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Abstract. Impairment of water quality by organic microp-
ollutants such as pesticides, pharmaceuticals or household
chemicals is a problem in many catchments worldwide.
These chemicals originate from different urban and agricul-
tural usages and are transferred to surface waters from point
or diffuse sources by a number of transport pathways. The
quantification of this form of pollution in streams is challeng-
ing and especially demanding for diffuse pollution due to the
high spatio-temporal concentration dynamics, which require
large sampling and analytical efforts to obtain representative
data on the actual water quality.

Models can also be used to predict to what degree streams
are affected by these pollutants. However, spatially dis-
tributed modelling of water quality is challenging for a num-
ber of reasons. Key issues are the lack of such models that
incorporate both urban and agricultural sources of organic
micropollutants, the large number of parameters to be esti-
mated for many available water quality models, and the dif-
ficulty to transfer parameter estimates from calibration sites
to areas where predictions are needed.

To overcome these difficulties, we used the parsimonious
iWaQa model that simulates herbicide transport from agri-
cultural fields and diffuse biocide losses from urban ar-
eas (mainly façades and roof materials) and tested its pre-
dictive capabilities in the Rhine River basin. The model
only requires between one and eight global model parame-
ters per compound that need to be calibrated. Most of the
data requirements relate to spatially distributed land use and
comprehensive time series of precipitation, air temperature
and spatial data on discharge. For larger catchments, rout-

ing was explicitly considered by coupling the iWaQa to the
AQUASIM model.

The model was calibrated with datasets from three differ-
ent small catchments (0.5–24.6 km2) for three agricultural
herbicides (isoproturon, S-metolachlor, terbuthylazine) and
two urban biocides (carbendazim, diuron). Subsequently, it
was validated for herbicides and biocides in Switzerland for
different years on 12 catchments of much larger size (31–
35 899 km2) and for herbicides for the entire Rhine basin up-
stream of the Dutch–German border (160 000 km2) without
any modification. For most compound–catchment combina-
tions, the model predictions revealed a satisfactory correla-
tion (median r2: 0.5) with the observations. The peak con-
centrations were mostly predicted within a factor of 2 to 4
(median: 2.1 fold difference for herbicides and 3.2 for bio-
cides respectively). The seasonality of the peak concentration
was also well simulated; the predictions of the actual timing
of peak concentrations, however, was generally poor.

Limited spatio-temporal data, first on the use of the se-
lected pesticides and second on their concentrations in the
river network, restrict the possibilities to scrutinize model
performance. Nevertheless, the results strongly suggest that
input data and model structure are major sources of predic-
tive uncertainty. The latter is for example seen in background
concentrations that are systematically overestimated in cer-
tain regions, which is most probably linked to the modelled
coupling of background concentrations to land use intensity.

Despite these limitations the findings indicate that key
drivers and processes are reasonably well approximated by
the model and that such a simple model that includes land
use as a proxy for compound use, weather data for the tim-
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ing of herbicide applications and discharge or precipitation
as drivers for transport is sufficient to predict the timing and
level of peak concentrations within a factor of 2 to 3 in a
spatially distributed manner at the scale of large river basins.

1 Introduction

Mankind uses thousands of synthetic chemicals for many
different purposes in households, industries or agriculture
(Schwarzenbach et al., 2006; Bernhardt et al., 2017). Many
of these compounds reach water bodies during some stage of
their life cycle. Accordingly, the impairment of water qual-
ity caused by substances such as pharmaceuticals, household
chemicals or pesticides is a problem of many catchments
worldwide. From an ecological point of view, pesticides are
often of special concern because they have been designed to
harm a wide range of organisms.

Pesticides are used for different purposes. In agriculture,
they are used to protect crops from weeds, pests or diseases.
However, the same compounds may be also used to fight
unwanted organisms on materials such as roofs, façades or
ships. Depending on where pesticides are used, they may
reach water bodies via different pathways. Although pesti-
cides may be ecotoxicologically relevant chemicals even in
treated wastewater discharged from point sources (Munz et
al., 2017; Müller et al., 2002), diffuse pollution is often dom-
inant for these compounds (Moschet et al., 2014). The quan-
tification of this form of pollution in streams is challeng-
ing due to the high spatio-temporal concentration dynam-
ics, which require large sampling and analytical efforts (e.g.,
Wittmer et al., 2010; Leu et al., 2004b).

As a consequence, the water quality status of many water
bodies is not quantified sufficiently for properly addressing
management and research questions that require a sound un-
derstanding about spatio-temporal patterns of pesticides oc-
curring in streams. There may be deficits with regard to the
spatial or temporal coverage of data as well as coverage of
all chemicals of interest (Moschet et al., 2014).

Spatially (semi-)distributed models can potentially fill
such gaps and have been developed and used for decades to
do so (Borah and Bera, 2004). Some of these models (e.g.,
SWAT, Arnold et al., 2011, MONERIS, Behrendt et al., 2002,
GREAT-ER, Kehrein et al., 2015, or MACRO, Steffens et
al., 2015; Larsbo et al., 2005) have been widely used, and
many others have been developed and used in specific re-
search contexts (e.g., ZIN-AgriTra, Gassmann et al., 2013,
SPIDER, Renaud et al., 2008; Villamizar and Brown, 2017,
or DRIPS, Röpke et al., 2004). One of the challenges related
to modelling diffuse pesticide losses is the necessity to cover
all relevant sources and flow paths. Many models, for exam-
ple, do not simulate urban and agricultural processes with the
same level of detail. This may pose a serious problem in re-
gions that are characterized by a mixed land use of urban and

agricultural areas such as in many parts of densely populated
central Europe.

