise and tractable specification of a joint prob-

ability distribution for a domain (Witten, Frank 2005).

The classifier is constructed using training data to

estimate the probability of each class, given feature

vectors of a new instance. For an example represented
by feature vector X, the Bayes theorem provides a

method for computing the probability that X belongs

to class Ci, which is denoted as p(CijX):

PðCi Xj Þ ¼
YN
j¼1

Pðxj Cij Þ: (10)

That is, the naı̈ve Bayes classifier determines the
conditional probability of each attribute xj(j�1,

2, . . . , N) of X given class label Ci. Therefore, the

(image) classification problem can be stated as fol-

lows: given a set of observed features xj from an image

X, classify X into one class Ci.

2.1.5. k-Nearest neighbor

In pattern classification, the k-NN classifier is a

conventional non-parametric classifier (Bishop 1995).

To classify an unknown instance represented by some

feature vectors as a point in a feature space, the k-NN
classifier calculates distances between the point and

points in a training dataset. It then assigns the point to

the class among its k-NNs (where k is an integer).

The k-NN classifier differs from the inductive

learning approach described previously; thus, it has

also been called instance-based learning (Mitchell

1997) or a lazy learner. That is, without off-line

training (i.e. model generation) the k-NN algorithm

only needs to search all examples of a given training

dataset to classify a new instance. Therefore, the

primary computation of the k-NN algorithm is on-

line scoring of training examples to find the k-NNs of

a new instance. According to Jain et al. (2000), 1-NN

can be conveniently used as a benchmark for all the

other classifiers since it achieves reasonable classifica-

tion performance in most applications.

2.2. Hybrid classification techniques

In literature, hybridization improves the performance

of single classifiers. Hybrid systems can address

relatively more complex tasks because they combine

different techniques (Lenard et al. 1998). Generally,

hybrid models are based on combining two or more

machine learning techniques (e.g. clustering and

classification techniques).

According to Tsai and Chen (2010), two methods

can be applied to construct hybrid models for

classification � the sequential combination of cluster-

ing and classification techniques and the sequential

combination of different classification techniques.

These two methods are described as follows.

2.2.1. Clustering�Classification techniques

The method combining clustering and classification

techniques uses one clustering algorithm as the first

component of the hybrid system. This study uses the

k-means clustering algorithm to combine classifica-

tion techniques.

The k-means clustering algorithm, a simple and

efficient clustering algorithm, iteratively updates the

means of data items in a cluster; the stabilized value is

then regarded as representative of that cluster. The

basic algorithm has the following steps (Hartigan,

Wong 1979):

� Randomly select k data items as cluster centers;

� Assign each data item to the group that has the

closest centroid;

� When all data items have been assigned,

recalculate the positions of k centroids;
� If no further change exists, end the clustering

task; otherwise, return to step 2 NOTE: if you

need to use this phrase, you have to change the

bullets into step 1, step 2, etc.

Therefore, clustering can be used as a pre-processing

stage to identify pattern classes for subsequent super-

vised classification. Restated, the clustering result can
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be used for pre-classification of unlabelled collections

and to identify major populations in a given dataset.

Alternatively, clustering can be used to filter out

unrepresentative data. That is, the data that cannot be
clustered accurately can be considered noisy data.

Consequently, representative data, which are not

filtered out by the clustering technique, are used

during the classification stage.

Next, the classification stage is the same as that

for training or constructing a classifier. The clustering

result becomes the training dataset to train a classifier.

After the classifier is trained, it can classify new
(unknown) instances.

Given a training dataset D, which contains m

training examples, the aim of clustering is to ‘‘pre-

process’’ D for data reduction. That is, the correctly

clustered data D’ by the cluster are collected, where D’

contains n examples (nBm and D’ �D). Then, D’ is

used to train the classifier. Hence, given a test dataset,

the classifier provides better classification results than
single classifiers trained with the original dataset D.

