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Analysis of heart rate variability (HRV) can be applied to assess the autonomic nervous
system (ANS) sympathetic and parasympathetic activity. Since living systems are non-
linear, evaluation of ANS activity is difficult by means of linear methods. We propose to
apply the Higuchi fractal dimension (HFD) method for assessment of ANS activity. HFD
measures complexity of the HRV signal. We analyzed 45 RR time series of 84 min
duration each from nine healthy and five diabetic subjects with clinically confirmed
long-term diabetes mellitus type II and with diabetic foot ulcer lasting more than
6 weeks. Based on HRV time series complexity analysis we have shown that HFD: (1)
discriminates healthy subjects from patients with diabetes mellitus type II; (2) assesses
the impact of percutaneous auricular vagus nerve stimulation (pVNS) on ANS activity
in normal and diabetic conditions. Thus, HFD may be used during pVNS treatment, to
provide stimulation feedback for on-line regulation of therapy in a fast and robust way.

Keywords: Higuchi fractal dimension, heart rate variability, autonomic nervous system, vagus nerve stimulation,
diabetes

INTRODUCTION

Analysis of HRV represents a common tool for assessment of autonomic cardiac regulation and
provides information about pathophysiological changes in various diseases (Task Force of the
European Society of Cardiology the North American Society of Pacing Electrophysiology, 1996;
Ashkenazy et al., 1999; Klonowski, 2007; Pierzchalski et al., 2011; Bian et al., 2012; Jiang et al., 2013;
Shaffer and Ginsberg, 2017). Based on evaluation of HRV, it was recently suggested that auricular
vagus nerve stimulation (VNS) positively influences the ANS by activating its parasympathetic
branch (La Marca et al., 2010; Kampusch et al., 2013, 2015a,b) and deactivating its sympathetic
branch (Clancy et al., 2014; Murray et al., 2016). Estimation of sympathetic and parasympathetic
activity of ANS is necessary for an accurate adjustment of auricular VNS, the task that is difficult
to achieve and potentially vulnerable to erroneous interpretation with standard linear methods
(Skinner et al., 1992; Yeragani et al., 1993; Wagner and Persson, 1998; Klonowski, 2007; Sharma,
2009; Sassi et al., 2015).

Abbreviations: ANS, autonomic nervous system; HFD, Higuchi fractal dimension; HRV, heart rate variability; pVNS,
percutaneous auricular vagus nerve stimulation; SD, standard deviation.
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Herein, we propose to apply a HFD algorithm (Higuchi, 1988),
for assessment of ANS activity based on HRV. HFD is simple,
fast and it is applicable in real-time calculations. In contrary to
the linear methods, HFD can be directly applied to HRV series
in time domain and it is suitable for short time series analysis,
i.e., of 100–200 data points of a non-stationary signal. HFD needs
to be provided with only one input parameter kmax, specifying
a maximal distance between the points compared in the time
series. As the HFD measures the complexity of the curve that
represents the analyzed signal on a plane, it always attains values
between 1 and 2. The value of 1 corresponds to a regular time
series (simple curve has Euclidean dimension equal 1) while for
Gaussian-type noise HFD may attain different values: 1.5 for
Brownian, 1.8 for pink, and 2.0 for white noise (Klonowski, 2007,
2011).

Up to date, the Higuchi algorithm was widely used in analysis
of biomedical signals (Skinner et al., 1992; Klonowski, 2007, 2011;
Sharma, 2009; West, 2010; Di Ieva et al., 2015; Kesić and Spasić,
2016) but only several papers presented HFD evaluation of HRV
(Yeragani et al., 1993; Diosdado et al., 2010; Pierzchalski et al.,
2011; Kamath, 2013; Sassi et al., 2015; Kesić and Spasić, 2016;
Tavares et al., 2016; Wajnsztejn et al., 2016; Gomes et al., 2017).
Hence, the aim of our research was to assess whether, based on
HRV time series analysis, HFD would: (1) discriminate healthy
subjects from patients with diabetes mellitus type II; (2) assess
the impact of pVNS on ANS activity in normal and diabetic
conditions.