Models differ widely in the degree to which they aim to
represent the relevant processes explicitly. On the one hand,
so-called physically based models try to describe them with
equations in such a way that the model parameters should
have a real physical, chemical, or biological meaning inde-
pendent of the model application with the goal to provide
causal system understanding (Bossel, 1994; Beck, 1987).
Generally, running such highly parameterized models comes
with a huge data demand, and – as this demand usually can-
not be covered – many model parameters cannot be estimated
from independent observations. In the end, this leads to either
the use of potentially unrealistic parameter values or calibra-
tion, the latter facing the problem that many of the parameter
values cannot be properly identified, possibly inducing large
uncertainties during a validation or prediction phase (Beck,
1987; Brun et al., 2001).

On the other hand, more conceptual, parsimonious models
try to cope with the lack of (spatially distributed) data by dra-
matically reducing the number of parameters. This comes at
the cost that model parameters may lose their direct physical
or chemical interpretation. Such parsimonious models basi-
cally assume that essential aspects of the response of a com-
plex (real) system can be represented by some rather simple
mathematical descriptions that incorporate the effects of ma-
jor external drivers, such as precipitation. Such types of mod-
els are frequently used in hydrology for simulating discharge
(e.g., Beven and Kirkby, 1979) as well as for water quality
simulations (Hahn et al., 2013; Jackson-Blake et al., 2017),
but only a few models are used for simulating pesticide trans-
port to surface waters (Honti et al., 2017).

Here we present a model that covers major urban and agri-
cultural sources for pesticides in streams that can be applied
to large water basins, provides high spatial and temporal res-
olution (hourly to daily), and is still parsimonious. It is sim-
ilar to the iWaQa model approach in Honti et al. (2017) but
adapted for large basins by including an explicit routing com-
ponent by coupling it to the AQUASIM model. It differs
from many other model concepts in that it does not include
a rainfall–runoff module but directly links agricultural pesti-
cide losses in a novel way to measured discharge and urban
biocide losses directly to precipitation.

Specifically, the paper has the following objectives:

1. description of the model concepts and their implemen-
tation;

2. calibration of the model on selected small catchments
and selected pesticides representing agricultural herbi-
cides and urban biocides;

3. evaluating the performance of the calibrated model with
blind predictions on a large set of validation catchments
– this step includes a pronounced spatial upscaling of
the model by 3 to 4 orders of magnitude.
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Figure 1. Map of the Rhine basin. The study area covers the
part upstream of Emmerich indicated by the red circle. The differ-
ent colours represent the sub-basins according to the International
Commission for the Protection of the Rhine (ICPR) with the an
additional distinction of the Aare basin in Switzerland. Base data:
Vogt et al. (2007); Swisstopo (2007). AT: Austria, BE: Belgium,
CH: Switzerland, DE: Germany, FL: Liechtenstein, FR: France, IT:
Italy, LU: Luxembourg, NL: the Netherlands.

We have used the Rhine basin upstream of Emmerich (see
Fig. 1) as a case study to investigate these questions. Due to
lack of data, the biocide part was only tested within Switzer-
land.

2 Study area

The study is carried out in the Rhine basin upstream of the
gauging station Emmerich am Rhein (Germany; see Fig. 1).
We limited the analysis to this part of the basin because the
model structure does not cover complex, strongly managed
flow regimes such as those that are prevalent in the Dutch
part of the basin. Even with these restrictions, the study area
is one of the largest drainage basins in Europe, with an area
of 160 000 km2 covering land of eight countries, mainly from

Switzerland, Germany, France and Luxembourg. The total
length of the river network is 63 080 km and is divided into
more than 30 000 catchments according to the CCM River
and Catchment Database for Europe, version 2 (CCM2) from
Vogt et al. (2007).

Altitude ranges from above 4200 m a.s.l. in the Bernese
Alps in the south to 17 m a.s.l. at Emmerich in the north.
Accordingly, the hydrological regime varies strongly across
the basin. The discharge regime in the southern part of the
basin is largely influenced by snow accumulation and melt.
As a consequence, most southern rivers are of pluvio-nival
type with low water periods during winter and flood events
occurring mainly in summer. In contrast, sub-basins further
north (Neckar, Main, Moselle, Ruhr, etc.) are characterized
by a pluvial regime with winter floods and low water levels
in summer. Similarly, temperature regimes show important
differences, which may be reflected in shifts in phenology of
crops and hence in application periods of agricultural pesti-
cides.

The basin is densely populated (290 inhabitants km−2 in
the study area), with strong regional differences. Arable
cropping is an important land use in large parts of the basin.
More details on specific crops and their spatial distribution
are presented in the Supplement (Fig. S5).

The Rhine River is heavily used by hydropower plants up-
stream of Iffezheim along the main channel and main tribu-
taries. However, the effects on travel times is rather moderate
on the streams of interest and was neglected during the rout-
ing calculations.

3 Model description

3.1 Spatial discretization and model structure

The river basin is discretized into sub-catchments based on
the CCM2 database. To reduce the number of sub-catchments
and ensure a reasonable minimum size, CCM2 catchments
smaller than 2 km2 were merged with the next downstream
catchment. The resulting 18 240 sub-catchments with an av-
erage area of 8.8 km2 are the primary computational units of
the model. Further details on the spatial representation are
provided in Sect. S2 of the Supplement.

The model consists of two principal components. The first
component – the substance transfer module – simulates the
transfer of the pesticides from their point of use (e.g., the
fields to which herbicides are applied) to the outlet of each
sub-catchment. The second component – the routing module
– links the contribution of all sub-catchments and represents
the in-stream transport and fate processes of the chemicals.

We assume that sub-catchments are laterally disconnected
from each other, and therefore simulations of the sub-
stance transfer module can be run separately for each sub-
catchment. Subsequently, the routing module integrates all
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outputs of the substance transfer module by processing sub-
catchments from up- to downstream.

