
 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017 3

1Abstract- Generalized Parallel Counters (GPCs) are

frequently used in constructing high speed compressor trees.

Previous work has focused on achieving efficient mapping of

GPCs on FPGAs by using a combination of general Look-up

table (LUT) fabric and specialized fast carry chains. The

resulting structures are purely combinational and cannot be

efficiently pipelined to achieve the potential FPGA performance.

In this paper, we take an alternate approach and try to eliminate

the fast carry chain from the GPC structure. We present a

heuristic that maps GPCs on FPGAS using only general LUT

fabric. The resultant GPCs are then easily re-timed by placing

registers at the fan-out nodes of each LUT. We have used our

heuristic on various GPCs reported in prior work. Our heuristic

successfully eliminates the carry chain from the GPC structure

with the same LUT count in most of the cases. Experimental

results using Xilinx Kintex-7 FPGAs show a considerable

reduction in critical path and dynamic power dissipation with

same area utilization in most of the cases.

Index Terms - Look-up table, Compressor trees,

Technology mapping, Retiming

Original Research Paper

DOI: 10.7251/ELS1721003K

I. INTRODUCTION

Multi-operand addition is an important operation in many

arithmetic circuits. It is frequently used in many applications

like filtering [1], motion estimation [2], array multiplication

[3, 4, 5, 6, 7] etc. Compressor trees form the basic elements in

multi-operand additions. Compressor trees based on carry save

adders (CSA) typically provide higher speeds due to the

avoidance of long carry chains. Wallace [3] and Dadda [7]

trees are CSA based compressor trees which are frequently

used in application specific integrated circuit (ASIC) design.

However, the introduction of fast carry chains in FPGAs has

made ripple carry addition faster than the carry save addition.

Evidently CSA based compressor trees are not well suited for

implementation involving FPGAs [8].

Prior work on compressor tree synthesis using FPGAs has

used GPCs as basic constituent element. It has been

demonstrated that the usage of GPCs can lead to a

considerable reduction in the critical path delay with

Manuscript received 15 June 2015. Received in revised form 5 May 2017.

Accepted for publication 2 June 2017.

Burhan Khurshid is with the Department of Computer Science and
Engineering, National Institute of Technology Srinagar, Jammu and Kashmir,

India, 190006 (phone: +91-9797875163; e-mail:

burhan_07phd12@nitsri.net).

comparable resource utilization [8, 9, 10, 11, 12, 13, 14].

Initial attempts in this regard were made by Parandeh-Afshar

et al. [8, 9, 10, 11]. In [9] they claim to report the first method

that synthesizes compressor trees on FPGAs. The proposed

heuristic constructs compressor trees from a library of GPCs

that can be efficiently implemented on FPGAs. Their latter

work [11] focuses on further reducing the combinational delay

and any increase in area by formulating the mapping of GPCs

as an integer linear programming (ILP) problem. They

reported an average reduction in delay by 32% and area by 3%

when compared to an adder tree. In [10] they focus on

reducing the combinational delay by using embedded fast

carry chains. This concept was further extended in [8] and a

delay reduction of 33% and 45% was achieved in Xilinx

Virtex-5 and Altera Stratix-III FPGAs respectively.

Matsunaga et al. [12, 14] also formulated the mapping of

GPCs as an ILP with speed and power as optimization goals.

Their results show a 28% reduction in GPC count when

compared to [9]. A reduction in GPC count results in

reduction of compression stages thereby reducing the delay

and power consumption.

Recent attempts from Kumm and Zipf [15, 16] focus on

exploiting the low-level structure of Xilinx FPGAs to develop

novel GPCs with high compression ratios and efficient

resource utilization. Both general purpose LUT fabric and

specialized carry chains have been used for synthesizing

resource-efficient delay-optimal GPCs.

All the above mentioned approaches (except [9]) focus on

exploiting the fast carry chain embedded in modern FPGAs.

The idea is to use the fast carry chain to connect the adjacent

logic cells and by pass the programmable routing network to

reduce delay [10]. In this paper, however, we try to avoid the

usage of embedded carry chains and propose a heuristic that

tries to implement GPCs using only the general LUT fabric.