MATERIALS AND METHODS

Data
We retrospectively analyzed 56 RR time series, of 84 min
duration each, from an open-label pilot study registered at
ClinicalTrials.gov (no. NCT02098447). The study was approved
by the local ethics committee of the Medical University of
Vienna (no. 1924/2013) and by the Austrian Agency for Health
and Food Safety. The RR time series were recalculated from
ECG recordings obtained from nine healthy and five diabetic
subjects, aged 40–80 years, with clinically confirmed long-term
diabetes mellitus type II, and diabetic foot ulcer (ulcus cruris)
lasting for more than 6 weeks (Table 1). Subject’s exclusion
criteria were: participation in another clinical trial over the
last 5 weeks before the experiment; addiction to substance
abuse; autonomous nervous system dysfunction (except diabetic
polyneuropathy); medical treatment with vasoactive substances;
history of heart arrhythmia or presence of an active implantable
device. Women in childbearing age were not included if
pregnant or nursing. All diabetic subjects had a history of
diabetes in average(SD) of 14(5) years. The ECGs were acquired
by means of a MP36 recording system with a three-lead
Einthoven II derivation (BIOPAC Systems, Inc., Goleta, CA,
United States) and a sampling rate of 1 kHz, for further
calculation of heart rate and HRV signals. The measurements
were obtained between February 24, 2014 and April 3, 2015.
The heart rate was calculated using proprietary MATLAB
algorithms with manual control (normal-normal RR series,

TABLE 1 | Demographic characteristics of healthy and diabetic subjects (p-values
for differences in age and BMI are given) included in the study (Ref.
ClinicalTrials.gov no. NCT02098447).

Healthy subjects (n = 9) Diabetic subjects (n = 5)

Sex (male/female) 4/5 4/1

Age (y.o.) 50.7 ± 7.2 53.8 ± 11.1 (p = 0.63)

BMI (kg/m2) 23.8 ± 3.3 34.6 ± 7.5 (p < 0.001)

extrasystoles, and artifacts excluded manually). All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Each of the healthy and diabetic subjects underwent four
sessions of pVNS mediated via four needle electrodes, with one
acting as the reference electrode, in vagally innervated regions
of the right auricle (Kampusch et al., 2013, 2015a,b; Kaniusas
et al., 2015). Each session consisted of five consecutive phases:
B- baseline measurement (10 min), S1- first pVNS (22 min),
P1- baseline measurement after the first pVNS (20 min), S2-
second pVNS (22 min), P2- baseline measurement after the
second pVNS (10 min). All measurements were performed at
comparable daytimes.

Eleven out of 56 RR time series were excluded because of
significant artifacts. The artifacts were caused by a low quality of
the raw data (7 time series) or presence of cardiac arrhythmia
in the signal (4 time series). Therefore, further analysis was
performed on 45 RR time series (28 for healthy and 17 for
diabetics).

In order to standardize the length of the series, every RR
record was linearly resampled with 1 Hz. Low frequency of
resampling was used to preserve the original characteristics of
the signal. Higher sampling frequencies would change the shape
of the original RR curve by introducing additional samples and
extending the total length of the signal, subsequently affecting
the estimation of real HFD values by introduction of low
frequencies.

Higuchi Fractal Dimension Algorithm
Calculations were performed by means of an in-house
implementation of the HFD algorithm in MATLAB R2016b (The
Mathworks Inc., Natick, MA, United States; Academic License,
IBBE PAS). HRV signals were analyzed within windows of 100
data points displaced by a 50 consecutive samples across the
signal, which resulted in 99 HFD values for each of the RR time
series. The window of 100 data points reflected approximately
1.5 min windows in RR time series. Consecutively, every phase
in each of the time series consisted of the following number of
HFD values: B- 11 HFD values; S1- 25 values; P1- 24 values; S2-
25 values; P2- 14 values.

Estimation of the Optimal kmax
Parameter
In order to find an optimal kmax parameter, allowing clear
differentiation between healthy and diabetic subjects, the HFD
was calculated in all of the 45 RR time series, for kmax ranging
from 2 to 50 (Figure 1). Calculation for kmax above 50 was not
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FIGURE 1 | Fluctuation of aggregated average ± SD of HFD values for
healthy and diabetic subjects, calculated for kmax parameter from 1 to 16.
Clear differentiation between subjects obtained for kmax = 5, by means of
two-sided Wilcoxon ranksum test (p < 7.97e–25).

possible due to the window length of 100 samples – maximal
distance between compared samples was less than 1/2 of the
window length. Optimal kmax was chosen based on a clear
separation of the mean of the aggregated HFD values for healthy
and diabetic subjects, and on the minimization of the two-sided
Wilcoxon ranksum test p-value for comparison of medians of
the HFD values. Subsequent analyses were performed for HFDs
calculated with the chosen parameter kmax = 5. (cf. 3.1, Figure 1)

Aggregated Distributions of HFD
Values – Overall
In each of the RR time series, 99 HFD values were calculated.
HFDs aggregated from the time series were tested by Shapiro–
Wilk normality test, to confirm non-normal distribution of
the values. Afterwards, the aggregated HFD distributions were
computed in healthy and diabetics from 2,772 and 1,683 HFD
values, respectively. Fifth, 25th, 75th, and 95th percentiles, means,
medians, SDs, skewness, and kurtosis were calculated separately
in both HFD distributions, for subsequent comparison.

