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Deep neural networks have been recently shown to capture intricate information
transformation of signals from the sensory profiles to semantic representations that
facilitate recognition or discrimination of complex stimuli. In this vein, convolutional neural
networks (CNNs) have been used very successfully in image and audio classification.
Designed to imitate the hierarchical structure of the nervous system, CNNs reflect
activation with increasing degrees of complexity that transform the incoming signal
onto object-level representations. In this work, we employ a CNN trained for large-
scale audio object classification to gain insights about the contribution of various
audio representations that guide sound perception. The analysis contrasts activation
of different layers of a CNN with acoustic features extracted directly from the scenes,
perceptual salience obtained from behavioral responses of human listeners, as well as
neural oscillations recorded by electroencephalography (EEG) in response to the same
natural scenes. All three measures are tightly linked quantities believed to guide percepts
of salience and object formation when listening to complex scenes. The results paint a
picture of the intricate interplay between low-level and object-level representations in
guiding auditory salience that is very much dependent on context and sound category.

Keywords: convolutional neural network, auditory salience, natural scenes, audio classification,
electroencephalography, deep learning

INTRODUCTION

Over the past few years, convolutional neural networks (CNNs) have revolutionized machine
perception, particularly in the domains of image understanding, speech and audio recognition, and
multimedia analytics (Krizhevsky et al., 2012; Karpathy et al., 2014; Cai and Xia, 2015; Simonyan
and Zisserman, 2015; He et al., 2016; Hershey et al., 2017; Poria et al., 2017). A CNN is a form
of a deep neural network (DNN) where most of the computation are done with trainable kernel
that are slid over the entire input. These networks implement hierarchical architectures that mimic
the biological structure of the human sensory system. They are organized in a series of processing
layers that perform different transformations of the incoming signal, hence “learning” information
in a distributed topology. CNNs specifically include convolutional layers which contain units that
are connected only to a small region of the previous layer. By constraining the selectivity of units
in these layers, nodes in the network have emergent “receptive fields,” allowing them to learn
from local information in the input and structure processing in a distributed way; much like
neurons in the brain have receptive fields with localized connectivity organized in topographic

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 532

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00532
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00532
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00532&domain=pdf&date_stamp=2018-08-14
https://www.frontiersin.org/articles/10.3389/fnins.2018.00532/full
http://loop.frontiersin.org/people/491816/overview
http://loop.frontiersin.org/people/416440/overview
http://loop.frontiersin.org/people/52170/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00532 August 13, 2018 Time: 9:52 # 2

Huang et al. Connecting DNNs to Auditory Signals

maps that afford powerful scalability and flexibility in computing.
This localized processing is often complemented with fully
connected layers which integrate transformations learned across
earlier layers, hence incorporating information about content
and context and completing the mapping from the signal
domain (e.g., pixels, acoustic waveforms) to a more semantic
representation.

As with all DNNs, CNNs rely on vast amounts of data to
train the large number of parameters and complex architecture
of these networks. CNNs have been more widely used in a
variety of computer vision tasks for which large datasets have
been compiled (Goodfellow et al., 2016). In contrast, due to
limited data, audio classification has only recently been able to
take advantage of the remarkable learning capability of CNNs.
Recent interests in audio data curation have made available a
large collection of millions of YouTube videos which were used to
train CNNs for audio classification with remarkable performance
(Hershey et al., 2017; Jansen et al., 2017). These networks offer
a powerful platform to gain better insights on the characteristics
of natural soundscapes. The current study aims to use this CNN
platform to elucidate the characteristics of everyday sound events
that influence their acoustic properties, their salience (i.e., how
well they “stand-out” for a listener), and the neural oscillation
signatures that they elicit. All three measures are very closely
tied together and play a crucial role in guiding our perception of
sounds.

Given the parallels between the architecture of a CNN and the
brain structures from lower or higher cortical areas, the current
work uses the CNN as a springboard to examine the granularity
of representations of acoustic scenes as reflected in their acoustic
profiles, evoked neural oscillations, and crucially their underlying
salience; this latter being a more abstract attribute that is largely
ill-defined in terms of its neural underpinnings and perceptual
correlates. Salience is a characteristic of a sensory stimulus that
makes it attract our attention regardless of where our intentions
are. It is what allows a phone ringing to distract us while we are
intently in the midst of a conversation. As such, it is a critical
component of the attentional system that draws our attention
toward potentially relevant stimuli.

Studies of salience have mostly flourished in the visual
literature, which benefited from a wealth of image and
video datasets as well as powerful behavioral, neural, and
computational tools to explore characteristics of visual salience.
The study of salience in audition has been limited both by
lack of data as well as limitations in existing tools that afford
exploring auditory salience in a more natural and unconstrained
way. A large body of work has explored aspects of auditory
salience by employing artificially constructed stimuli, such as
tone and noise tokens (Elhilali et al., 2009; Duangudom and
Anderson, 2013). When natural sounds are used, they are often
only short snippets that are either played alone or pieced
together (Kayser et al., 2005; Duangudom and Anderson, 2007;
Kaya and Elhilali, 2014; Tordini et al., 2015; Petsas et al.,
2016). Such manipulations limit the understanding of effects
of salience in a more natural setting, which must take into
account contextual cues as well as complexities of listening in
everyday environments.