The heuristic tries to minimize the number of LUTs in a GPC.

The area-optimized GPCs are then easily retimed by inserting

registers that are available in each logic cell. Thus instead of

using an LUT-carry chain combination we use an LUT-

register combination to map the GPCs. The motivation for our

approach is backed by following reasons:

i. GPCs based on LUTs and carry chains are purely

combinational in nature. FPGAs are synchronous devices

and it is better to adhere to synchronous practices while

using them as implementation platforms. Our approach

provides this synchronous description by including

registers in the synthesis process.

LUT Based Generalized Parallel Counters for

State-of-art FPGAs

Burhan Khurshid

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201883292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:burhan_07phd12@nitsri.net

4 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017

ii. Usually specialized FPGA resources are fixed in

position. Routing data to and from the fixed blocks

sometimes creates problems in the placement and routing

(PAR) phase of the FPGA design flow. Thus instead of

using fixed specialized resources it is desirable to use

general LUT resources as their placement can be altered

during PAR.

iii. Finally, retiming GPC structures by placing registers

at the input of nodes with large capacitances reduces the

switching activities at these nodes [17]. This results in

reduced dynamic power dissipation.

The rest of the paper is organized as follows. Section II

presents the basic preliminaries about the GPCs and the

terminology used in this paper. Section III discusses the

heuristic that is used to synthesize different GPCs. Synthesis

and implementation is carried out in section IV. Conclusions

are drawn in section V and references are listed at the end.

II. PRELIMINARIES AND TERMINOLOGY

A compressor tree is a circuit that takes k, n-bit unsigned

operands: Ak-1, Ak-2… A1, A0 and generates two output values,

Sum (S) and Carry (C), such that:

 (1)

A generalized parallel counter computes the sum of bits

having different weights. A GPC is traditionally represented as

a tuple (Ki-1, Ki-2…K1, K0; n), where Ki denotes the number of

input bits of weight i, and n is the number of output bits. The

upper limit on the value of GPC is given by:

 (2)

 (3)

 (4)

As an example, a (1, 4, 1, 5; 5) GPC has five input bits of

weight 0; one input bit of weight 1; four input bits of weight 2

and one input bit of weight 3. The upper limit on the output

value is 31 and five output bits are required to represent the

output.

Logic synthesis is concerned with hardware realization of a

desired functionality with minimum possible cost. The cost of

a circuit is a measure of its speed, resource utilization, power

consumption or any combination of these. A Boolean network

is a directed acyclic graph (DAG) that represents a

combinational function. Logic gates, primary inputs (PIs) and

primary outputs (POs) within this network are represented by

nodes. Each node implements a local function. A global

function is implemented by connecting the logic implemented

by individual nodes. The transformation of a Boolean network

into targeted logic elements gives the circuit-netlist. For

FPGAs the targeted element is a k-LUT.

A cone of node v, Cv, is a sub-network that includes the

node v and some of its non-PI predecessor nodes. Any node u

within this cone has a path to the root node v, u→v, which lies

entirely in Cv. The level of the node v is the length of the

longest path from any PI node to v. Network depth is defined

as the largest level of a node in the network. The critical path

delay and area of a circuit is measured by the depth and

number of LUTs respectively. A node may have zero or more

predecessor nodes known as fan-in nodes. Similarly a node

may drive zero or more successor nodes known as fan-out

nodes. A network is said to be k bounded if the fan-in of every

node does not exceed k.

III. GPC MAPPING HEURISTIC

This section describes the heuristic for efficiently mapping

the GPCs onto LUTs. The primary goal of the heuristic is to

eliminate the fast carry chain and map the GPCs onto

minimum possible LUTs. Eliminating the carry chain makes

the GPCs feasible to pipelining. The resulting structures are

easily pipelined by placing the registers along the feed-

forward cut-sets. We explain the different steps involved in

the heuristic by considering the mapping of GPC (1, 4, 1, 5;

5). Conventional implementation requires four LUTs and a

CARRY4 primitive, with a total delay of TL+4TCC, where TL

is the delay associated with a single LUT and TCC is the single

carry delay. Figure 1 shows the Boolean network for (1, 4, 1,

5; 5) GPC. The network has eleven inputs and five outputs.