2.2.2. Classification�Classification techniques

Another hybrid approach combines multiple classifi-

cation techniques sequentially; that is, multiple classi-

fiers are cascaded. As with the combination of

clustering and classification techniques, the first

classifier can be used to reduce the amount of data.

The way of cascading two classification techni-

ques is as follows: given a training dataset D, which

contains m training examples, it is used to train and
test the first classifier. Notably, 100% classification

accuracy is impossible. Therefore, the correctly classi-

fied data D’ by the first classifier are collected, where

D’ contains o examples, where oBm and D’ �D. Then,

D’ is utilized to train the second classifier. Again, the

hybrid classifier could provide better classification

results than single classifiers trained with the original

dataset D over a given test dataset.

3. Modeling experiments

3.1. Experimental setup and design

3.1.1. The dataset

To demonstrate the accuracy and efficiency of the
dispute classification schemes, this study used PPP

project data collected by the TPCC, the authority

overseeing infrastructure construction in Taiwan, to

construct classification models to predict dispute

likelihood. The study database contains 584 PPP

projects overseen by the TPCC during 2002�2009.

Of 584 surveys issued, 569 were returned completed,

for a response rate of 97.4%. The questionnaire
included items to collect social demographic data of

respondents, background information, project char-

acteristics, and project dispute resolutions.

Several projects had more than one dispute � one

project had nine disputes � at various project stages.

Thus, the overall dataset comprised data for N�645

cases (i.e. N2�493 cases without disputes and N1�
152 dispute cases). Through expert feedback, project

attributes and their derivatives that were clearly

relevant to the prediction output of interest were

identified by survey items. However, quantitative

techniques were still needed to construct and validate

hidden relationships between selected project predic-

tors and the response (output) variable.

Table 1 summarizes the statistical profile of

categorical labels and numerical ranges for study

samples. For PPP-oriented procurement, 59.5% of

projects were overseen by the central government.

Over the last eight years, most public construction

projects have been for cultural and education facilities

(25.3%), sanitation and medical facilities (20.8%),

transportation facilities (18.1%), and major tourist

site facilities (10.5%). In accordance with economic

planning and development policy, 48.5% of projects

were located in northern Taiwan. Based on the standard

industry definition, most private sector investment was

in industrial (38.6%) and service departments (50.7%).

In most cases (91.0%), the government provided land

and planned the facility to attract investors.

The three major PPP strategies for delivering public

services are BOT (23.7%); operate and transfer (OT)

(52.7%); and rehabilitate, operate, and transfer (ROT)

(23.6%). Specifically, the World Bank Group (WBG

2011) defines the BOT scheme as a strategy in which a

private sponsor builds a new facility, operates the facility,

and then transfers the facility to the government at the

end of the contract period. The government typically

provides revenue guarantees through long-term take-or-

pay contracts. When a private sponsor renovates an

existing facility, and then operates and maintains the

facility at its own risk for the contract period, the PPP

strategy is ROT, according to WBG (2011) classifica-

tions. Projects involving only management and lease

contracts are classified as OT projects.
Further, flagship infrastructure projects refer to

those that are important and generally large. Average

project value was approximately New Taiwan Dollar

(NTD) 841 million (i.e. 1 USD is approximately equal

to 30 NTD). Based on collected data, the overall

procurement amount via PPP was roughly NTD 543

billion. Mean capital investment by the government

and private sector per project was NTD 63.5 million

and NTD 777.8 million, respectively. Notably, the

average private capital investment ratio was as high as

91.4%. The mean duration of licensed facility opera-

tions was about 12 years (maximum, 60 years).

To assess the dependencies between categorized

data, contingency table analyses were compared be-

tween particular predictors and the response variable

via chi-square testing to infer relationships (Table 2).
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All tests obtained statistically significant results at the

5% alpha level except variables (i.e. planning and

design; PCIR) that were rejected by the null hypothesis,

that is, no relationship was observed between the

row variable (input variables) and column variable

(output variable). For instance, among the dispute

cases (N1�152), the central government had a higher

probability of encountering disputes (67.1% probabil-

ity) than municipal (15.1%) and local governments

(17.8%).