Despite the use of constrained or artificial settings, studies
of auditory salience have shed light on the role of the acoustic
profile of a sound event in determining its salience. Loudness
is a natural predominant feature, but is complemented by other
acoustic attributes, most notably sound roughness and changes
in pitch (Nostl et al., 2012; Arnal et al., 2015). Still, the relative
contribution of these various cues and their linear or non-linear
interactions have been reported to be very important (Kaya
and Elhilali, 2014; Tordini et al., 2015) or sometimes provide
little benefit (Kim et al., 2014) to determining the salience of a
sound event depending on the stimulus structure, its context, and
the task at hand. Unfortunately, a complete model of auditory
salience that can account for these various facets of auditory
salience has not yet been developed. Importantly, studies of
auditory salience using very busy and unconstrained soundscapes
highlight the limitations of explaining behavioral reports of
salience using only basic acoustic features (Huang and Elhilali,
2017). By all accounts, auditory salience is likely a multifaceted
process that not only encompasses the acoustic characteristics of
the event itself, but is shaped by the preceding acoustic context,
the semantic profile of the scene as well as built-in expectation
both from short-term and long-term memory, much in line with
processes that guide visual salience especially in natural scenes
(Treue, 2003; Wolfe and Horowitz, 2004; Veale et al., 2017).

Convolutional neural networks offer a powerful platform to
shed light on these various aspects of a natural soundscape and
hence can provide insight into the various factors at play in
auditory salience in everyday soundscapes. In the present work,
we leverage access to a recently published database of natural
sounds for which behavioral and neural salience measures are
available (Huang and Elhilali, 2017, 2018) to ask the question:
how well does activity in a large-scale DNN at various points
in the network correlate with these measures? Owing to the
complexity of these convolutional models, we do not expect
an explicit account of exact factors or processes that determine
salience. Rather, we examine the contribution of peripheral vs.
deeper layers in the network to explore contributions of different
factors along the continuum from simple acoustic features to
more complex representations, and ultimately to semantic-level
embeddings that reflect sound classes. A number of studies have
argued for a direct correspondence between the hierarchy in the
primate visual system and layers of deep CNNs (Kriegeskorte,
2015; Yamins and DiCarlo, 2016; Kuzovkin et al., 2017). A recent
fMRI study has also shown evidence that a hierarchical structure
arises in a sound classification CNN, revealing an organization
analogous to that of human auditory cortex (Kell et al., 2018).
In the same vein, we explore how well activations at different
layers in an audio CNN explain acoustic features, behaviorally
measured salience, and neural responses corresponding to a set
of complex natural scenes. These signals are all related (but not
limited) to salience, and as such this comparison reveals the
likely contribution of early vs. higher cortical areas in guiding
judgments of auditory salience.

This paper is organized as follows. First, the material and
methods employed are presented. This next section describes
the database used, the acoustic analysis of audio features in the
dataset, and the behavioral and neural responses for this same
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set obtained from human subjects. The architecture of the neural
network is also described as the platform that guides the analysis
of other metrics. The results present the information gleaned
from the CNN about its representation of acoustic, behavioral,
and neural correlates of salience. Finally, the discussion section
summarizes the insights gained from these results and its impact
for future work to better understand auditory salience and its role
in our perception of sounds.

MATERIALS AND METHODS

This next section describes the acoustic data, three types of
auditory descriptors [acoustic features, a behavioral measure, and
electroencephalography (EEG)], as well as three types of analyses
employed in this study (CNN, surprisal, and correlation).

Stimuli
The stimuli used in the present study consist of 20 natural
scenes taken from the JHU DNSS (Dichotic Natural Salience
Soundscapes) Database (Huang and Elhilali, 2017). Scenes are
approximately 2 min in length each and sampled at 22,050 Hz.
These scenes originate from several sources, including YouTube,
FreeSound, and the BBC Sound Effects Library. The scenes
encompass a wide variety of settings and sound objects, as well
as a range of sound densities. Stimuli are manually divided into
two groups for further analysis; a “sparse” group, which includes
scenes with relatively few but clearly isolated acoustic events.
An example of a sparse scene includes a recording of a bowling
alley in which a relatively silent background is punctuated by
the sound of a bowling ball first striking the floor and then the
pins. The remaining scenes are categorized as “dense” scenes.
Examples of these scenes include a maternity ward, a protest on
the streets, and a dog park with continuously ongoing sounds
and raucous backgrounds. This comparison between sparse and
dense scenes is important because salience in dense scenes is
particularly difficult to explain using only acoustic features, and
thus more complex information such as sound category may
provide a benefit.