For the routing, the main river (and optionally also trib-
utaries) is split into river segments (see Sect. S10, Fig. S9).
Each segment receives input from upstream and lateral direc-
tions as well.

3.2 Substance transfer module

This module consists of several independent parts that de-
scribe the transfer of chemicals from the different pesticide
sources in the catchment. In particular, it consists of the
iWaQa model, which describes substance transfer for herbi-
cides (Sect. 3.2.1) and for biocides (Sect. 3.2.2). These mod-
els treat sub-catchments as spatially lumped units. The mod-
els are very parsimonious, such that they only require one
to eight empirical yet global model parameters per simulated
chemical (Table 1). All other model inputs consist of (gener-
ally) available statistical data on chemical consumption, spa-
tial data on land use and hydro-climatic time series.

3.2.1 Substance transfer for herbicides

This section describes first the system of the herbicide model
and subsequently the input and output of the system.

This model consists of two spatially lumped storage terms
representing the dissolved and sorbed fractions of the total
herbicide mass M(t) (g) in the topsoil layer of agricultural
fields in the sub-catchment. The first storage is the mass dis-
solved in the pore water Mw(t) (g) being instantly available
for release to the river. The other represents mass adsorbed
to the soil matrix Ms(t) (g) and is unavailable for immediate
release.

The exchange between the two storages is described by
two kinetic rate parameters: sorption to the soil matrix is de-
scribed with the transfer rate kw−s (d−1) and the reverse flux
with ks−w (d−1), respectively. Both stocks degrade according
to first-order kinetics with decay rate kdeg (d−1).

The mass balance and the two first-order differential equa-
tion describing the change in stock of herbicide massesM(t)

in the system are given by the following equations:

M(t)=Mw (t)+Ms(t), (1)
dMw

dt
= ρ · Ṁa(t)− kw−s ·Mw(t)+ ks−w ·Ms(t)

− kdeg ·Mw−Lherbicide, (2)
dMs

dt
= (1− ρ) · Ṁa(t)− ks−w ·Ms(t)

+ kw−s ·Mw(t)− kdeg ·Ms, (3)

where Ṁa(t) (g d−1) is the rate of mass applied in the catch-
ment during the application period and ρ (–) represents the
fraction of the applied mass that is immediately available
for transport, such that it can be directly mobilized when it
rains. The output Lherbicide (g d−1) is the herbicide load re-

leased from the current application at the outlet of the sub-
catchment.

Input

Crop development and hence also the timing of herbicide ap-
plications is strongly controlled by temperature conditions in
any particular year. As application dates are generally un-
known, a temperature sum model is used to simulate crop
growth and the related herbicide applications, which is linked
to specific growth stages of the crops. In particular, we as-
sume that application of herbicides starts when the daily tem-
perature sum at a given location reaches a crop-specific tem-
perature threshold (Honti et al., 2017). Daily mean values
of temperature are summed up (Tsum(t)), though a restart is
forced after freezing days. Once the objective temperature
Tobj is reached, 1 / 14 of the total application mass is applied
on each following rain-free day until the total application
mass is depleted. This approach avoids a universal applica-
tion date and accounts for regional climatic differences.

Output

The concept to describe the transfer of the applied herbicides
from the fields to the river is based on the empirical observa-
tion that herbicide concentrations increase with flow during
discharge events during the application period (Leu et al.,
2010). Mechanistically this can be explained by the occur-
rence of fast transport processes (with high herbicide con-
centrations) such as surface runoff and fast subsurface flow
through drainage systems or macropores (Leu et al., 2004a)
during discharge events. Hence the concentration (C, g m−3)
in the river is described – in a first approximation – as propor-
tional to the discharge Q(t) (m3 d−1) in the case of a recent
application on the fields; the load (g d−1) increases quadrati-
cally with discharge:

Cherbicide (t)= α(t) ·Q(t), (4)

Lherbicide (t)= C (t) ·Q(t)= α(t) ·Q(t)
2, (5)

where α (g d m−6) is the proportionality coefficient relating
the magnitude of the discharge to the released loads.

The proportionality coefficient depends on Mw(t), the
mass dissolved in the pore water and instantly available for
release:

α (t)= ε ·Mw (t) , (6)

where ε (d m−6) becomes a catchment-independent empiri-
cal loss factor that needs calibration for each chemical (see
Sect. 4.2).

Certain herbicides are present in significant concentration
outside of the application period too (see for example, Leu
et al., 2004a). Therefore, we added a constant background
concentration (Cback, g m−3) to the substance transfer model.
This step was essential to ensure a proper calibration of the
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Table 1. Global model parameters.

Abbreviation Name Description Specificity Model part

ρ Initially available herbicide fraction Fraction of the applied herbicide mass initially
available for transport

compound Deterministic
model

kw−s Sorption rate Fraction of the dissolved herbicide mass getting
sorbed to the soil matrix per unit of time

compound Deterministic
model

ks−w Desorption rate Fraction of the sorbed herbicide mass getting
desorbed per unit of time

compound Deterministic
model

kdeg Degradation rate Rate constant of the first-order degradation compound Deterministic
model

Cback Background concentration Constant background concentration, propor-
tional to the areal fraction of the relevant crop
in the sub-catchments

compound Deterministic
model

ε Herbicide loss rate Loss rate per unit discharge and available herbi-
cide mass

compound Deterministic
model

Tobj Temperature objective Cumulative temperature sum required to start
herbicide application on a crop

crop Deterministic
model

β Biocide loss rate Loss rate per unit precipitation and available
biocide mass

compound Deterministic
model

µ Scaling factor Factor for scaling the model error term propor-
tional to the sub-catchment-specific herbicide
input

compound Error model

σerror Standard deviation of the error model Relative standard deviation of the total model
error

compound Error model

model. By doing so we implicitly assume a constant concen-
tration of herbicides independent of the application period,
representing for example other, not seasonal sources or a gen-
eral presence in the baseflow due to the long-term persistence
of pesticides in groundwater. Thus, the total released load of
the system is expressed as

Lrelease (t)= Cback (t) ·Q(t)+ ε ·Mw(t) ·Q(t)
2. (7)

3.2.2 Substance transfer for biocides

Biocides are applied in the urban settlement on façades, flat
roofs, basement seals and underground parking lots. Due to
the potential year-round application and the long-term pro-
tection purpose of biocides, it is assumed that the stock in
the urban settlement is constant over time (Wittmer et al.,
2010).