Particularly, in Nos. 1, 6, 7, 10, 11, 20 in type of

public construction and facility of Table 1, disputes

occurred in 76.4% of projects. Data show that 85.5% of

disputes occurred in northern and southern Taiwan.

Interestingly, 92.1% of disputes occurred when the

government provided land and planned the facility,

while only 2% occurred when private investors pro-

vided land and designed the facility. Among the three

PPP strategies, the probability of disputes was higher

with BOT (49.3%) than with OT (32.2%) and ROT

(18.4%). Notably, once a project was legally promoted

as a major infrastructure project, the likelihood of a

PPP dispute was 38.8%, lower than that for non-major

infrastructure projects (61.2%).

Table 1. Project attributes and their descriptive statistics

Attribute Data range, categorical label or statistical description

Input variables

Type of government agency in

charge

Central authority (59.5%); Municipality (11.5%); Local government (29%)

Type of public construction and

facility

1: Transportation facilities (18.1%);

2: Common conduit (0%);

3: Environmental pollution prevention facilities (2.3%);

4: Sewerage (1.1%);

5: Water supply facilities (0.5%);

6: Water conservancy facilities (2.5%);

7: Sanitation and medical facilities (20.8%);

8: Social welfare facilities (3.9%);

9: Labor welfare facilities (1.2%);

10: Cultural and education facilities (25.3%);

11: Major tour-site facilities (10.5%);

12: Power facilities (0%);

13: Public gas and fuel supply facilities (0%);

14: Sports facilities (3.3%);

15: Parks facilities (2.5%);

16: Major industrial facilities (0.5%);

17: Major commercial facilities (1.9%);

18: Major hi-tech facilities (0.2%);

19: New urban development (0%);

20: Agricultural facilities (5.6%);

Project location North (48.5%); Center (21.2%); South (24.5%); East (5.3%); Isolated island (0.5%)

Executive authority Central authority (36.0%); Municipality (36.1%); Local government (27.9%)

Type of invested private sector Standard industry classification-Primary (0.2%); Secondary (38.6%); Tertiary (50.7%);

Quaternary (10.5%)

Planning and design unit Government provides land and plans facility (91.0%); Government provides land and

private investor designs facility (5.9%); Private provides land and designs facility (3.1%)

PPP contracting strategy BOT (23.7%); OT (52.7%); ROT (23.6%)

Major public infrastructure/

facility

Promoted as major public infrastructure/facility in PPP Act (80.1%); Not major

infrastructure/facility (19.9%)

Project scale Range: 0�60,000,000; Sum: 5.43E8; Mean: 841337.1776; Standard deviation: 3.52061E6

(Thousand NTD; USD:NTD is about 1:30 as of Apr. 2011)

Government capital investment Range: 0�9,600,000; Sum: 40,975,392.41; Mean: 63527.7402; Standard deviation:

5.11192E5 (Thousand NTD)

Private capital investment

amount

Range: 0�60,000,000; Sum: 5.02E8; Mean: 777809.4374; Standard deviation: 3.32433E6

(Thousand NTD)

Private capital investment ratio

(PCIR)

Range: 0�100; Mean: 91.4729; Standard deviation: 25.42269 (%)

Licensed operations duration Range: 0�60; Mean: 11.9778; Standard deviation: 13.39007 (Year)

Output variable

Dispute propensity No dispute occurred (76.4%); Dispute occurred (23.6%)
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Moreover, once project value exceeded NTD 50
million, dispute propensity was 4.33 times higher than

that for projects valued at NTD 5�50 million and less

than NTD 5 million. However, when private sector

investment exceeded 75%, dispute likelihood increased

to 92.8%. Notably, dispute patterns were not signifi-

cantly related to licensed operating period. Table 2

summarizes statistical results of cross-analysis.

3.1.2. Single baseline model construction

The single baseline models using classification techni-

ques are based on C4.5 DTs, the naı̈ve Bayes classifier,

SVMs, neural network classifier, and k-NN classifier.

