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Abstract. We assess the performance of the recently in-
troduced Prophet model in multi-step ahead forecasting of
monthly streamflow by using a large dataset. Our aim is
to compare the results derived through two different ap-
proaches. The first approach uses past information about
the time series to be forecasted only (standard approach),
while the second approach uses exogenous predictor vari-
ables alongside with the use of the endogenous ones. The
additional information used in the fitting and forecasting
processes includes monthly precipitation and/or temperature
time series, and their forecasts respectively. Specifically, the
exploited exogenous (observed or forecasted) information
considered at each time step exclusively concerns the time
of interest. The algorithms based on the Prophet model are in
total four. Their forecasts are also compared with those ob-
tained using two classical algorithms and two benchmarks.
The comparison is performed in terms of four metrics. The
findings suggest that the compared approaches are equally
useful.

1 Introduction

There are two different approaches to statistical time series
forecasting regarding the exploited information for obtain-
ing the forecasts. The first approach, known as the standard
one, exclusively uses endogenous predictor variables, while
the second approach also uses exogenous predictor variables
(Hong and Fan, 2016; Hyndman and Athanasopoulos, 2018;
see also the Supplement for some basic forecasting terminol-
ogy used throughout the paper). Moreover, the number of the

primary forecasting models is limited (Hong and Fan, 2016),
while recent research in geoscience by Tyralis and Papachar-
alampous (2017), and Papacharalampous et al. (2018a, b, c)
suggests that the forecast quality could hardly be improved
in a long term run by moving from one forecasting algo-
rithm to another. On the contrary, Hong and Fan (2016) em-
phasize that the use of appropriate exogenous predictor vari-
ables could considerably improve the forecasts. The exoge-
nous predictor variables to be utilized for solving a specific
forecasting problem could result through large-scale compar-
isons (since the results may vary significantly depending on
the case study; Papacharalampous et al., 2017b) that precede
the application of interest. Such comparisons are known to
facilitate benchmarking and model assessment, and require
large datasets.

Monthly streamflow or river discharge forecasting is of
practical importance. There are several studies approaching
this specific problem without utilizing exogenous predictor
variables (e.g. Ballini et al., 2001; Koutsoyiannis et al., 2008;
Papacharalampous et al., 2017a), while examples of case
studies adopting the alternative approach can be found in
Callegari et al. (2015) and Yang et al. (2017). The results of
such studies are usually presented in terms of point forecasts
(hereafter forecasts) rather than in a probabilistic way, as in
Tyralis and Koutsoyiannis (2014). An extensive study on the
use of climate index data for forecasting monthly streamflow
at 88 locations in Brazil is available in Silveira et al. (2017).
Another relevant and large-scale study by De Gregorio et
al. (2018) uses data originating from 300 alpine basins. Fi-
nally, Sun et al. (2014) explore the usefulness of two sets of
exogenous predictor variables for one-step ahead forecast-
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ing of monthly streamflow in 438 USA catchments using
the MOPEX dataset (Schaake et al., 2006). The algorithms
implemented in Sun et al. (2014) are the Gaussian process,
AutoRegressive Moving Average with eXogenous predictor
variables (ARMAX) and MultiLayer Perceptron (MLP).

Herein we expand this latter study by investigating the util-
ity of three different sets of exogenous predictor variables
in multi-step ahead forecasting of monthly streamflow. We
use a more recent dataset, i.e. the CAMELS dataset (Addor
et al., 2017a, b; Newman et al., 2014, 2015), which is also
larger than the MOPEX one. We implement Prophet, a fore-
casting model introduced by Taylor and Letham (2018) that
provides the possibility of incorporating exogenous predictor
variables. This model was first used in its standard mode for
forecasting geophysical time series, specifically monthly pre-
cipitation and temperature time series, in Papacharalampous
et al. (2018c). We compare the results provided by four vari-
ations of the Prophet model with those of two classical algo-
rithms and two benchmarks.

2 Data and methods

Here we present the data and methods, while the reader is
also referred to the Supplement, the code availability section
and the data availability section for additional related infor-
mation. We use the CAMELS dataset, which includes daily
streamflow, precipitation and temperature data for 671 USA
catchments. We exclude from the analysis all catchments in-
cluding datasets containing missing values and, finally, we
form the mean monthly time series of streamflow, precip-
itation and temperature for the remaining 513 catchments.
In Fig. 1 we present the retained catchments. The retained
monthly data span from January 1980 to December 2013
(408 monthly values). A brief exploration of the formed time
series of monthly streamflow is displayed in Fig. S1 (see Sup-
plement). The seasonality pattern is obvious in the sample
autocorrelation function (ACF) of the original time series and
reduced in the sample ACF of the deseasonalized time series,
while the estimates of the Hurst parameter (H ) of the Hurst-
Kolmogorov process (for its definition see Supplement; see
also Tyralis et al., 2018), when the latter is fitted to the de-
seasonalized time series as described in Tyralis and Kout-
soyiannis (2011), have a median value of 0.75 and, therefore,
indicate significant long-range dependence. We note that the
parameter H is commonly used in the literature for measur-
ing this dependence under the established assumption that the
latter is present in the various geophysical processes. More-
over, in Fig. S2 (see Supplement) we present the Pearson’s
correlations between the monthly streamflow and precipita-
tion variables, and the monthly streamflow and temperature
variables. The former range between −0.37 and 0.92 with a
median of 0.58, and the latter range between −0.76 and 0.75
with a median of −0.21. These correlation values are non-
negligible.