All the primary inputs, primary outputs and intermediate

signals have been labeled.

Fig. 1. Boolean network for (1, 4, 1, 5; 5) GPC

Construction: The first step constructs multiple networks

from the original network. This is done by traversing the

parent network and dividing it at the output nodes. Thus

Boolean networks corresponding to each output node are

constructed in this step. For the parent network of figure 1

there are five output nodes resulting in five different Boolean

networks. The individual networks are named as per their

outputs Z0, Z1, Z2, Z3 and Z4. This is shown in figure 2.

Recognition and Prioritization: After the individual

networks have been obtained, the heuristic searches for

redundant nodes in each of the networks. Redundant nodes are

the nodes which exist in more than one network. These are

shown as shaded portions in figure 2. The network for

redundant nodes is then drawn separately as shown in figure 3.

Each redundant network is assigned a priority based on the

number of appearances in the original networks of figure 2.

For example, the network in figure 3(a) is assigned a priority

FA

FAFAFA FA

FA

 d0 c3 c2 c1 c0 b0 a4 a3 a2 a1 a0

 Z4 Z3 Z2 Z1 Z0

x0

x1x2

x3

x4

 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017 5

Fig. 2. Boolean networks for individual outputs. Redundant nodes are shown in same shades.

Fig. 3. Boolean networks for redundant nodes. The number in the circle represents the priority of each network.

of 5 because it appears in five different networks. Similarly

3(b) is assigned a priority of 4 because it appears in four

different networks and so on. Note that the entire parent

network can be constructed by interconnecting these

redundant networks.

Covering and Re-structuring: Next the heuristic tries to

optimally map these redundant networks onto LUTs. Mapping

is done as per the priority, as it results in the maximum logic

density. For example the network in figure 3(a) has a priority

of 5 and, if mapped optimally will result in an improved logic

density in all the networks it is a part of. In this paper, we have

targeted FPGAs with 6-input LUTs as basic logic elements.

Thus the mapping should ensure a proper utilization of this

basic element. For efficient mapping each network in figure 3

is divided into sub-networks. This is again done by traversing

through the network and dividing it at output nodes. Thus the

network of figure 3(a) is divided into three sub-networks

corresponding to outputs X0, X1 and Z0. Similarly networks in

3(b), 3(c) and 3(d) are divided into different sub-network as

per their fan-out. This is shown in figure 4. A straight forward

approach to mapping would be to assign the logic

implemented by each sub-network to a separate LUT. This,

however, leads to under utilization of the resources. For

efficient mapping, therefore, the entire assembly of sub-

networks is re-structured. This requires transferring some sub-

networks from their original networks to sub-networks that

FA

FA

 a4 a3 a2 a1 a0

Z0

FA

FAFA

x0

x1

 b0 a4 a3 a2 a1 a0

Z1

FA

FAFAFA

FA
x0

x1x2

 c3 c2 c1 c0 b0 a4 a3 a2 a1 a0

Z2

FA

FAFAFA FA

FA

 d0 c3 c2 c1 c0 b0 a4 a3 a2 a1 a0

 Z3

x0

x1x2

x3

x4

FA

FAFAFA FA

FA

 d0 c3 c2 c1 c0 b0 a4 a3 a2 a1 a0

 Z4

x0

x1x2

x3

x4

(a)
(b)(c)

(d)(e)

FA

FA

 a4 a3 a2 a1 a0

x0

x1

Z0

5

FA

x0

x1x2

 b0

Z1

4

FA

FA

c3 c2 c1 c0

x2

x3

x4

Z2

3

FA

 d0

 Z3

x3

x4 Z4

2

(a)(b)(c)(d)

6 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017

belong to different networks. For example sub-network X0 that

originally belonged to 4(a) is now transferred to 4(b) and

included with sub-networks X2 and Z1. This re-structuring of

sub-networks ensures a proper utilization of the LUT fabric.

Note that the 6-input LUTs in Xilinx FPGAs can implement a

single 6-input function or two 5-input functions with shared

inputs. The re-structured sub-networks are shown in figure 5.

The re-structured sub-networks are then efficiently mapped

onto 6-input LUTs by directly mapping their functionalities

onto these target elements.