Average HFD Values Across the Time
Series
Mean representative vectors of HFDs were calculated in respect
to time (t) in healthy and diabetics, for comparison by means of
Wilcoxon matched-pairs signed rank test. For visual presentation
of the results, the average ±95% confidence intervals of the
aggregated HFD values from healthy and diabetics were plotted
in function of time. Pearson’s linear correlation coefficient was
calculated between the average HFDs(t) and the time course
of the experiment in both groups. Results were considered
significant if correlation exceeded 50% with a p-significance value
<0.05.

Average HFD Values Within the
Experimental Phases
To assess whether the HFDs for healthy and diabetics are
changing overtime between B, S1, P1, S2, and P2 phases,
average ± SD of aggregated HFD values were calculated for each
phase of the time series in each of the subjects separately. As a
result, each of the subjects was represented by 5 average ± SD
HFD values. Afterward, two-way analysis of variance (ANOVA)
was applied to reveal significant differences between the average
HFDs in healthy and diabetic groups, in respect to the phase of
experiment. Bonferroni’s multiple comparison test was used in
search of differences between specific phases of the time series.
Whiskers-box plots of the aggregated HFDs within the phases
were generated for visual representation of the results.

Aggregated Distributions of HFD Within
the Experimental Phases
To check whether pVNS changes the shape of HFD distribution
overtime, 5th, 25th, 75th, and 95th percentiles, means, medians,
SDs, skewness and kurtosis were calculated for the HFD
aggregated distributions from B, S1, P1, S2, and P2 phases
separately, for subsequent comparison. Afterwards, 10 bins-wide
histograms of the aggregated HFD distributions were computed
within the phases, for healthy and diabetic subjects separately. To
objectively assess the magnitude of the changes caused by pVNS,
contrast histograms were calculated as a ratio of difference to sum
of bins heights between previously computed histograms for S1

TABLE 2 | Numerical characteristics of HFD aggregated distributions for experimental phases B, S1, P1, S2, P2 in healthy and diabetic subjects.

Healthy subjects Diabetic subjects

Overall B S1 P1 S2 P2 Overall B S1 P1 S2 P2

5th percentile 1.29 1.34 1.30 1.28 1.29 1.26 1.42 1.45 1.44 1.37 1.44 1.37

25th percentile 1.38 1.42 1.39 1.37 1.38 1.33 1.60 1.65 1.64 1.59 1.59 1.51

75th percentile 1.59 1.57 1.61 1.59 1.59 1.55 1.85 1.92 1.85 1.83 1.85 1.80

95th percentile 1.76 1.75 1.75 1.76 1.78 1.70 2.00 2.00 1.98 1.98 2.00 1.99

Mean 1.49 1.50 1.51 1.49 1.50 1.45 1.72 1.77 1.74 1.71 1.72 1.65

Median 1.48 1.49 1.49 1.48 1.48 1.43 1.73 1.77 1.76 1.72 1.72 1.63

SD 0.14 0.12 0.14 0.15 0.15 0.15 0.17 0.17 0.16 0.18 0.17 0.19

Skewness 0.42 0.75 0.33 0.42 0.52 0.37 –0.30 –0.64 –0.53 –0.38 –0.12 0.18

Kurtosis 2.80 3.48 2.42 2.48 2.83 3.35 2.44 2.99 2.87 2.59 2.27 2.17
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FIGURE 2 | Mean ± 95% confidence intervals of HFD values during the
course of experiment, for healthy and diabetic subjects separately.

FIGURE 3 | Whiskers-box plot for HFD values aggregated in respect to the
phase of experiment, for healthy (H) and diabetic (D) subjects separately.
Whiskers represent the range of min-max HFD values. B, S1, P1, S2, P2 –
phases of the experiment. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

and B; P1 and S1, S2 and P1, P2 and S2, and P2 and B phases in
both groups.

Statistical Analysis
All calculations and statistical analyses were performed by means
of MATLAB R2016b.

RESULTS

Estimation of the Optimal kmax
Parameter
The aggregated HFD values for healthy and diabetics were found
as the most statistically different for kmax = 5, by means of
a two-sided Wilcoxon ranksum test (p < 0.001). Hence, the

optimal kmax parameter, allowing clear differentiation between
the healthy and diabetes group, was chosen as 5.