The leaching of biocides in urban areas is a complex pro-
cess and several studies provide quantitative information on
loss rates, dynamics and driving factors (Jungnickel et al.,
2008; Burkhardt et al., 2008; Wittmer et al., 2011). The pro-
cess is mainly driven by precipitation that occurs when wa-
ter flows over the treated surfaces, and it was observed that
concentration patterns of urban compounds follow the rain-
fall pattern more than the river discharge (Wittmer et al.,
2010). Therefore, the current model simplifies the processes
by assuming that the release is proportional to precipitation
and assuming instantaneous transport to the rivers. The fol-
lowing equation thus describes the resulting modelled load

Lbiocide (t) [g d−1] to the rivers:

Lbiocide (t)=M ·β ·P(t), (8)

withM (g) the total mass present in the catchment within the
model period, β (m−1) the substance-specific loss rate (to be
calibrated, see below), and P(t) the precipitation (m d−1).
The assumption of instantaneous transfer to the stream may
cause some timing errors if compounds have residence times
that are longer than the model time step (e.g. in wastewater
treatment plants) but see the findings on routing effects in
Sect. 5.2.

3.3 Routing module

3.3.1 Load aggregation

Concentrations of micropollutants at the outlet of any catch-
ment composed of several sub-catchments are predicted by
aggregating the loads from the output of the substance trans-
fer module and division by the actual total discharge. The
approach considers the local availability of sources and the
spatial distinctions of the driving factors (discharge or pre-
cipitation). However, instantaneous aggregation assumes no
in-stream losses, such as degradation, sedimentation or diffu-
sion taking place during the transport. Furthermore, it implies
that the temporal resolution should be larger than the longest
travel time of a component during a rain or discharge event.
Otherwise the concentration dynamics are affected.
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A special situation is caused by the presence of the large
pre-alpine lakes (Lake Constance, Lake Lucerne etc.) in the
river network. Because of the long water residence time in
these water bodies (months to years), the concentration dy-
namics in the lake outlet are strongly dampened and differ
substantially from other river sections. To account for these
different dynamics, we simulated the input into each of these
lakes separately by the substance transfer module. We as-
sumed complete mixing into the volume corresponding to
1 year of discharge and used the resulting concentration as
a constant value in the river water flow out of the respective
lakes. The load varied accordingly with discharge from the
lake. A different case was Lake Biel, which was not treated
as a mixing reactor because of the short spatial distance be-
tween the inflow and the outflow of the river Aare.

3.3.2 Routing with AQUASIM

In larger river basins the effects of travel time, dispersion and
degradation during pollutant transport in the river system be-
come more important. The assumption of instant arrival of
pollutants at the outlet within daily time steps does not hold
true anymore and hydraulic routing becomes indispensable.

To that end the load output from the substance transfer
module was used as input into the program AQUASIM (Re-
ichert, 1994) that was used for describing the transport and
fate processes within the main rivers. Flow was described
with the kinematic wave approximation of the Saint Venant
equations. Transformation and sedimentation through sorp-
tion was neglected because the model compounds are suffi-
ciently stable and show only weak sorption.

4 Methods

4.1 Model input data

4.1.1 Discharge, precipitation and temperature

Hourly discharge data were obtained for 1033 stations from
federal and national agencies (see Sect. S4, Table S2)
to derive two kinds of discharge time series for all sub-
catchments. The first, termed local runoff, refers to sur-
face and subsurface runoff originating from the specific sub-
catchment and is used in the substance transfer module for
herbicides. The other is the streamflow at the outlet of a sub-
catchment required in the routing module to calculate the
concentrations of catchments or as input to AQUASIM. For
headwater sub-catchments without any further upstream con-
nections, the local runoff is identical to the streamflow.

Time series of local runoff are derived from the records
of gauging stations measuring rivers with a Strahler stream
order (Strahler, 1957) less than 5 (804 out of 931 or 86 %
of the available gauging stations). Using gauging stations at
larger rivers would not accurately reproduce the high tempo-
ral variations of the local runoff. The recorded discharge is

allocated to the sub-catchments upstream according to the
drainage area ratio method, which assumes that discharge
scales proportionally to catchment area (Hirsch, 1979). Un-
fortunately, many sub-catchments remain ungauged hereby.
On the one hand this method does not provide time series
for sub-catchments downstream of the stream gauges with
Strahler order larger than 4, on the other hand numerous un-
gauged tributaries join the river network downstream of the
selected stream gauges. In both cases a nearby reference sta-
tion (with Strahler order < 5) is selected and the area ratio
method is applied to calculate local runoff. Selection of the
reference stations is based on the map-correlation method
from Archfield and Vogel (2010). This geostatistical method
calculates the correlation between discharge time series at
observed stream gauges and estimates the station with the
most correlated discharge at the ungauged catchment.