Figure 1. Locations of the 513 catchments examined in the fore-
casting experiment.

We fit a variety of algorithms to the monthly values of the
years 1980 to 2012 (fitting period) and forecast the monthly
values of year 2013 (forecast period). We implement five
forecasting algorithms that exclusively use endogenous pre-
dictor variables, namely the Naïve 1, Naïve 2, ARFIMA, SES
and Prophet 1 algorithms. The two former algorithms are
based on the monthly values of the last year and the average
monthly values respectively, while they serve as benchmarks
within our methodological framework (see also Hyndman
and Athanasopoulos, 2018, chap. 2.3). ARFIMA is an auto-
matic AutoRegressive Fractionally Integrated Moving Aver-
age algorithm available in the forecast R package (Hyndman
and Khandakar, 2008; Hyndman et al., 2018). SES (Simple
Exponential Smoothing) and Prophet 1 are also automatic al-
gorithms. The former is implemented through the forecast R
package and the latter through the prophet R package (Taylor
and Letham, 2017).

Since the ARFIMA and SES algorithms are suitable for
forecasting normal non-seasonal data, we apply these algo-
rithms to the normalized (through Box-Cox transformation)
deseasonalized time series. The deseasonalization precedes
the normalization and is performed by applying a multiplica-
tive model of time series decomposition (see Hyndman and
Athanasopoulos, 2018, chap. 6.3) to the original monthly val-
ues of the fitting period and by subsequently dividing the lat-
ter values by the estimated seasonal component, while sea-
sonality is recovered in the produced forecasts. The same
procedure is adopted for the Prophet 1 algorithm, in spite of
the fact that the utilized Prophet model offers the possibility
of internally handling of the seasonality. This choice is made,
since the external seasonality handling is shown to lead to
slightly better forecasts in Papacharalampous et al. (2018c),
as well as for consistency purposes with respect to the ap-
plication of ARFIMA and SES. The handling of the non-
normality in the Prophet 1 algorithm is made as default. For
a brief description of the ARFIMA, SES and Prophet mod-
els see Supplement (see also Papacharalampous et al., 2018c,
and the references therein).

Additionally to the above-described algorithms, we imple-
ment the Prophet 2, Prophet 3 and Prophet 4 ones, which
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Figure 2. Metric values for the 513 catchments presented in an aggregated form. The far outliers (if any) have been removed.

Figure 3. Comparison of the RMSE values for the 513 catchments as computed for three pairs of algorithms using the Prophet model. The
RMSE values are presented in an aggregated form.

utilize exogenous predictor variables alongside with the en-
dogenous ones. Specifically, in Prophet 2 St , i.e. the mean
monthly streamflow at time t , is also considered to depend
on Pt , i.e. the mean monthly precipitation at time t , as mea-
sured for the fitting period and forecasted for the forecast pe-
riod (seasonality included). We use the forecasts of Pt at the
forecast period because the test set should not contain infor-
mation which was unknown at the time that the forecast was
performed. The respective exogenous predictor variables for
Prophet 3 and Prophet 4 are Tt , and Pt and Tt respectively,
where Tt is the mean monthly temperature at time t . Tt is
used as measured for the fitting period and forecasted for the
forecast period (seasonality included). The precipitation and
temperature forecasts are produced by the Prophet 1 algo-
rithm, while seasonality and non-normality are handled as in
Prophet 1. The same applies to the streamflow information

utilized by Prophet 2, Prophet 3 and Prophet 4. We note that
all the algorithms implemented herein are designed to fit to
the data very fast. The large-scale forecasting experiment of
this study takes about an hour to run in a regular home PC.

We assess the forecast quality using the RMSE (Root
Mean Square Error), NSE (Nash-Sutcliffe Efficiency), d

(index of agreement) and KGE (Kling-Gupta Efficiency)
metrics. For their definitions see Supplement (see also Pa-
pacharalampous et al., 2018a, Supplement, and the refer-
ences therein). These metrics can take values between 0 (op-
timal) and +∞, −∞ and 1 (optimal), 0 and 1 (optimal), and
−∞ and 1 (optimal) respectively. We present the metric val-
ues in an aggregative form, while we also use them to rank
the forecasting algorithms.
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Figure 4. Rankings of the algorithms according to the RMSE metric. The algorithms are ranked from best (1st) to worst (8th).