Acoustic Features
Each of the scenes in the JHU DNSS database is analyzed
to extract an array of acoustic features, including loudness,
brightness, bandwidth, spectral flatness, spectral irregularity,
pitch, harmonicity, modulations in the temporal domain (rate),
and modulations in the frequency domain (scale). Details of these
feature calculations can be found elsewhere (Huang and Elhilali,
2017). In addition, the current study also includes an explicit
measure of roughness as one of the acoustic features of interest.
It is defined as the average magnitude of temporal modulations
between 30 and 150 Hz, normalized by the root-mean-squared
energy of the acoustic signal, following the method proposed by
Arnal et al. (2015).

Behavioral Salience
The Huang and Elhilali (2017) study collected a behavioral
estimate of salience in each of the scenes in the JHU

DNSS dataset. Briefly, subjects listen to two scenes presented
simultaneously in a dichotic fashion (one presented to each ear).
Subjects are instructed to use a computer mouse to indicate which
scene they are focusing on at any given time. Salience is defined as
the percentage of subjects that attend to a scene when compared
to all other scenes, as a function of time.

Peaks in the derivative of the salience curve for each scene
define onsets of salient events. These are moments in which
a percentage of subjects concurrently begin listening to the
associated scene, regardless of the content of the opposing scene
playing in their other ear. The strength of an event is defined
as a linear combination of the height of the slope at that point
in time and the maximum percentage of subjects simultaneously
attending to the scene within a 4-s window following the event.
The strongest 50% of these events are used in the event-related
analysis in the current study. These events are further manually
categorized into one of seven sound classes (speech, music,
other vocalization, animal, device/vehicle, tapping/striking, and
other). The speech, music, other vocalization, vehicle/device, and
tapping/striking classes contained the most number of events and
are included in the current study for further analysis. By this
definition of salience, the scenes contained 47 events in the speech
class, 57 events in music, 39 events in other vocalization, 44 events
in vehicle/device, and 28 events in tapping. The two remaining
classes consisted of too few instances, with only 11 events in the
animal category and eight in a miscellaneous category.

Electroencephalography
Cortical activity while listening to the JHU DNSS stimuli is
also measured using EEG, following procedures described in
the study by Huang and Elhilali (2018). Briefly, EEG recordings
are obtained using a Biosemi Active Two 128-electrode array,
initially sampled at 2048 Hz. Each of the 20 scenes is presented to
each subject one time in a random order, and listeners are asked
to ignore these scenes playing in the background. Concurrently,
subjects are presented with a sequence of tones and perform an
amplitude modulation detection task. The neural data relevant to
the modulation task is not relevant to the current study and is not
presented here. It is discussed in the study by Huang and Elhilali
(2018).

Electroencephalography signals are analyzed using FieldTrip
(Oostenveld et al., 2011) and EEGLab (Delorme and Makeig,
2004) analysis tools. Data are demeaned and detrended, and then
resampled at 256 Hz. Power line energy is removed using the
Cleanline MATLAB plugin (Mullen, 2012). EEG data are then
re-referenced using a common average reference, and eyeblink
artifacts are removed using independent component analysis
(ICA).

Following these preprocessing steps, energy at various
frequency bands is isolated using a Fourier transform over sliding
windows (length 1 s, step size 100 ms), and then averaged
across the frequencies in a specific band. Six such frequency
bands are used in the analysis to follow: Delta (1–4 Hz), Theta
(4–7 Hz), Alpha (8–15 Hz), Beta (15–30 Hz), Gamma (30–50 Hz),
and High Gamma (70–110 Hz). Next, band energy is z-score
normalized within each channel. Band activity is analyzed both
on a per-electrode basis and also by averaging activity across
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groups of electrodes. In addition to a grand average across all
128 electrodes, analysis is also performed by averaging activity in
frontal electrodes (21 electrodes near Fz) and central electrodes
(23 electrodes near Cz) as defined in Shuai and Elhilali (2014).

Deep Neural Network
A neural network is used in the current study to explore its
relationship with salience judgments based on acoustic analysis,
behavioral measures, and neural EEG responses (Figure 1).
The network structure like VGG follows network E presented
by Simonyan and Zisserman (2015), with modifications made
by Hershey et al. (2017) and Jansen et al. (2017). Briefly, the
network staggers convolutional and pooling layers. It contains
four convolutional layers, each with relatively small 3 × 3
receptive fields. After each convolutional layer, a spatial pooling
layer reduces the number of units by taking maximums over non-
overlapping 2 × 2 windows. Next, two fully connected layers
then reduce the dimensionality further before the final prediction
layer. Table 1 lists the layers of the network along with their
respective dimensionalities. Due to dimensionality constraints,
only the layers shown in bold are used in this analysis and
reported here, without any expected loss of generality about the
results.