The stream flow time series for all sub-catchments were
deduced in a similar way. Upstream of stream gauges with
Strahler order less than 5, the discharge is allocated accord-
ing to the drainage area ratio and accumulated downstream.
The discharge of any stream gauge is passed on to the down-
stream sub-catchments and accumulated with the streamflow
of converging tributaries. Likewise to the local runoff, the
streamflow for ungauged tributaries is adapted from refer-
ence stations selected with the map-correlation method.

Hourly precipitation data for the study area are avail-
able for Switzerland from MeteoSwiss CombiPrecip (Sideris
et al., 2014) and for the rest of the Rhine basin from
RADOLAN (Bartels et al., 2004), a product of the German
Meteorological Office (DWD). Both are raster datasets (with
a spatial resolution of 1 km2) computed using a geostatistical
combination of radar sensing and rain gauge measurements.
Small temporal gaps in the precipitation data or uncovered
parts in the French region were filled with data from the near-
est available rain gauge. Additional data from rain gauges
are available for Luxembourg and France. By intersecting
the raster cells with the sub-catchments, the most accurate
conversion was achieved with the area-weighted mean of the
overlapping grid cells within a sub-catchment.

Raster temperature data with daily mean values are re-
trieved from MeteoSwiss TabsD (Begert et al., 2003) with a
spatial resolution of 0.02◦ (∼ 2.3×1.6 km) and from the Eu-
ropean dataset termed E-OBS (Haylock et al., 2008) with a
coarser resolution of 0.25◦ (∼ 27.8×18.8 km). Both datasets
are spatial interpolations of monitoring stations.

Given that the Swiss temperature dataset has a finer grid
size than the average area of the sub-catchments (8.8 km2),
it allowed for estimating reliable mean temperatures for all
sub-catchments in Switzerland. The grid size of the E-OBS
temperature data was significantly larger than the average
sub-catchments. The spatial resolution of the E-OBS tem-
perature dataset was therefore refined using a digital eleva-
tion model (DEM) with a grid size of 1 km2 (the DEM was
obtained from the GMES RDA project, EEA, 2013). In par-
ticular, the deviation between the altitude of the DEM cells
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Table 2. Characterization of calibration and validation catchments. NADUF: National long-term surveillance of Swiss rivers, NAWA SPEZ:
NAWA SPEZ: National Surface Water Quality Monitoring Programme – Special Campaigns, IRMS: International Rhine Monitoring Station
(Basel).

Catchment/river Abbr. Reference Year Area Agricultural Housing Population
(km2) land use (km2) footprint (km2)

Calibration

Ossingen oss Doppler et al. (2012) 2009 1.2 1.1 – –
Summerau sum Gomides Freitas et al. (2008) 2003 0.5 0.04 – –
Mönchaltdorf moe Wittmer et al. (2010) 2007 24.6 4.7 0.5 12 000

Validation

Furtbach fch NAWA SPEZ 2012 31 14 1.6 31 570
Limpach lch NAWA SPEZ 2012 74 43 1 7560
Mentue mnt NAWA SPEZ 2012 100 42 1 9300
Salmsacher Aach smr NAWA SPEZ 2012 54 33 1.7 17 326
Surb srb NAWA SPEZ 2012 68 36 1.4 22 780
Thur thr NADUF 2009 1735 873 33 403 028
Toess tss NADUF 2009 432 175 11 197 032
Glatt glt NADUF 2009 413 183 20 405 702
Murg mrg NADUF 2009 212 118 5.3 68 145
Rhine Rekingen rhn NADUF 2009 14 721 5261 175 2 946 907
Rhine Basel irms IRMS 2010–2011 35 899 12 009 503 7 786 398

and that of the E-OBS cells was calculated. From these alti-
tude deviations, temperature values were corrected based on
a temperature decrease of −0.0065 ◦C per metre of altitude
increase and added to the temperature values of the E-OBS
cells. Thus, a gridded temperature model with a resolution of
1 km2 was obtained.

4.1.2 Land use data

Herbicides are applied on specific crops, and therefore de-
tailed, spatially distributed agricultural land use data were
required. The dataset “Agricultural Landuse2000” from the
JRC AFOLU project (Leip et al., 2008) classifies agricul-
tural land use into 30 crops and for a grid with a resolution
of 1 km2 by combining remote sensing with statistical in-
formation of the agricultural production. Because there was
no dataset available reflecting the most recent situation, we
checked whether there have been major shifts in agricul-
tural land use with the spatially lumped data on the temporal
evolution of cropping areas for the different countries and
the relevant crops (maize, wheat, sugar beet) based on the
FAO statistics (http://www.fao.org/faostat/en/#data; last ac-
cess: 26 March 2018). These aggregated data reveal mostly
small changes in the planting of these major crops over the
last 20 years. This supports our assumption that the spatial
patterns have not changed much and that our land use data
adequately reflect land use for our study period (see Fig. S4).
For Switzerland, more recent land use (2004–2009) and crop
statistics (2010) were available and used.

The European dataset on agricultural land use does not
cover Switzerland. In order to have a dataset with the same
crop categories and a similar spatial resolution, a harmonized
dataset was created from the Land Use Statistics of Switzer-
land (Swiss Federal Statistical Office FSO, 2012) and the
census of agricultural enterprises (Swiss Federal Statistical
Office FSO, 2011). The cultivation areas of 60 listed crops
reported in each municipality in the census were distributed
on the grid cells of the Land Use Statistics belonging to the
three agricultural land use classes, leading to an average frac-
tion of cultivated area of crop l per grid cell in community k:

W
(l)
k =

a
(l)
k

G
(tot)
k

. (9)

W
(l)
k (–) is the average fraction of crop l being cultivated in

a single grid cell belonging to community k. The a(l)k (ha)
is the cultivation area of crop l (reported in the census) in
municipality k, and G(tot)

k (ha) is the sum of the area of all
agricultural grid cells in community k. The 60 crop cate-
gories of the census are merged to the 30 categories from
the European “Agricultural Landuse2000”; thus, a consistent
database is accomplished with a comparable approach of dis-
tributing statistically reported areas to spatial land use data.