Fig. 4. Sub-networks for different networks

Fig. 5. Re-structuring of networks for efficient utilization of LUTs

Fig. 6. Re-timed optimal circuit for (1, 4, 1, 5; 5) GPC

Re-construction and Re-timing: The parent network is

then constructed by connecting the mapped networks from

step III. The overall structure is a simple feed-forward

structure having a unidirectional dataflow. This feed-forward

nature lends itself for efficient pipelining by simply placing

the registers along the feed-forward cut-sets. The final mapped

and re-timed structure is shown in figure 6.

The circuit implementation of figure 6 requires four LUTs

and three registers and has a critical path that includes only the

delay of a single LUT (TL). The carry chain has been

eliminated and there is no increase in the delay associated with

the GPC. Different GPCs proposed in prior work were

implemented using this heuristic. The carry chain was

successfully eliminated in all of the GPCs with no extra

hardware cost, except in few cases where the column length of

the GPCs exceeded five. The circuits for different GPCs are

shown in figures 7, 8, 9 and 10. A theoretical evaluation of

different GPCs is listed in table 1. With respect to table 1 it

should be noted that previous implementations using carry

chains consider only LUTs as the hardware resource.

However, for each bit in a carry chain there is a carry

multiplexer (MUXCY) and a dedicated XOR gate for

adding/subtracting the operands with a selected carry bit. Thus

an increase in LUT count that is observed in some GPCs using

FA

FA

 a4 a3 a2 a1 a0

Z0(a)

FA

 a4 a3 a2

x0

FA

 a4 a3 a2 a1 a0

x1

FA

FA

x0

x1

 b0

Z1 (b)

FA

x0

x1x2

 b0

FA

FA

c3 c2 c1 c0

x2

Z2(c)

FA

c3 c2 c1

x3

FA

FA

c3 c2 c1 c0

x2x4FA

 d0

 Z3

x3

x4

(d)

FA

 d0

x3

x4 Z4

FA

FA

 a4 a3 a2 a1 a0

Z0(a)

FA

 a4 a3 a2

FA

 a4 a3 a2 a1 a0

x1

FA

FA x1

 b0

Z1 (b)

FA x1x2

 b0

FA

FA

c3 c2 c1 c0

x2

Z2(c)

FA

c3 c2 c1

FA

FA

c3 c2 c1 c0

x2x4FA

 d0

 Z3

x4

(d)

FA

 d0

x4 Z4

FA

 a4 a3 a2

FA

c3 c2 c1

x0

x0

x3
x3

 a4 a3 a2 a1 a0

Z0

 b0

Z1

c3 c2 c1 c0

Z2

c3 c2 c1 d0

 Z3

 a4 a3 a2

 Z4

FA

FA

FA

FAFA

FAFA

FA

R R R

 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017 7

our heuristic may be compensated by the elimination of the resources included in the carry chain.

Fig. 7. LUT based GPCs from [9]

Fig. 8. LUT based GPCs from [8]

 a2 a1 a0

Z0

FA

(3;2)

 a4 a3 a2 a1 a0

Z0

 b0

Z1

 a4 a3 a2

FA

FA

FA

FA

Z2
(1, 5; 3)

 a5 a4 a3 a2 a1 a0

Z0

FA

FAHA

 a5 a4 a3 a2 a1 a0

Z1

FA

FAHA

FA

 a5 a4 a3 a2 a1 a0

Z2

FA

FAHA

FA

(6;3)

Z1

R

b1 b0

Z1

 a2 a1 a0

FA

FA

Z2

 a2 a1 a0

Z0

FA

(2, 3; 3)

 a3 a2 a1

FA

(7;3)

FA

FA

Z0

FA

FA

Z1Z2

 a6 a5 a4 a0

 a6 a5 a4

R

R

R

 a3 a2 a1

FA

(1, 6;4)

FA

HA

Z0

FA

HA

Z1

a5 a4 a0

 a5 a4

R

R

R

HA

 b0

HA

HA

Z2Z3

 a5 a4

HA

 b0

R

 a4 a3 a2

FA

(3, 5; 4)