Our CNN was trained on the audio from a 4923 class video-
classification problem that eventually became the YouTube-8M
challenge (Abu-El-Haija et al., 2016). This dataset includes 8
million videos totaling around 500,000 h of audio, and is available
online (Abu-El-Haija, 2017). As in the study by Hershey et al.
(2017), the audio from each video was divided into 960 ms
frames, each mapped onto a time–frequency spectrogram (25 ms
window, 10 ms step size, 64 mel-spaced frequency bins). This
spectrogram served as the input to the neural network. For
training purposes, ground truth labels from each video were
automatically generated and every frame within that video was
assigned the same set of labels. Each video could have any number
of labels, with an average of around five per video, and 4923
distinct labels in total. The labels ranged from very general to
very specific. The most general category labels (such as arts and
entertainment, games, autos/vehicles, and sports) were applied
to roughly 10–20% of the training videos. The most specific
labels (such as classical ballet, rain gutter, injury, and FIFA Street)
applied only to 0.0001–0.001% of the videos. The network was
trained to optimize classification performance over the ground
truth labels. The network’s classification performance nearly
matches that of the Inception DNN model, which was found to
show the best results in Hershey et al. (2017), in terms of equal
error rate and average precision. Details about the evaluation
process can be found in Jansen et al. (2017).

Network Surprisal
We defined change in the activation patterns within a layer of the
CNN as “network surprisal” (this definition is unrelated to other
surprisal analyses that employ information theory or principles
of thermodynamics to characterize system dynamics, often used
in physics, chemistry, and other disciplines). It represents an
estimate of variability in the response pattern across all nodes of a
given layer in the network and as such quantifies how congruent

or surprising activity at a given moment is relative to preceding
activity (Figure 1B). In this study, it is computed by taking the
Euclidean distance between the activity in a layer at a given
time bin (labeled “Current” in red in Figure 1B) vs. the average
activation in that layer across the previous four seconds (labeled
“History” in gray in Figure 1B). Thus, a constant pattern of
activity would result in a low level of surprisal, while a fluctuation
in that pattern over multiple seconds would result in a higher
level of surprisal. This measure corresponds structurally to the
definition of semantic dissimilarity by Broderick et al. (2018),
although it utilizes Euclidean distance as a common metric for
evaluating dissimilarity in neural network activity (Krizhevsky
et al., 2012; Parkhi et al., 2015). This surprisal feature tracks
changes in the scene as it evolves over time by incorporating
elements of the acoustic history into its calculation.

Correlation Analyses
The audio, EEG, and CNN data have all been reduced to low-
dimensional features. The audio is represented by 10 different
acoustic measures, while the 128 channel EEG measurements
are summarized by the energy in six different frequency bands,
and the multi-channel outputs from the six different layers
of the CNN are summarized by the surprisal measure. We
next examine correlation between these metrics and the neural
network activations.

Each layer of the neural network is compared to behavioral
salience, basic acoustic features, and energy in EEG frequency
bands using normalized cross correlation. All signals are
resampled to the same sampling rate of 10 Hz, and the first
2 s of each scene are removed to avoid the effects of the trial
onset. Scenes that are longer than 120 s are shortened to that
length. All signals are high-pass filtered with a cutoff frequency
of 1/30 Hz to remove overall trends, and then low-pass filtered
at 1/6 Hz to remove noise at higher frequencies. Both filters are
fourth-order Butterworth filters. The low-pass cutoff frequency is
chosen empirically to match the slow movements in the salience
signal. Despite the low cutoff frequency, no observable ringing
artifacts are noted. Adjusting signal duration to examine any
filtering artifacts at the onset of the signal yields quantitively
similar results as reported in this paper.

After these pre-processing steps, we compute the normalized
cross-correlation between network surprisal and the other
continuous (acoustic and neural) signals with a maximum delay
time of −3 to +3 s. The normalized correlation is defined as
a sliding dot-product of these two signals normalized by the
product of their standard deviation (Rao Yarlagadda, 2010). The
highest correlation coefficient within a ± 3 s window is selected
as the correlation between network surprisal and each of the
corresponding signals.

The behavioral responses reflect onsets of salient events (peaks
in the slope of the salience curve) and are discrete in time.
CNN surprisal activity is compared to behavioral salience in
windows surrounding salient events, extending from 3 s before
to 3 s after each event. These windows are used to compare
correlations for subsets of events, such as for a single category of
events. Quantitatively similar results are obtained when using the
whole salience curve instead of windows surrounding all salient
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A

B

FIGURE 1 | Structure of the convolutional neural network and signals analyzed. (A) The convolutional neural network receives the time–frequency spectrogram of an
audio signal as input. It is composed of convolutional and pooling layers in an alternating fashion, followed by fully connected layers. (B) An example section of an
acoustic stimulus (labeled Audio); along with corresponding neural network activity from five example units within one layer of the CNN. A network surprisal measure
is then computed as the Euclidian distance between the current activity of the network nodes at that layer (shown in red) against the activity in a previous window
(shown in gray with label “History”). Measures of behavioral salience by human listeners (in green) and cortical activity recorded by EEG (in brown) are also analyzed.
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TABLE 1 | Dimensions of the input and each layer of the neural network.