Land cover of housing and settlements is available with
vector-based maps, where every building is precisely repre-
sented by a polygon and in some cases with knowledge about
its height.

– France: Institute géographique nationale (IGN) BD
TOPO® (with height);
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– Germany: Arbeitsgemeinschaft der Vermessungsver-
waltungen Deutschland (ADV) ALKIS®;

– Luxembourg: Administration du Cadastre et de la To-
pographie (ACT) BD-L-TC;

– Switzerland: Federal Office of Topography (swisstopo)
swissTLM 3D (with height).

Façade surfaces are calculated by multiplying the contours
of buildings with their height where available (CH, FR).
For the other countries (DE, LU) the façade areas within a
sub-catchment are estimated from the footprints areas and
the population. Footprint and façade follow a linear relation,
whereas the relationship between population Npop (–) and
façade Afac [m2] appear to be polynomial. With the Swiss
data the following regression was obtained:

Afac = 1.55 ·Afoot+ 1.45× 105
·Npop

+ 6.20× 10−4
·
(
Npop

)0.49
. (10)

This regression was validated with the French data achiev-
ing reasonable results and finally used to calculate the façade
areas in Germany and Luxembourg (see Sect. S6, Fig. S5).

4.1.3 Model compounds, use and sale data

Five model compounds (see Table S1) have been selected for
this study: three agricultural herbicides (isoproturon: IPU, S-
metolachlor: MEC, terbuthylazine: TBA) and two (dual-use)
biocides (carbendazim: CBZ, diuron: DIU). The biocides are
mainly used in urban environments to protect materials. They
may also have some agricultural use in some regions of the
basin (e.g., in Switzerland) but the usage is of minor rele-
vance and is neglected here.

Use and consumption data for the chemicals are not avail-
able in a spatially distributed manner. To provide input for
all spatial model units, we proceeded in two steps. First, we
obtained statistical data on pesticide use and consumption
for the relevant regions or countries. Subsequently, we down-
scaled these statistical data based on land use or population.

Annual sales data of herbicides were available from the
countries of Switzerland (Agroscope ZA-AUI, Spycher and
Daniel, 2013) and Germany (Federal Office of Consumer
Protection and Food Safety, Federal Office of Consumer
Protection & Food Safety BVL 2008–2012) as well as the
French regions Alsace (Office national de l’eau et des mi-
lieux aquatique, Office national de l’eau et des milieux
aquatique ONEMA, 2014) and Lorraine (Groupe Régional
d’Action contre la Pollution Phytosanitaires des Eaux Lor-
raine, Groupe Régional d’Action contre la Pollution Phy-
tosanitaires des Eaux Lorraine GRAPPE Lorraine, 2005)
for the years 2008–2012 (except for the study for Lorraine,
which was only issued for 2005). The spatial coverage area
of the statistics varied strongly, ranging from 357 300 km2

for Germany to 8330 km2 for Alsace. The Swiss dataset

only provided coarse ranges of substance sold per year, from
which the mean values were used.

Only one source for the use and sale of biocides was at
hand. The survey of Burkhardt and Dietschwiler (2013) in-
vestigated the consumption rates in Switzerland of various
biocides in antifouling paints, masonry and wood protection
agents. The use rates have been applied to the entire study
area.

The mass distributed on the agricultural fields respec-
tively applied on houses of each catchment was estimated
by downscaling regional or national sales data Ṁtot (g d−1)
with the ratio of the local application area (area within a sub-
catchment) Aa (ha) to the total application area Atot (ha) (to-
tal area within the considered sales study):

Ṁa =
Aa

Atot
Ṁtot. (11)

The application area was distinct for use classes and sub-
stances. For herbicides it was the sum of possibly treated
agricultural land use areas: more specifically the crops for
which a substance is authorized and primarily used. The re-
sulting spatial distribution of estimated input is depicted in
Sect. S6, Fig. S5. Biocides were applied on façades of a
building. The sum of the respective building surface com-
poses the application area. Because of the lack of spatially
distributed biocide use data, the spatial distributions of CBZ
and DIU are identical (see Sect. S6, Fig. S6).

4.2 Calibration of the catchment model

4.2.1 Calibration sites

To calibrate the model, data from field studies were used
that simultaneously provided data on application amounts of
substances as well as on losses to the rivers. Such studies
are rare and we used the following studies situated in the
north-eastern part of Switzerland. The sampling campaigns
from Gomides Freitas et al. (2008) and Doppler et al. (2012)
measured herbicide concentrations at the small-scale agricul-
tural catchments Summerau and Ossingen, respectively, af-
ter a controlled herbicide application. Wittmer et al. (2010)
monitored the mass and dates of herbicide applications in a
slightly larger catchment, Mönchaltorf (25 km2), with mixed
land use. The biocide application was estimated with product
and statistical information. Subsequently the losses from the
catchments were measured at the outlet of the catchment.

4.2.2 Calibration procedure

The substance-specific parameter sets for herbicides
θherbicide = {ε,Cback,ρ,kw−s,ks−w,kdeg,Tobj} and for
biocides θbiocide = {β} cannot be measured and require
calibration. Parameter Tobj, which regulates the timing of
herbicide application, was only calibrated in the case of
Mönchaltorf, where regular application occurred at the
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farmers’ chosen timing. At Ossingen and Summerau the
application was experimentally controlled and therefore a
calibration of Tobj would be meaningless.