FA

Z0

FA

Z1

 a1 a0

 b2 b1 b0

R

R

R

FA

HA

Z2Z3

FA

R

 b2 b1 b0

FA

HA

Z0

 a3 a2 a1 a0

(4, 4;4)

FA

HA

Z1

 a3 a2

HA

 b0

R

 b3 b2 b1

FA

R

FA

HA

Z2

HA

 b0 a3 a2

R

R

Z3

 a2 a1 a0

Z0

FA

FA

Z1

Z2

 b4 b3 b2 b1 b0

HA

FA

FA

 b4 b3 b2 b1 b0

HA

FA

FA

Z3

FA

 b4 b3 b2 b1 b0

HA

FA

FA

R

(5, 3; 4)

 a1 a0

Z0

FA

 b2 b1 b0

FA

(6, 2; 4)

FA

Z1

 b5 b4 b3

FA

R

R

FA

Z2

 b5 b4 b3

FA

R

R

Z3

8 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017

Fig.9. LUT based GPCs from [15]

Fig. 10. LUT based GPCs from [16]

 a5 a4 a3 a2 a1 a0

Z0

FA

FAHA

 a5 a4 a3 a2 a1 a0

Z1

FA

FAHA

FA

 a5 a4 a3 a2 a1 a0

FA

FAHA

FA

(5, 0, 6; 5)

 b4 b3 b2 b1 b0

Z2

HA

FAFA

Z3

HA

FAFA

FA

Z4

HA

FAFA

FA

 b4 b3 b2 b1 b0 b4 b3 b2 b1 b0

R

 a5 a4 a3 a2 a1 a0

Z0

FA

FAHA

 a5 a4 a3 a2 a1 a0

Z1

FA

FAHA

FA

 a5 a4 a3 a2 a1 a0

FA

FAHA

FA

 b3 b2 b1 b0

Z2

FA

FA

R

 c0 b3 b2 b1

Z3

FA

FA

R

Z4 (1, 4, 0, 6; 5)

 a4 a3 a2 a1 a0

Z0

FA

FA

 a4 a3 a2

HA

FA

R

 b3 b2 b1 b0

Z1

FA

FA

 b3 b2 b1

Z2

FA

FA

Z3

FA

 c1 c0

Z4

R

R

R

R

(2, 0, 4, 5; 5)

 a2 a1 a0

FAR

 a5 a4 a3

Z0

HA

FA

R

Z1

FA HA

FA

 a5 a4 a3

 b2 b1 b0

FAR

 b5 b4 b3

Z2

FA

FA

R

Z3

FA

FA

 b5 b4 b3

Z4

RR

(6, 0, 6; 5)

 a4 a3 a2 a1 a0

Z0

FA

FA

 a4 a3 a2

HA

FA

R

R

Z1

FA

 b1 b0

 c2 c1 c0

Z2

FA

FA

R

R

 d0 c2 c1 c0

Z3

FA

FA

(1, 3, 2, 5; 5)
Z4

R

 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017 9

TABLE I

 COMPARISON OF DIFFERENT GPCS

GPCs
Previous Mappings Mappings based on proposed heuristic

LUTs Delay LUTs Delay

GPCs from [9]

(3;2) 1 TL
1 1 TL

(6;3) 3 TL 3 TL

(1,5;3) 3 TL 2 TL

GPCs from [8]

(6;3) 4 2TL+TR
2+4TCC

3 3 TL

(1,5;3) 3 TL+3TCC 2 TL

(2,3;3) 3 TL+3TCC 2 TL

(7;3) 4 2TL+TR+4TCC 3 TL

(1,6;4) 4 2TL+TR+4TCC 4 TL

(3,5;4) 4 2TL+TR+4TCC 4 TL

(4,4;4) 4 2TL+TR+4TCC 4 TL

(5,3;4) 4 2TL+TR+4TCC 4 TL

(6,2;4) 4 2TL+TR+4TCC 4 TL

GPCs from [15]