Parameter settings for constructing the five baseline

prediction models are described as follows:

� DTs. The C4.5 DT is established and the

confidence factor for pruning the tree is set at

0.25. Parameters for the minimum number of

instances per leaf and amount of data used to
reduce pruning errors are 2 and 3, respectively;

� ANN. This study uses the MLP classifier. To

avoid overtraining, this study constructs an

MLP classifier by examining different para-

meter settings to obtain an average accuracy for

further comparisons. Therefore, this study con-

siders five different numbers of hidden nodes

and learning epochs. The numbers of hidden
nodes are 8, 12, 16, 24, and 32 and those of

learning epochs are 50, 100, 200, 300, and 500;

� Naı̈ve Bayesian classifier. In building the naı̈ve

Bayes classifier, this study uses supervised

discretization to convert numerical attributes

into nominal attributes, which can increase

model accuracy. Additionally, the kernel esti-

mator option is set as false because some
attributes are nominal;

� SVM. The complexity parameter, C, and toler-

ance parameter are as 1.0 and 0.001, respec-

tively. For the kernel function, the radial basis

function with a gamma value of 1 is used;

� k-NN classifier. Different k values are assessed

in this study, starting at 1 and increasing until

the minimum error rate is reached.

When comparing the predictive performance of

two or more methods, researchers often use k-fold

cross-validation to minimize bias associated with ran-

dom sampling of training and holdout data samples. As

cross-validation requires random assignment of indivi-

dual cases into distinct folds, a common practice is to

stratify the folds. In stratified k-fold cross-validation,

the proportions of predictor labels (responses) in folds

should approximate those in the original dataset.

Empirical studies show that, compared to tradi-

tional k-fold cross-validation, stratified cross-valida-

tion reduces bias in comparison results (Han, Kamber

2001). Kohavi (1995) further demonstrated that 10-

fold validation testing was optimal when computing

time and variance. Thus, this study uses stratified 10-

fold cross-validation to assess model performance.

The entire dataset was divided into 10 mutually

exclusive subsets (or folds), with class distributions

approximating those of the original dataset (strati-

fied). The subsets were extracted using the following

five steps:

1. Randomize the dataset;

2. Extract one tenth of the original dataset from
the randomized dataset (single fold);

3. Remove extracted data from the original

dataset;

Table 2. Contingency table and chi-square test results for

dispute cases

Project attributes

p-

value

Dispute

occurred (%)

Agency 0.002

Central authority 67.1

Municipality 15.1

Local government 17.8

Type of public construction 0.000

Transportation facilities 10.5

Water conservancy facilities 9.9

Sanitation and medical facilities 17.1

Cultural and education facilities 13.2

Major tour-site facilities 14.5

Agricultural facilities 11.2

Planning and design 0.657

Government provides land and

plans facility

92.1

Government provides land and

private investor designs facility

5.9

Private investor provides land

and designs facility

2.0

PPP strategy 0.000

BOT 49.3

OT 32.2

ROT 18.4

Major public infrastructure 0.000

No 61.2

Yes 38.8

Project scale (Thousand NTD) 0.000

B5,000 15.8

5000�50,000 15.8

�50,000 68.4

PCIR (%) 0.057

B25 3.3

25�50 0.0

50�75 3.9

�75 92.8

LOD (Year) 0.000

B5 19.7

5�10 23.0

10�15 5.9

15�20 13.8

�20 37.5
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4. Repeat steps (1)�(3) eight times;

5. Assign the remaining portion of the dataset to

the last fold (10th fold).

After applying this procedure to obtain 10
distinct folds, each fold was then used once for

performance tests of the single flat and hybrid

classification models, and the remaining nine folds

were used for training model, which obtained 10

independent performance estimates. The cross-valida-

tion estimate of overall accuracy was calculated by

averaging the k individual accuracy measures for

cross-validation accuracy.