Layer type Abbreviation Dimensions Total number
of outputs

Input spectrogram 96 × 64 16,384

Convolutional layer Conv1 96 × 64 × 64 393,216

Pooling layer Pool1 48 × 32 × 64 98,304

Convolutional layer Conv2 48 × 32 × 128 196,608

Pooling layer Pool2 24 × 16 × 128 49,152

Convolutional layer Conv3 24 × 16 × 256 98,304

Pooling layer Pool3 12 × 8 × 256 24,576

Convolutional layer Conv4 12 × 8 × 512 49,152

Pooling layer Pool4 6 × 4 × 512 12,288

Fully connected layer FC1 4096 4096

Fully connected layer Embed 128 128

Output layer/predictions Predic 4923 4923

Bold text indicates which layers are used in the analysis.

events. The correlation coefficient between behavioral salience
and neural surprisal vectors is taken in these windows. For this
analysis, the behavioral salience signal is delayed by a fixed time
of 1.4 s. A shift is necessary to reflect the delay in motor response
required from the behavioral task to report salience. Here, a shift
of 1.4 s is empirically determined to correspond to the maximum
cross correlation for a majority of the network layers. A fixed
delay is used for this case for greater consistency when comparing
across different conditions.

To complement the correlation analysis described above, we
also examine the cumulative contribution of different CNN layers
by assessing the cumulative variance explained by combining
activation of consecutive layers. This variance is quantified
using a linear regression that uses behavioral salience as the
dependent variable and network surprisal from individual layers
as independent variables (Weisberg, 2005). Consecutive linear
regressions with each layer individually are performed starting
with lower layers and continuing to higher layers of the network.
After each linear regression, the cumulative variance explained
is defined as 1 minus the variance of the residual divided by the
variance of the original salience curve (i.e., 1 minus the fraction of
variance explained). Then, the residual is used as the independent
variable for regression with the next layer. To generate a baseline
level of improvement by increasing the number of layers, this
linear regression procedure is repeated after replacing all values
in layers after the first with numbers generated randomly from a
normal distribution (mean 0, variance 1).

Event Prediction
Prediction of salient events is performed by dividing the scene
into overlapping time bins (2 s bin size, 0.5 s step size) and then
using linear discriminant analysis (LDA; Duda et al., 2000). Each
time bin is assigned a label of +1 if a salient event occurred
within its respective time frame and a label of 0 otherwise.
Network surprisal and the slopes of acoustic features are used
to predict salient event using an LDA classifier. The slope of
an acoustic feature is calculated by first taking the derivative
of the signal, and then smoothing it with three iterations of an
equally weighted moving average (Huang and Elhilali, 2017). This

smoothing process is selected empirically to balance removal of
higher frequency without discarding potential events. As with
the previous event-based analysis, these signals are time-aligned
by maximizing their correlation with behavioral salience. Each
feature is averaged within each time bin, and LDA classification
is performed using fivefold cross validation to avoid overfitting
(Izenman, 2013). Finally, a threshold is applied to the LDA scores
at varying levels to obtain a receiver operating characteristic
(ROC) curve (Fawcett, 2006).

RESULTS

This section describes the correlation between the six different
layers of the CNN vs. the 10 acoustic features, salience as
measured by a behavioral task, and energy in six different
frequency bands from the EEG data.

Comparison to Basic Acoustic Features
First, we examine the correspondence between activity in
different neural network layers and the acoustic features extracted
from each of the scenes. Figure 2A shows the correlation
coefficient between each acoustic feature and the activity of
individual CNN layers. Overall, the correlation pattern reveals
stronger values in the four earliest layers (convolutional and
pooling) compared the deep layers in the network (fully
connected and embedding). This difference is more pronounced
in features of a more spectral nature such as spectral irregularity,
frequency modulation, harmonicity, and loudness, suggesting
that such features may play an important role in informing
the network about sound classification during the training of
the network. Clearly, not all acoustic features show this strong
correlation or any notable correlation. In fact, roughness and rate
are basic acoustic measures that show slightly higher correlation
in deeper layers relative to earlier layers. Figure 2B summarizes
the average correlation across all basic acoustic features used in
this study as a function of network layer. The trend reveals a
clear drop in correlation, indicating that the activity in deeper
layers is more removed from the acoustic profile of the scenes.
Figure 2B inset depicts a statistical analysis of this drop, with
slope =−0.026, t(1198) =−5.8, p = 7.6× 10−9.

Next, we examine the correspondence between activations
in the CNN layers and the behavioral judgments of salience as
reported by human listeners. Figure 3A shows the correlation
between behavioral salience and network surprisal across
individual layers of the network, taken in windows around
salient events (events being local maxima in the derivative of
salience, see section “Materials and Methods”). As noted with
the basic acoustic features (Figure 2), correlation is higher
for the earlier layers of the CNN and lower for the later
layers. A statistical analysis of the change in correlation across
layers reveals a significant slope of −0.041, t(1360) = −6.8,
p = 2.1 × 10−11 (Figure 3A, inset). However, although the
correlation for individual deeper network layers is relatively
poor, an analysis of their complementary information suggests
additional independent contributions of each layer. In fact,
the cumulative variance explained as one goes deeper into
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BA

FIGURE 2 | Correlation between neural network activity and acoustic features. (A) Correlation coefficients between individual acoustic features and layers of the
neural network. Loudness, harmonicity, irregularity, scale, and pitch are the most strongly correlated features overall. (B) Average correlation across acoustic features
and layers of the neural network. Shaded area depicts ±1 standard error of the mean (SEM). Inset shows the slope of the trend line fitted with a linear regression.
The shaded area depicts 99% confidence intervals of the slope.