(6;3) 3 2TL+TR+3TCC 3 TL

(1,5;3) 2 TL+2TCC 2 TL

(2,3;3) 2 TL+2TCC 2 TL

(7;3) 3 2TL+TR+3TCC 3 TL

(5,3;4) 3 2TL+TR+3TCC 4 TL

(6,2;4) 3 2TL+TR+3TCC 4 TL

(5,0,6;5) 4 TL+4TCC 6 TL

(1,4,1,5;5) 4 TL+4TCC 4 TL

(1,4,0,6;5) 4 TL+4TCC 5 TL

(2,0,4,5;5) 4 2TL+TR+4TCC 5 TL

GPCs from [16]

(6,0,6;5) 4 TL+4TCC 6 TL

(1,3,2,5;5) 4 TL 5 TL
1delay associated with LUT.
2delay associated with routing.
3delay associated with carry chain

IV. SYNTHESIS, IMPLEMENTATION AND RESULTS

Synthesis and implementation is done using xc7k70t-

2fbg676 device from Xilinx Kintex-7 family. The parameters

considered are resources utilized, critical path delay and

dynamic power dissipation. Constraints relating to synthesis

and implementation are duly provided and a complete timing

closure is ensured in each case. Synthesis and implementation

is carried out in Xilinx Vivado 2016.3 [18] with speed as the

optimization goal. Power analysis is done using the Xpower

analyzer tool. For power analysis switching activity is

captured in the value change dump (VCD) file by applying

test vectors and checking for correct output. Similar test

benches have been used to ensure a fair comparison. Table 2

provides a comparison of different performance metrics for

different GPCs.

From table 2 it is observed that the GPC mappings based on

the proposed heuristic show an average increase in speed by

almost 65% and an average reduction in dynamic power

dissipation by 10%. The carry chain is eliminated in each GPC

with an overhead of pipelining registers and LUTs (in few

cases). Each slice in Kintex-7 supports four registers which

normally remain unutilized. Our experimentation with

different arithmetic circuits on Kintex-7 devices reveal that

each carry chain utilizes resources that are equivalent to 1 to

1.5 6-input LUTs. Thus any increase in LUT count is justified

by the elimination of carry chain.

10 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017

TABLE II

PERFORMANCE COMPARISON OF DIFFERENT GPCS ON XC7K70T-2FBG676

GPCs
Previous Mappings Mappings based on proposed heuristic

LUTs Critical path(nS) Power (mW) LUTs Critical path(nS) Power(mW)

GPCs from [9]

(3;2) 2 0.318 0.0287 1 0.091 0.0213

(6;3) 3 0.642 0.0300 3 0.641 0.0240

(1,5;3) 3 0.642 0.0301 2 0.108 0.0214

GPCs from [8]

(6;3) 4 0.872 0.0321 3 0.641 0.0300

(1,5;3) 3 0.772 0.0301 2 0.108 0.0300

(2,3;3) 3 0.602 0.0301 2 0.318 0.0300

(7;3) 4 0.877 0.0321 3 0.108 0.0300

(1,6;4) 4 1.101 0.0321 4 0.108 0.0300

(3,5;4) 4 1.002 0.0321 4 0.108 0.0300

(4,4;4) 4 0.988 0.0321 4 0.108 0.0300

(5,3;4) 4 0.887 0.0321 4 0.602 0.0300

(6,2;4) 4 1.007 0.0321 4 0.108 0.0300

GPCs from [15]

(6;3) 3 0.802 0.0311 3 0.641 0.0300

(1,5;3) 2 0.796 0.0300 2 0.108 0.0300

(2,3;3) 2 0.598 0.0300 2 0.318 0.0300

(7;3) 3 0.885 0.0311 3 0.108 0.0300

(5,3;4) 3 0.839 0.0311 4 0.602 0.0300

(6,2;4) 3 0.991 0.0311 4 0.108 0.0300

(5,0,6;5) 4 0.989 0.0500 6 0.641 0.0426

(1,4,1,5;5) 4 0.839 0.0500 4 0.091 0.0371

(1,4,0,6;5) 4 0.989 0.0500 5 0.641 0.0377

(2,0,4,5;5) 4 1.101 0.0500 5 0.091 0.0377

GPCs from [16]