3.1.3. Hybrid model construction

For the hybrid models combining clustering and

classification techniques, the k-means clustering algo-

rithm is applied first as the clustering stage. Notably,

the k value was set to 3, 4, 5, and 6. As dispute and no-

dispute groups exist, there are two clusters out of k

corresponding to these two groups, which provide
higher accuracy rates than the other clusters. Then,

they are selected as the clustering result.

For the example of k-means (k �4), four clusters

are produced and represented by C1, C2, C3, and C4

based on a training dataset. According to the ground

truth answer in the training dataset, one can identify

two of the four clusters, which can be well ‘classified’

into the dispute and no-dispute groups. The other two
clusters whose data are not well classified or difficult

to classify by k-means clustering are filtered out.

Once the best k-mean is found, its clustered data

(i.e. the clustering result) are used to train the five

single classifiers. Notably, one specific clustering

model for the 10 training datasets (by 10-fold cross

validation) will yield 10 different clustering results.

That is, data in the two representative clusters, which
can best recognize the dispute and no-dispute groups

using the 10 training datasets, are not duplicated.

Therefore, the final clustering result of each k-means

model is based on the union method for selecting

dispute and no-dispute data. The clustering result is

then used as the new training dataset to train the five

baseline models.

Conversely, for the cascaded hybrid classifiers,
the best baseline classification model is identified after

performing 10-fold cross validation, that is, one of the

C4.5 DTs, naı̈ve Bayes classifier, SVMs classifier, k-

NN classifier, and neural network classifier. The

correctly predicted data from the training set by the

best baseline model are used as new training data to

train the five single baseline models.

3.1.4. Evaluation methods

To assess the performance of these single and hybrid

prediction models, prediction accuracy and Type I and

II errors, that is, false-positive and false-negative

errors, are examined. Table 3 shows a confusion

matrix for calculating accuracy and error rates, which

are commonly used measures for binary classification

(Ferri et al. 2009; Horng 2010; Kim 2010; Sokolova,
Lapalme 2009).

Prediction accuracy, which is defined as the

percentage of records predicted correctly by a model

relative to the total number of records among

classification models, is a primary evaluation criterion.

The classification accuracy is derived by:

Accuracy ¼ aþ d

aþ bþ cþ d

� �
: (11)

Conversely, the Type I error is the error of not

rejecting a null hypothesis when an alternative hypoth-

esis is the true state. In this study, Type I error means

that the event occurred when the model classified the

event group into the non-event group. The Type II

error is defined as the error in rejecting a null

hypothesis when it is the true state, meaning the event

occurred when the model classified the non-event
group into the event group.

Moreover, the Receiver Operating Characteristic

(ROC) curves reflect the ability of a classifier to avoid

false classification. The ROC curve captures a single

point, the area under the curve (AUC), in the analysis

of model performance. As the distance between the

curve and reference line increases, test accuracy

increases. The AUC, sometimes referred to as ba-
lanced accuracy (Sokolova, Lapalme 2009), is derived

easily by Eq. (12):

AUC ¼ 1

2

a

aþ b

� �
þ d

cþ d

� �� �
: (12)

3.2. Experimental results

Table 4 lists the prediction performance of the five

single classifiers, including their prediction accuracy,
Type I and II errors, and the ROC curve. Experi-

mental results indicate that the DT classifier performs

best, providing the highest prediction accuracy at

83.72% and the lowest Type II error rate at 5.07%.

The MLP classifier performs second best in prediction

accuracy at 82.33%. Notably, the significant difference

level is higher than 95% or 99% by t-test for all the

performance measures of the individual models.
Therefore, of the hybrid models combining multiple

Table 3. Confusion matrix

Predicted

Positive Negative

Actual Positive a (tp) b (fn)

Negative c (fp) d (tn)
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classification techniques, the DT and MLP classifiers

are chosen as the first classifiers for comparison.

Table 5 shows the prediction performance of the

hybrid models combining clustering and classification

techniques, which present the significance level of

performance difference is higher than 95% or 99% by

t-test. Notably, the k-means by the four clusters (i.e.

k�4) are combined with the five classifiers, since this

combination performs best.