The model parameters were calibrated using a Bayesian
inference approach. The likelihood function accounted for
the parameter uncertainty and the structural model errors. For
herbicides, model errors were assumed to deviate stronger
during the application season. Therefore an error-scaling
function was added, depending on the substance input to the
system, as well as a driver imitating the approximate sub-
stance application to the fields. The error scaling function
makes the standard deviation of herbicide errors proportional
to the remaining field stock to reflect that errors are larger in
the application period than afterwards, when the compound
is present in negligible amounts. The additional parameters
to calibrate, resulting from the error-scaling function, were
θherbicide,error = {µ,σerror} where µ is a scaling factor for the
substance input and σerror the calibrated standard deviation of
the total model error. For the biocides the error variance was
assumed to have no seasonality.

Measured peak concentrations of herbicides in the calibra-
tion studies occurring before the monitored application pe-
riod were excluded from the calibration procedure as they
represent accidental spills or runoff from hard surfaces. As
such events are not represented in the model, including them
would have spoiled the identification of model parameters.

The likelihood function used in this study is based on the
assumption that Box–Cox-transformed (Box and Cox, 1964)
time series of concentration data C lead to independent and
identically distributed normal errors as described in Honti et
al. (2017). The corresponding likelihood function is as fol-
lows:

p(Cobs|θ)=

(
1

√
2πσ 2

)N
(12)

exp

(
−

1
2σ 2

N∑
i=1

(
g
(
Cobs,i

)
− g

(
Cmod,i

))2) N∏
i=1

dg
(
Cobs,i

)
dC

,

where σ 2 is the error variance,N is the total number of obser-
vations in all sub-catchments, and Cobs and Cmod are the ob-
served and the modelled concentrations for the data point i.
The transformation g(·) is the Box–Cox transformation used
to remove the heteroscedasticity of the residuals:

g (C)=
Cλ− 1
λ

. (13)

The parameter λ was set to 0.3.

The Jacobian of the transformation dg(Cobs)
dC =

n∏
i=1
C
(λ−1)
obs,i

was required to compensate for the distortion of the likeli-
hood by using the transformed variables.

4.2.3 Prior distributions

Priors for the substance-specific loss rates were estimated
based on reported information in the calibration studies (see
Sect. S8, Table S4). Estimation for the substance-specific ε
of the herbicide model is based on the reported loss rates
from these studies. Neglecting background concentrations,
the time-averaged concentration C during the main loss pe-
riod from t0 to t0end is given according to Eq. (4) as

Cherbicide =
ε

(tend− t0)
×

tend∫
t0

Mw (t)×Q(t)dt. (14)

Based on measurements, C can also be expressed as follows:

Cherbicide =
Ṁa×1τ × lrstudy∫ tend

t0
Q(t)dt

(15)

where Ṁa is the average application rate in the catchment,
1τ is the duration of the application period, and lrstudy is the
empirically observed loss rate from the study. From Eqs. (14)
and (15), it follows that ε can be approximated as follows:

ε =
Ṁa×1τ × lrstudy∫ tend

t0
Q(t)dt ×

∫ tend
t0
Mw (t)×Q(t)dt

≈
Ṁa×1τ × lrstudy

(tend− t0)×Mw×
(
Q
)2 , (16)

where Q is the mean discharge during this period, and Mw
is the mean mass available for transport calculated using the
known application pattern and a first-order approximation for
the sorption and decay.

Priors for the substance-specific loss rates of the bio-
cide model were the total loss rate reported in Wittmer et
al. (2010) divided by the yearly sum of precipitation. Hav-
ing multiple study catchments or ranges of loss rates allowed
a distribution of the priors for ε and β to be calculated (see
Sect. S9, Tables S4 and S5)

Prior distributions for the parameters describing pesticide
fate in the soil (ρ, kw−s, ks−w, kdeg) were derived from field
experiments. The equations are fitted to the Freundlich ad-
sorption isotherms with time-varying sorption coefficients
measured in soil samples (Gomides Freitas et al., 2008).

The maximum of the posterior parameter distribution was
found by performing a Nelder–Mead simplex optimization.
The maximum likelihood parameter set was used as a prior
for the Markov chain–Monte Carlo (MCMC) simulation us-
ing the Metropolis algorithm (Gamerman, 1997). The devel-
oped posterior parameter distributions were used to predict
the parameter and model uncertainty. The procedure was re-
peated for every calibration site separately.
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Figure 2. Calibration and validation catchments in Switzerland. Base data: Vogt et al. (2007); Swisstopo (2007).

4.3 Model validation and routing

Several comprehensive sampling campaigns from the Swiss
“National Surface Water Quality Monitoring Program – Spe-
cial Campaigns – NAWA SPEZ” (Federal Office for the En-
vironment FOEN, 2013) and data from a continuous moni-
toring station were selected to evaluate the model.

The first campaign (NAWA SPEZ) comprised five catch-
ments (Fig. 2) ranging from 39 to 105 km2 with varying
extents of urban and agricultural influences (Sect. S7, Ta-
ble S3). The measurement campaign was accomplished from
March to July 2012 with biweekly time-proportional mixed
samples (Moschet et al., 2014).

The second survey was the “National long-term surveil-
lance of Swiss rivers”, termed NADUF, where weekly or bi-
weekly mixed-samples were taken during 2009 (Stamm et
al., 2012). The monitoring sites were in the north-eastern
part of Switzerland and quantified the concentrations of
several organic micropollutants in five nested catchments.
These nested catchments have a large range of size from
74 to 14 718 km2, comprising between 22 and 2554 sub-
catchments (Fig. S8).

A third validation was conducted with data for 2011 from
the continuous measurement program of the International
Rhine Monitoring Station (IRMS) near Basel. With five
probes distributed over the cross section, daily discharge-
proportional pollutant levels are evaluated. The upstream
area of the Rhine at this point covers almost 36 000 km2 in-
cluding the sub-basins Alpine Rhine, Lake Constance, High
Rhine and Aare.