A B

FIGURE 3 | CNN surprisal and behavioral salience. (A) Correlation between CNN activity and behavioral salience. (B) Cumulative variance explained after including
successive layers of the CNN. The gray line shows a baseline level of improvement estimated by using values drawn randomly from a normal distribution for all layers
beyond Pool2. For both panels, shaded areas depict ±1 SEM. Insets show the slope of the trend line fitted with a linear regression, with shaded areas depicting
99% confidence intervals of the slope.

Frontiers in Neuroscience | www.frontiersin.org 7 August 2018 | Volume 12 | Article 532

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00532 August 13, 2018 Time: 9:52 # 8

Huang et al. Connecting DNNs to Auditory Signals

D

BA
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FIGURE 4 | Cumulative variance explained after including successive layers of the CNN for specific categories of events (A) speech events, (B) music events, (C)
vehicle events, and (D) tapping/striking events. The gray line shows a baseline level of improvement estimated by using values drawn randomly from a normal
distribution for all layers beyond Pool2. For all panels, shaded areas depict ±1 SEM. Insets show the slope of the trend line fitted with linear regression, with shaded
areas depicting 99% confidence intervals of the slope.

the network shows significantly improved correlation between
superficial and deep layers (Figure 3B), with a correlation slope
of 0.029, t(1360) = 6.6, p = 5× 10−11.

While Figure 3 looks at complementary information of
different network layers in explaining behavioral judgments of

salience on average, one can look explicitly at specific categories
of events and examine changes in information across CNN layers.
Figure 4 contrasts the cumulative variance explained for four
classes of events that were identified manually in the database
(see section “Materials and Methods”). The figure compares
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cumulative variance of behavioral salience explained by the
network for speech, music, vehicle, and tapping events. The figure
shows that speech and music-related events are better explained
with the inclusion of deeper later layers [speech: t(280) = 5.2,
p = 3.2× 10−7; music: t(340) = 5.7, p = 3.3× 10−08]. In contrast,
events from the devices/vehicles and tapping categories are well
explained by only the first few peripheral layers of the network,
with little benefit provided by deeper layers [device: t(262) = 1.8,
p = 0.069; tapping: t(166) = 2.2, p = 0.028]. Results for other
vocalizations closely match those of the vehicle category (data
not shown), t(196) = 2.2, p = 0.033. Overall, the figure highlights
that contribution of different CNN layers to perceived salience
of different scenes does vary drastically depending on semantic
meaning and show varying degrees of complementarity between
the acoustic front-end representation and the semantic deeper
representations.

The ability to predict where salient events occur is shown
in Figure 5. Each scene is separated into overlapping time bins
which are labeled based on whether or not an event occurred
during that time frame. LDA is then performed using either a
combination of acoustics and network surprisal, or the acoustic
features alone. The prediction is improved through the inclusion
of information from the neural network, with an area under
the ROC curve of 0.734 when using only the acoustic features
compared to an area of 0.775 after incorporating network
surprisal. This increase in performance indicates that changes in
network activity make a contribution to the salience prediction
that is not fully captured by the acoustic representation.

FIGURE 5 | Event prediction performance. Predictions are made using LDA
on overlapping time bins across scenes. The area under the ROC curve is
0.775 with a combination of acoustic features and surprisal, while it reaches
only 0.734 with acoustic features alone.

One of the key distinctions between the different event
categories analyzed in Figure 4 is not only the characteristics
of the events themselves but also the context in which these
events are typically present. On the one hand, speech scenes

tend to have ongoing activity and dynamic backgrounds against
which salient events stand out; while vehicle scenes tend to be
rather sparse with few notable events standing out as salient.
An analysis contrasting sparse vs. dense scenes in our entire
dataset (see section “Materials and Methods”) shows a compelling
difference between the correlations of acoustic salience for dense
scenes and for sparse scenes especially in the convolutional
layers (Figure 6A). This difference is statistically significant
when comparing the mean correlation for early vs. deep layers,
t(4) = −5.4, p = 0.0057. On the other hand, the network’s
activation in response to acoustic profiles in the scenes do not
show any distinction between sparse and dense scenes and across
early and deep layers (Figure 6B), t(4) =−0.24, p = 0.82.