(6,0,6;5) 4 1.006 0.0500 6 0.091 0.0452

(1,3,2,5;5) 4 0.989 0.0500 5 0.091 0.0377

V. CONCLUSIONS

In this paper we took an alternate approach to GPC

synthesis on FPGAs. Unlike prior work on GPC synthesis that

used a combination of LUTs and carry chains, we used a

combination of LUTs and registers and eliminated the carry

chain completely from the GPC structure. Our approach works

in two steps: first a heuristic is used to eliminate the carry

chain and map the GPC logic efficiently onto the underlying

LUT fabric. The mapped GPC is then retimed by placing the

registers along the feed-forward cut-sets. Retiming breaks the

critical path resulting in higher operating frequencies. Our

implementation targeting Xilinx FPGAs show an increase in

speed and reduction in power dissipation for almost same

resources utilized.

REFERENCES

[1] S. Mirzaei, A. Hosangadi, and R. Kastner, “High speed FIR filter

implementation using add and shift method,” International Conference
on Computer Design, San Jose, CA, USA, Oct. 1-4, 2006.

[2] C.Y. Chen, S.Y. Chien, Y.W. Huang, T.C. Chen, T.C. Wang, and L.G.

Chen, “Analysis and architecture design of variable block-size motion
estimation for H.264/AVC,” IEEE Transactions on Circuits and

Systems-I, Vol. 53, No. 2, pp. 578-593, Feb. 2006.

[3] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, Vol.
34, pp. 349-356, May, 1965.

[4] O. Kwon, K. Nowka, and Jr. Swartzlander, “A 16-bit by 16-bit MAC

design using fast 5:3 compressor cells,” Journal of VLSI Signal
Procsesing, Vol. 31, No. 2, pp. 77-89, June, 2002.

[5] H. Mora Mora, J. Mora Pascual, J. L. Sánchez Romero, and F. Pujol

López, “Partial production reduction based on lookup tables,”
International Conference on VLSI Design, Hyderabad, India, pp. 399-

404, January 3-7, 2006.

[6] J. Poldre and K. Tammemae, “Reconfigurable multiplier for Virtex
FPGA family,” International Workshop on Field-Programmable Logic

and Applications, Glasgow, UK, pp. 359-364, Aug. 30 – Sept. 1, 1999.

[7] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, Vol. 13, pp. 14-17, Feb., 1964.

[8] H. Parandeh-Afshar, A. Neogy, P. Brisk and P. Ienne, “Compressor Tree

Synthesis on Commercial High-Performance FPGAs,” ACM
Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4,

Article 39, December 2011.

[9] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient Synthesis of
Compressor Trees on FPGAs,” in Asia and South Pacific Design

Automation Conference (ASPDAC). IEEE, 2008, pp. 138–143.

 ELECTRONICS, VOL. 21, NO. 1, JUNE 2017 11

[10] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Exploiting Fast Carry-

Chains of FPGAs for Designing Compressor Trees,” Proceedings of the
19th International Conference on Field Programmable Logic and

Applications. 242-249.

[11] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Improving Synthesis of
Compressor Trees on FPGAs via Integer Linear Programming,” in

Design, Automation and Test in Europe (DATE). IEEE, 2008, pp. 1256–

1261.
[12] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Power and Delay Aware

Synthesis of Multi-Operand Adders Targeting LUT-Based FPGAs,”

International Symposium on Low Power Electronics and Design
(ISLPED), pp. 217–222, 2011.

[13] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Multi-Operand Adder

Synthesis Targeting FPGAs,” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, vol. E94-A, no.

12, pp. 2579–2586, Dec. 2011.
[14] T. Matsunaga, S. Kimura, and Y. Matsunaga, “An Exact Approach for

GPC-Based Compressor Tree Synthesis,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences,
vol. E96-A, no. 12, pp. 2553–2560, Dec. 2013.

[15] M. Kumm and P. Zipf, “Efficient High Speed Compression Trees on

Xilinx FPGAs,” in Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen, 2014.

[16] M. Kumm and P. Zipf, “Pipelined Compressor Tree Optimization using

Integer Linear Programming,” in 24th International Conference on Field
Programmable Logic and Applications, 2014.

[17] K. K. Parhi, “VLSI Digital Signal Processing Systems Design and

Implementation,” Wiley, 1999.
[18] http://www.xilinx.com