3 Results and discussion

Section 3 is devoted to the exploration of the results and the
discussion of the main findings. In Fig. 2 we present the side-
by-side boxplots of the metric values (far outliers excluded).
We observe that the Prophet 1, Prophet 2, Prophet 3 and
Prophet 4 algorithms produce comparable results with each
other. However, the Prophet 1 algorithm produces slightly
better forecasts in terms of RMSE and NSE. The same ap-

plies to Prophet 2 for the d and KGE metrics. Moreover,
in Fig. 3 we present a comparison of the computed RMSE
values (far outliers included) for the {Prophet 1, Prophet 2},
{Prophet 1, Prophet 3} and {Prophet 2, Prophet 4} pairs of
algorithms. The closeness in the performance of these four
algorithms is also perceivable by the examination of this fig-
ure, while some few larger differences favouring the Prophet
1 algorithm are observed as far outliers. We further notice
that the use of precipitation information seems to affect more
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than temperature information the forecasting performance.
The use of both types of information, on the other hand,
mostly results to the largest outlier RMSE values. Impor-
tantly, the fact that the use of these specific exogenous predic-
tor variables did not (significantly) improve the performance
of the algorithms in any of the 513 cases examined herein
should be viewed as a lesson learned from this study.

In fact, the selection of appropriate exogenous variables is
far identified in the forecasting literature as a target and chal-
lenging at the same time problem to be solved (see, for ex-
ample, Hong and Fan, 2016), while several approaches not
relying on exogenous information are mostly of the same
usefulness, especially in geosciences, for which small dif-
ferences in the forecasting performance of the algorithms
do not have any practical effect on decision-making (see
also Papacharalampous et al., 2018a). This conclusion can
be drawn based on the large-scale results of Tyralis and Pa-
pacharalampous (2017) and Papacharalampous et al. (2017a,
2018a, b, c). Here as well, the differences in the results ob-
tained using the various forecasting algorithms are mostly
small, while Naïve 1 and SES are in average the worst per-
forming. On the contrary, Naïve 2 performs well, almost as
well as the best performing algorithms, i.e. Prophet 1 and
ARFIMA. This good performance of Naïve 2 is particularly
interesting, while it provides a good reason for always im-
plementing naïve algorithms alongside with more advanced
techniques, as also emphasized by forecasting experts (Hyn-
dman and Athanasopoulos, 2018).

Finally, in Fig. 4 we comparatively present the rankings
of the implemented algorithms within the conducted experi-
ment according to the RMSE metric. We observe that each of
the algorithms may perform better or worse compared to the
rest depending on the examined case study. This figure is par-
ticularly interesting, especially when viewed in comparison
to several studies presenting new techniques and reporting
on their superior performance to others based on case stud-
ies, while it also confirms in an illustrative way the related
to the “no free lunch theorem” findings of Papacharalampous
et al. (2017b, 2018a, c). According to the no free lunch the-
orem, there is not a model which will always perform bet-
ter than other models (Wolpert, 1996). We integrate Fig. 4
by also providing Figs. S3 and S4 (see Supplement). These
figures present the number of times that each algorithm is
ranked from best (1st) to worst (8th) and the average rank-
ings of the algorithms respectively. The best average ranking
is computed for Prophet 1 and is equal to 3.87, followed by
Prophet 3 and Naïve 2 with average rankings equal to 3.94
and 3.95 respectively. SES is the worst performing accord-
ing to this criterion with an average ranking equal to 5.58.
The remaining methods are in between with average rank-
ings 4.18 (ARFIMA), 4.34 (Prophet 2) and 4.89 (Prophet 4).

4 Conclusions

We implement the recently introduced Prophet model to
compare the results obtained via two different approaches to
multi-step ahead forecasting of monthly streamflow. The first
approach uses endogenous predictor variables only, while
the second one also uses observed and forecasted informa-
tion (as available at the time of the forecast) about monthly
precipitation and/or temperature. In the latter approach, the
value(s) of the exogenous predictor variables considered at
each time step exclusively concern the time of interest. The
implementation is made for 513 USA catchments using the
CAMELS dataset. The results indicate that the compared ap-
proaches produce equivalent results. Future work could focus
on the selection of appropriate exogenous predictor variables
as proposed by Hong and Fan (2016).

Code availability. The R code is available upon request to the cor-
responding author. The analyses were performed in R Program-
ming Language (R Core Team, 2018) using the R packages devtools
(Wickham et al., 2018), forecast (Hyndman and Khandakar, 2008;
Hyndman et al., 2018), fracdiff (Fraley et al., 2012), gdata (Warnes
et al., 2017), ggplot2 (Wickham, 2016; Wickham and Chang, 2016),
HKprocess (Tyralis, 2016), knitr (Xie, 2014, 2015, 2018), lubri-
date (Grolemund and Wickham, 2011; Spinu et al., 2018), maps
(Brownrigg et al., 2018), prophet (Taylor and Letham, 2017), readr
(Wickham et al., 2017), rmarkdown (Allaire et al., 2018), stringi
(Gagolewski, 2018), zoo (Zeileis and Grothendieck, 2005; Zeileis
et al., 2018).

Data availability. The data used in the present study is available in
the CAMELS dataset (Addor et al., 2017a, b; Newman et al., 2014,
2015). The daily precipitation included in the latter was obtained by
Thornton et al. (2014).

Information about the Supplement

The supplementary document includes basic forecasting ter-
minology, background information on methods and models,
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