Finally, we examine the contrast between neural responses
recorded using EEG and CNN activations. As shown in Figure 7,
energy in many frequency bands of the neural signal shows
stronger correlation with activity in higher levels of the CNN
rather than lower layers and follows an opposite trend to that
of acoustic features. Figure 7A shows the correlation between
network activity and individual EEG frequency bands and shows
a notable increase in correlation for higher frequency bands
(Delta, Beta, Gamma, and High Gamma). The Theta and Alpha
bands appear to follow a somewhat opposite trend, though their
overall correlation values are rather small. Figure 7B summarizes
the average correlation trend across all frequency bands, with
slope = 0.015, t(718) = 3.6, p = 3.2 × 10−4). It is worth
noting the average correlation between CNN activity and EEG
responses is rather small overall (between 0 and 0.1) but still
significantly higher than 0, t(719) = 7.4, p = 4.5 × 10−13.
The increasing trend provides further support to the notion
that higher frequency neural oscillations are mostly aligned
with increasingly complex feature and semantic representations
crucial for object recognition in higher cortical areas, and
correspondingly in deeper layers of the CNN (Kuzovkin et al.,
2017).

To explore the brain regions that are most closely related to the
CNN activity, individual electrode activities are also correlated
with surprisal. Figure 8A shows a small difference between
neural activity in Central and Frontal areas, with the former
having relatively higher correlation with early layers and the latter
having higher correlation with deep layers. This trend is not
statistically significant, however. Figure 8B shows the pattern
across electrodes of these correlations values for the beta and
gamma bands. Activity in the Beta band is most correlated to the
convolutional layers of the CNN for central electrodes near C3
and C4, while it is most correlated to the deep layers for frontal
electrodes near Fz. In contrast, Gamma band activity shows little
correlation with the early layers of the CNN, but more closely
matches activation in deep layers for electrodes near Cz.

DISCUSSION

Recent work on deep learning models provides evidence of
strong parallels between the increasing complexity of signal
representation in these artificial networks and the intricate
sensory transformations in sensory biological systems that map
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A B

FIGURE 6 | Analysis of dense vs. sparse scenes. (A) Difference in correlation between salience and CNN activity for dense and sparse scenes. Negative values
indicate that salience in sparse scenes was more highly correlated with CNN activity. (B) Difference in correlation between acoustic features and CNN activity for
dense and sparse scenes.

BA

FIGURE 7 | Correlation between neural network activity and energy in EEG frequency bands. (A) Correlation coefficients between individual EEG frequency bands
and layers of the neural network. Gamma, Beta, and High-Gamma frequency bands are the most strongly correlated bands overall. (B) Average correlation across
EEG activity and layers of the neural network. Shaded area depicts ±1 SEM. Inset shows the slope of the trend line fitted with linear regression, with a shaded area
depicting the 99% confidence interval of the slope.

incoming stimuli onto object-level representations (Yamins
et al., 2014; Guclu and van Gerven, 2015; Cichy et al., 2016).
The current study leverages the complex hierarchy afforded
by CNNs trained on audio classification to explore parallels
between network activation and auditory salience in natural

sounds measured through a variety of modalities. The analysis
examines the complementary contribution of various layers in
a CNN architecture and draws a number of key observations
from three types of signals: acoustic, behavioral, and neural
profiles.
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BA

FIGURE 8 | Correlation between neural network activity and energy in EEG frequency bands for specific electrodes. (A) Average correlation between electrode
activity across frequency bands for electrodes in central (near Cz) and frontal (near Fz) regions. (B) Correlation between beta/gamma band activity for individual
electrodes and convolutional/deep layers of the neural network.

First, as expected, the earlier layers in the CNN network
mostly reflect the acoustic characteristics of a complex
soundscape. The association of acoustic features with CNN
activation decreases in correlation as the signal propagates
deeper into the network. The acoustic features that are most
clearly reflected with higher fidelity are mostly spectral,
and include harmonicity, frequency modulation, and spectral
irregularity, along with loudness which directly modulates overall
signal levels. It is important to remember that the CNN network
used in the current work is trained for audio classification
and employs a rather fine-resolution spectrogram at its input
computed with 25 ms bins over frames of about 1 s. As such, it
is not surprising to expect a strong correlation between spectral
features in the input and early representations of the peripheral
layers of the CNN network (Dai et al., 2017; Lee et al., 2017;
Wang et al., 2017). Interestingly, two features that are temporal
in nature, namely, rate and most prominently roughness, show
a somewhat opposite trend with a mildly increased correlation
with deeper CNN layers. Both these acoustic measures quantify
the degree of amplitude modulations in the signal over longer
time scales of tens to hundreds of milliseconds, and we can
speculate that such measures would involve longer integration
levels that are more emblematic of deeper layers in the network
that pool across various localized receptive fields. The distributed
activation of CNN layers reflecting various acoustic features
supports previous accounts of hierarchical neural structures
in auditory cortex that combine low-level and object-level
representations extending beyond the direct physical attributes
of the scenes (Formisano et al., 2008; Staeren et al., 2009). This
distributed network suggests an intricate, multi-region circuitry
underlying the computation of sound salience in the auditory

system, much in line with reported underpinnings of visual
salience circuits in the brain (Veale et al., 2017).