Aggregated Distributions of HFD
Values – Overall
Shapiro–Wilk normality test revealed that HFD values,
aggregated jointly from healthy and diabetic subjects, do
not form a normal distribution (W = 0.9745, p < 0.05).
Characteristics of HFD aggregated distributions (i.e., 5th, 25th,
75th, and 95th percentiles, means, medians, SDs, skewness, and
kurtosis) are presented in Table 2.

Average HFD Values Across the Time
Series
Wilcoxon matched-pairs signed rank test revealed statistical
differences between the average HFD(t) values in healthy and
diabetics (W = 4,950, 99 pairs, p < 0.0001). The mean(median)
difference between the groups was 0.226(0.230). Absolute
Pearson’s linear correlation coefficient between the average
HFD(t) values and the time course of experiment was larger in
diabetics (r = –0.56, p < 0.0001), than in healthy (r = –0.44,
p = 0.0002; Figure 2).

Average HFD Values Within the
Experimental Phases
Two-way ANOVA showed significant differences between the
average HFD’s from different experimental phases, in healthy and
diabetic subjects. The differences were visible between the healthy
and diabetic group [F(1,43) = 60.79, p < 0.0001], and due to the
experimental phases [F(4,172) = 10.80, p < 0.0001]. Bonferroni’s
multiple comparisons test showed significant differences in mean
HFD values between B and P2, S1 and P2, and S2 and P2
phases both in healthy (p < 0.05, p < 0.01, and p < 0.05,
respectively) and diabetics (p < 0.001, p < 0.01, and p < 0.05,
respectively). The mean HFD values were significantly different
between healthy and diabetics in all phases (largest p < 0.05)
except P2 in diabetic subjects, which was not different from B,
S1, and P2 in healthy (Figure 3).

Aggregated Distributions of HFD Within
the Experiment Phases
Table 2 presents numerical characteristics of HFD aggregated
distributions for experimental phases B, S1, P1, S2, P2 (5th, 25th,
75th, and 95th percentiles, means, medians, SDs, skewness and
kurtosis) in healthy and diabetic subjects. Figure 4 shows 10
bins-wide histograms of the aggregated HFD distributions for the
phases and Figure 5 shows contrast histograms for comparison
of the distributions between S1 and B; P1 and S1, S2 and P1,
P2 and S2, and P2 and B phases, for healthy and diabetics. The
characteristics and the histograms were calculated in total from
4,455 HFD values. Overall mean(median) ± SD HFD values
were found as 1.49(1.48) ± 0.14 and 1.72(1.73) ± 0.17 for
healthy and diabetic subjects, respectively. In diabetic subjects,
skewness of aggregated HFD distributions was observed to
change from negative (–0.64) to positive (0.18) between the
experimental phases (Pearson’s correlation coefficient r = 0.98;
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FIGURE 4 | Histograms of aggregated HFD distributions from B, S1, P1, S2, P2 experimental phases, for healthy and diabetic subjects separately.

FIGURE 5 | Contrast histograms of HFD distributions for comparison of S1 and B; P1 and S1, S2 and P1, P2 and S2, and P2 and B experimental phases, for
healthy and diabetic subjects separately.
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R2 = 0.96, p < 0.01). The opposite, but not monotonic (and
not significantly different from zero slope) effect was observable
in the healthy group (r = 0.54; R2 = 0.29, p = 0.35). Moreover,
kurtosis of the distributions was found consistently dropping
over the experimental phases only in diabetics.

DISCUSSION

This study advances knowledge in HRV analysis in healthy and
diabetic subjects. By means of our implementation of Higuchi’s
method, overall mean ± SD of aggregated HFD values were
found higher for diabetics than for healthy subjects (Figure 1
and Table 2). Significant differences in mean values of HFD
aggregated distributions were found between the B, S1, and P2
phases in both groups. It is also worth to highlight that the mean
HFD from P2 in diabetics was found not different from that in B,
S1, and P2 phases in healthy (Figure 3). The results indicate no
significant influence of pVNS on mean HFD during or directly
after the stimulation in both groups. However, the effect seems
to be delayed in time and its overall permanence was more
explicit in diabetics than in healthy subjects. Moreover, skewness
of the aggregated HFD distributions was rising significantly from
negative to positive between the phases in diabetics, while a clear
trend was not observable in healthy.