Analytical results demonstrate that the predic-

tion models by hybrid learning techniques perform

better than any single classification technique in terms

of prediction accuracy and the Type II error. Particu-

larly, k-means�the DT classifier performs best.

However, the prediction accuracies of k-means�the

MLP and k-means�k-NN classifiers are very close to

that of k-means�the DT classifier. That is, perfor-

mance differences are less than 1%.

Table 4. Prediction accuracy of single classifiers

Model Accuracy Type I error Type II error ROC Curve Ranking by accuracy

MLP 82.33 44.08 9.53 0.781 2

DT 83.72 52.63 5.07 0.712 1

Naı̈ve Bayes 78.91 63.82 7.91 0.720 4

SVMs 79.53 69.74 5.27 0.625 5

k-NN 80.93 29.17 13.59 0.768 3

t-value 91.62** 7.20** 5.27* 26.24**

*Represents the level of significance is higher than 95% by t-test.
**Represents the level of significance is higher than 99% by t-test.

Table 5. Prediction performance of combined clustering and classification techniques

Model Accuracy Type I error Type II error ROC curve Ranking by accuracy

k-means�MLP 84.66 59.78 5.67 0.749 2

k-means�DT 85.05 64.13 4.26 0.692 1

k-means�Naı̈ve Bayes 82.72 68.48 6.14 0.720 5

k-means�SVM 82.33 94.56 0.95 0.522 4

k-means�k-NN 84.66 41.30 9.69 0.764 2

t-value 149.06** 7.65** 3.77* 15.80**

*Represents the level of significance is higher than 95% by t-test.
**Represents the level of significance is higher than 99% by t-test.

Table 6. Prediction performance of the MLP and classification techniques combined

Model Accuracy Type I error Type II error ROC curve Ranking by accuracy

MLP�MLP 97.08 8.82 2.08 0.987 1

MLP�DT 97.08 16.18 1.04 0.923 2

MLP�Naı̈ve Bayes 91.61 35.29 4.58 0.918 5

MLP�SVM 96.53 13.24 2.08 0.923 4

MLP�k-NN 96.90 10.29 2.08 0.946 3

t-value 90.22** 3.49* 4.04* 73.08**

*Represents the level of significance is higher than 95% by t-test.
**Represents the level of significance is higher than 99% by t-test.

Table 7. Prediction performances of the DT and classification techniques combined

Model Accuracy Type I error Type II error ROC curve Ranking by accuracy

DT�MLP 93.12 32.53 2.48 0.826 3

DT�DT 95.77 16.87 2.07 0.957 1

DT�Naı̈ve Bayes 88.36 51.81 4.75 0.853 4

DT�SVM 87.83 61.45 3.72 0.674 5

DT�k-NN 94.89 18.72 2.89 0.907 2

t-value 55.75** 4.09* 6.66** 17.58**

*Represents the level of significance is higher than 95% by t-test.
**Represents the level of significance is higher than 99% by t-test.
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For hybrid models combining multiple classifica-

tion techniques, Tables 6 and 7 show the prediction

performance of MLP and DT combined and the

five classification techniques, respectively. All the

techniques indicate the significant level of perfor-

mance difference is higher than 95% or 99% by t-test.

When using the MLP classifier as the first

classifier, the MLP�MLP classifier performs best in

terms of prediction accuracy, Type I and II errors, and

the ROC curve, followed by the MLP�DT classifier.

On the other hand, when the DT classifier was used as

the first classifier, the DT�DT classifier achieved the

highest prediction accuracy, lowest Type I and II error

rates, and best ROC curve. Again, these hybrid models

combining multiple classification techniques outper-

form single classifiers.