Second, the results show a strong correlation between
peripheral layers of the CNN and behavioral reports of salience.
This trend is not surprising given the important role acoustic
characteristics of the signal play in determining the salience of
its events (Kaya and Elhilali, 2014; Kim et al., 2014; Huang and
Elhilali, 2017). This view is then complemented by the analysis
of cumulative variance explained by gradually incorporating
activation of deeper layers in the neural network. Figure 3 clearly
shows that information extracted in later layers of the network
supplements activation in earlier layers and offers an improved
account of auditory salience. This increase is maintained even at
the level of the fully connected layers suggesting a complementary
contribution of low-level and category-level cues in guiding
auditory salience. This observation is further reinforced by
focusing on salience of specific sound categories. In certain
cases that are more typical of sparse settings with prominent
events such as tapping or vehicle sounds, it appears that
the low-level acoustic features are the main determinants of
auditory salience with little contribution from semantic-level
information. In contrast, events in the midst of a speech
utterance or a musical performance appear to have a significant
increase in variance explained by incorporating all CNN layers
(Figure 4). The complementary nature of peripheral and object-
level cues is clearly more prominent when taking into account
the scene context, by contrasting denser, busy scenes with quieter
environments with occasional, prominent events. Dense settings
typically do not have as many conspicuous clear changes in
acoustic information across time, and as a result, they seem
to require more semantic-level information to complement
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information from acoustic features for a complete account of
auditory salience.

Third, the CNN layer activation shows an opposite correlation
trend with neural oscillation measured by EEG. In particular,
the deeper layers of the neural network have higher correlation
with activity in the higher frequency bands (beta, gamma, and
high gamma bands). Synchronous activity in the Gamma band
has been shown to be associated with object representation
(Rodriguez et al., 1999; Bertrand and Tallon-Baudry, 2000), which
would be directly related to the audio classification task. Activity
in both the Gamma and Beta bands has also been linked to
hearing novel stimuli (Haenschel et al., 2000). Moreover, Gamma
band activity is known to be strongly modulated by attention
(Tiitinen et al., 1993; Müller et al., 2000; Doesburg et al., 2008),
which further reinforces the relationship between object category
and salience.

In particular, the CNN activation patterns of the deep layers
correlate most strongly with neural oscillations in frontal areas of
the brain. This finding expands on the recent work by Kell et al.
(2018), which found that activation patterns within intermediate
layers of their CNN were the best at predicting activity in the
auditory cortex. It stands to reason that later layers of the network
would correspond more to higher level brain regions, which may
play a role in attention and object recognition.

Overall, all three metrics used in the current study offer
different accounts of conspicuity of sound events in natural
soundscapes. By contrasting these signals against activations in a
convolutional DNN trained for audio recognition, we are able to
assess the intricate granularity of information that drives auditory
salience in everyday soundscapes. The complexity stems from the
complementary role of cues along the continuum from low-level
acoustic representation to coherent object-level embeddings.
Interestingly, the contribution of these different transformations
does not uniformly impact auditory salience for all scenes. The
results reveal that the context of the scene plays a crucial role in
determining the influence of acoustics or semantics or possibly
transformations in between. It is worth noting that the measure
of surprisal used here is but one way to characterize surprise.
Looking at changes in a representation compared to the average
of the last few seconds is simple and proves to be effective.
However, different ways to capture the context, perhaps including
fitting the data to a multimodal Gaussian mixture model, as well
as different time scales should be investigated.

Further complicating the interaction with context effects is
the fact that certain acoustic features should not be construed as
simple transformation of the acoustic waveform or the auditory
spectrogram. For instance, a measure such as roughness appears
to be less correlated with lower layers of the CNN. This difference
suggests that acoustic roughness may not be as readily extracted
from the signal as the other acoustic measures by the neural
network, but it is nonetheless important for audio classification
and correlates strongly with perception of auditory salience
(Arnal et al., 2015).

One limitation of the CNN structure is that it only transmits
information between layers in the forward direction, while
biological neural systems incorporate both feedforward and
feedback connections. Feedback connections are particularly

important in studies of attention because salience (bottom-
up attention) can be modified by top-down attention. This
study uses behavioral and physiological data that were collected
in such a way that the influence of top-down activity was
limited; however, a complete description of auditory attention
would need to incorporate such factors. An example of a
feedback CNN that seeks to account for top-down attention
can be found in Cao et al. (2015).

It is not surprising that our limited understanding of
the complex interplay between acoustic profiles and semantic
representations has impeded development of efficient models
of auditory salience that can explain behavioral judgments,
especially in natural, unconstrained soundscapes. So far, most
accounts have focused on incorporating relevant acoustic
cues that range in complexity from simple spectrographic
representation to explicit representation of pitch, timbre, or
spectro-temporal modulation (Duangudom and Anderson, 2007;
Kalinli and Narayanan, 2007; Tsuchida and Cottrell, 2012; Kaya
and Elhilali, 2014). However, as highlighted by the present
study, it appears that a complementary role of intricate acoustic
analysis (akin to that achieved from the complex architecture
of convolutional layers in the current CNN) as well as auditory
object representations will be necessary to not only account for
contextual information about the scene but may determine the
salience of a sound event depending on its category, sometimes
regardless of its acoustic attributes.
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