Our findings agree with the changes observed in spectral
analysis of the RR time series, like the total power (TP – total
variability), high frequency power (HF – parasympathetic
activity), low frequency (LF – mixed sympathetic and
parasympathetic activity) power, and the LF/HF ratio
(sympathovagal balance) in the presented subject population
(Kampusch et al., 2015b, unpublished data). TP, HF, LF, and
LF/HF significantly differ between healthy and diabetic subjects
at baseline and converge due to stimulation. Increases in those
parameters could be shown due to stimulation in healthy and
diabetics, indicating an increased parasympathetic activity and
changed sympathovagal balance, like also observed in HFD
analysis here. Further studies are required to understand in
detail the interrelation of the evaluated HFD parameters with
ANS measures. However, our findings are in accordance with
previous reports regarding the HFD or detrended fluctuation
analysis (Ashkenazy et al., 1999) of the HRV signal in normal
conditions, congestive heart failure and heart transplanted
patients (Cerutti et al., 2007), single or multiple lesions stroke
(D’Addio et al., 2009), in arrhythmia (Pierzchalski et al., 2011),
during meditation (Diosdado et al., 2010; Kamath, 2013), guided
breathing exercises (Tavares et al., 2016), in children with ADHD
hyperactivity disorder (Wajnsztejn et al., 2016), in healthy
subjects immediately after physical exercises (Gomes et al., 2017),
or in diabetes (Malpas and Maling, 1990).

Our results indicate a slight pVNS-induced shift of HFD
values from assembled close to 2 (chaotic signal) to lower values,
in diabetics. The shift was observed mostly for the HFDs above
the 50th percentile of distribution and was confirmed by the
change in the distribution’s skewness and kurtosis (Table 2
and Figure 4). Moreover, a relative increase in HFDs below
1.6 is observable in P2, compared to B in diabetics. The

FIGURE 6 | Receiver operating curve calculated from average HFD values
within the experimental phases, for each healthy and diabetic subject (in total
140 HFD values for healthy and 85 for diabetic subjects).

effect is connected with a smaller decrease for HFDs above
1.6 (Figure 5). In contrary, pVNS seems to affect the whole
distribution of the HFD values equally in healthy. The shape of
the HFD distribution was not changed here substantially over the
experiment (Figure 4), however, a slight increase in the higher
HFDs associated with a decrease in HFDs of lower range is
observable between P2 and B (Figure 5).

As higher HFD values correspond to the presence of higher
frequencies in the signals Fourier spectrum (Yeragani et al., 1993;
Klonowski et al., 2006) our observations would suggest that
pVNS may increase the parasympathetic (see above) and decrease
the sympathetic activity of ANS in diabetic conditions, which
is in line with (Clancy et al., 2014) for healthy subjects. Such
observation implies VNS-induced stabilization of ANS balance
in diabetic subjects. It is worth to note that due to neuropathy a
lower parasympathetic and lower sympathetic activity is generally
observed in diabetes, compared to normal conditions (Task Force
of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, 1996). Moreover, we found
diabetic subjects showing larger SD of HFD values in all of the
experimental phases (“more chaotic” RR signal), so pVNS seems
to have a “fine-tuning” effect on ANS activity. The effect in
healthy is much weaker, since pVNS seems to alter their ANS
activity within the range of auto regulation capabilities.

Limitations of our study include the necessary predefinition
of the input parameter kmax, in advance. Herein, we have
experimentally set kmax to 5. Higher kmax values would provide
underestimation, while lower provide overestimation of HFD
(HFD close to 1 or to 2, respectively). In both situations the
distinction between the healthy and diabetic group might be
not possible (Figure 1). Further, with respect to the included
subject groups, a significant difference in BMI of healthy and
diabetic subjects (Table 1) needs to be considered as a potential
co-founding factor when analyzing ANS function. We have
performed analysis of HRV time series recalculated from original
ECG signals. It was previously shown that HFD may provide
similar results when applied to raw data (Pierzchalski et al., 2011).
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Hence, it would be worth to compare HFD analysis with
spectral analysis performed on the same HRV time series,
or to apply both analyses to the original ECG signals from
diabetic and healthy subjects. Additionally, physical activity and
medication were not documented during the study for diabetic
subjects.

Hence, our results indicate that HFD provides high resolution
insight into ANS activity during pVNS based on HRV time series
analysis. Simplicity of HFD makes the assessment of ANS activity
prospectively possible in on-line systems and may bring accuracy
(Figure 6) to both diagnostic systems and therapeutic closed-loop
pVNS systems.

CONCLUSION

We have shown that the HFD assesses the ANS activity and
differentiates healthy from diabetic subjects, based on HRV
signals. Moreover, HFD provides fast and robust distinction
between action of parasympathetic and sympathetic ANS
activity. Because of its simplicity, HFD may be easily used in
pVNS systems to provide direct stimulation feedback for on-
line regulation of therapy. Hence, our results have potential
implication for patients’ care and technological advancement of
pVNS therapy.
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