To determine which method is superior, the best

single and hybrid models are compared by demonstrat-

ing difference statistically via analysis of variance

(ANOVA). Tables 8�10 present the ANOVA of average

accuracy, type I error, and type II error. The p-value

indicates the single, cluster�classifier, and classifier�
classifier models are statistically different at 1% or 5%

alpha level except the p-value between cluster�classi-

fiers and classifier�classifier. Notably, the three mod-

els show a statistical difference of performance

measures (F-value) at either 1% or 5% alpha level.

Moreover, Figures 1�4 compare the best single

and hybrid learning models in terms of prediction

Table 8. ANOVA analysis of average accuracy of three

methods (p value)

Method

Cluster�
Classifiers

Classifier�
Classifiers

Single

classifiers

Cluster�Classifiers 1.000 0.000* 0.112

Classifier�
Classifiers

1.000 0.000*

Single classifiers 1.000

F-value 82.689*

*Represents the level of significance is higher than 99% by t-test or
F-test.

Table 9. ANOVA analysis of Type I error of three methods

(p value)

Method

Cluster�
Classifiers

Classifier�
Classifiers

Single

classifiers

Cluster�Classifiers 1.000 0.001** 0.412

Classifier�
Classifiers

1.000 0.014*

Single classifiers 1.000

F-value 12.824**

*Represents the level of significance is higher than 95% by t-test.
**Represents the level of significance is higher than 99% by t-test or
F-test.

Table 10. ANOVA analysis of Type II error of three

methods (p value)

Method

Cluster�
Classifiers

Classifier�
Classifiers

single

classifiers

Cluster�Classifiers 1.000 0.290 0.299

Classifier�
Classifiers

1.000 0.021*

single classifiers 1.000

F-value 5.427*

*Represents the level of significance is higher than 95% by t-test or
F-test.
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Fig. 1. Prediction accuracy of the best single and hybrid

models
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Fig. 2. Type I error of the best single and hybrid models
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Fig. 4. ROC curve of the best single and hybrid models
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accuracy, Type I and Type II errors, and the ROC

curve, respectively. According to these comparison

results, the MLP�MLP classifier is the best predic-

tion model, achieving the highest prediction accuracy

rate, lowest Type I and II error rates, and highest ROC

curve, followed by the DT�DT model, indicating

that hybrid learning models perform better than single

learning models, and that multiple classification

techniques combined outperform clustering and clas-

sification techniques combined.

Conclusions

Based on the spirit of partnership, Taiwan’s govern-

ments function as promoters by building and operat-

ing public infrastructure or buildings with minimal

out-of-pocket expense but full administrative support.

For government agencies, the advantages of identify-

ing dispute propensity early include reducing the time

and effort needed to prepare a rule set to prevent

disputes by improving the understanding of govern-

ments, private investors, and financial institutions of

each side in a potential dispute.

This study compares 20 different classifiers using

single and hybrid machine learning techniques. The

best single model is the DT, achieving a prediction

accuracy of 83.72%, followed by the MLP at 82.33%.

For hybrid models, the combination of the k-means

clustering algorithm and DT outperforms the combi-

nation of k-means and the other single classification

techniques, including SVMs, the naı̈ve Bayes classifier,

and k-NN by achieving a prediction accuracy of

85.05%. Notably, all hybrid models (clustering�
classification) perform better than single models.

Moreover, the hybrid models combining multiple

classification techniques perform even better than that

combining k-means and a DT. Specifically, the

combination with multiple MLP classifiers and multi-

ple DT classifiers outperforms other hybrid models,

achieving prediction accuracy of 97.08% and 95.77%,

respectively. Additionally, combining MLP classifiers

is the best hybrid model based on having the highest

prediction accuracy, lowest Type I and II error rates,

and best ROC curve.

This study comprehensively compared the effec-

tiveness of various machine learning techniques.

Future work can focus on integration of proactive

strategy deployment and preliminary countermeasures

in early warning systems for PPP project disputes.

Another fertile research direction is the development

of second model for use once dispute likelihood is

identified. For dispute cases, such a model is needed to

predict which dispute category and which resolution

methods are likely to be used during which phases of a

project’s lifecycle by mapping hidden classification or

association rules.
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