Modelled hourly concentrations were adapted to the sam-
pling periods of the respective validation surveys. According
to the aggregation periods of mixed samples in the measure-
ment surveys, the modelled concentrations were averaged
over the sampling time periods, such that the resulting time
series were fully comparable.

The issue of routing arises for larger catchments where the
transport time is longer and also the processes along the way
become more significant. For the sites of the NADUF sur-
vey the concentrations at the outlets were first modelled with
load aggregation and in a second step river segments were
defined where the routing with AQUASIM was calculated.
Thus the influence of a physically based hydraulic routing
can be compared to the situation where in-stream transport
and processes are neglected.

In the case of the IRMS, measuring a large sub-basin of
the Rhine, the catchment model is applied for 5950 sub-
catchments. Downstream of the lakes the substance transport
was modelled with AQUASIM for the larger rivers (such as
the Rhine, Aare; Sect. S10, Fig. S9). The simplistic approach
with load aggregation was applied on this large scale as well.

4.4 Model predictions within the Rhine basin

The calibrated model was finally applied to the Rhine and the
major tributaries to characterize the pollutant dynamics of
herbicides. These simulations were real predictions without
any further adjustments of model parameters. Due to the lack
of statistical input data on the use of biocides in France and
Germany, predictions for the Rhine basin were not possible
for carbendazim and diuron.
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Figure 3. Examples of the comparison between simulated and observed concentration time series during the calibration step for each com-
pound. IPU: isoproturon, MEC: S-metolachlor, TBA: terbuthylazine, CBZ: carbendazim, DIU: diuron. Moe: Mönchaltdorf, sum: Summerau.
The full set of calibrations is shown in the Supplement (Fig. S12).

4.5 Technical implementation

The iWaQa model is written in C++ and the outputs are
time series of concentrations, parameter estimations, poste-
rior parameter distribution from the MCMC or matrices with
the concentration predictions with the posterior parameters.
Within a Python framework, (i) the input for the substance
transfer module is generated, (ii) the substance transfer mod-
ule runs the iWaQa model for the entire Rhine basin and
(iii) the two routing options are executed (see Sect. S1). Data
preparation and analysis is performed with the programming
language R (R Core Team, 2017).

All modules are executable individually. Preprocessing
succeeds within 30 min to sort the hourly input data for all
18 240 sub-catchments of the Rhine basin on an Intel x86 8-
core processor. The substance transfer module takes approx-
imately 1 h to run and sort the output by both sub-catchments
and time steps. Run times of the routing options differ sub-
stantially depending on the size of the considered catch-
ment and the parameterization of AQUASIM. Generally the
load aggregation is calculated within a few minutes and the
simulation of the main tributaries of the Rhine basin with
AQUASIM is completed within 6 h.

4.6 Model evaluation

Besides the likelihood used for parameter calibration, there
are many metrics for evaluating model performance of hy-
drological and water quality models (Jachner et al., 2007;
Smith and Rose, 1995; Reusser et al., 2009; Moriasi et al.,
2007). Out of those, we have selected some frequently used
statistics (Table 3) that allow for a comparison with other
studies. In addition, we have included some metrics that are
more specifically designed to analyse aspects that are of spe-
cial relevance for this work. These measures include the ge-
ometric reliability index (GRI) of the cumulative distribution
of the simulated concentrations to see how well the overall
concentration level is met or the fold difference between the
observed and simulated maximum concentration during the
simulation period (see Table 3).

5 Results

5.1 Calibration

The calibration was carried out for all catchment–compound
combinations for which observations are available (see Ta-
ble 2). For the agricultural herbicides this provides several
alternative calibration sets (Tables S6, S7). The final deci-
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Table 3. Metrics used for quantifying model performance. Cobs
max: observed maximum concentration, Csim

max: simulated maximum concen-
tration, mi : model predictioni , m: mean model prediction, n: number of observations, oi : observation i, o: mean of the observations, σobs:
standard deviation of the observations.

Metric Abbreviation Description

Nash–Sutcliffe efficiency NSE NSE= 1−
∑n
i=1(oi−mi )

2∑n
i=1(oi−o)

2

Pearson correlation coefficient r r =

∑n
i=1(oi−o)(mi−m)√∑n

i=1(oi−o)
2
√∑n

i=1(mi−m)
2

Percent bias PBIAS PBIAS= 100×
∑n
i=1(mi−oi )∑n

i=1oi

Relative root mean square error RRMSE RRMSE=
∑n
i=1|mi−oi |
nσobs

Geometric reliability index
(cumulative distribution)

GRI (GRI_sorted) GRI=
1+

√
1
n

∑n
i=1

(
mi−oi
mi+oi

)2

1−

√
1
n

∑n
i=1

(
mi−oi
mi+oi

)2

Relative difference between maximum
concentrations

1Cmax 1Cmax =
Csim

max−C
obs
max

Cobs
max

Fold difference between maximum con-
centrations

F.diff F.diff=


Csim

max−C
obs
max

Cobs
max

Csim
max > C

obs
max

Cobs
max

Cobs
max−C

sim
max

Csim
max < C

obs
max

sion of which set to use for further predictions was based on
the performance in the validation step with the NAWA SPEZ
sites (see below).

For the agricultural herbicides, the calibration resulted in a
reasonable simulation of the observed concentration dynam-
ics (Fig. 3, Figs. S12, S33–S34, Tables S8–S10). The cali-
brated uncertainty bands also followed the expected seasonal
patterns: they were large during the application periods and
decreased with time. The model, however, poorly captured
the exact timing of the concentrations, as one can see from
the low Nash–Sutcliffe (NSE) coefficients (ranging between
−0.05 and 0.62, median= 0.38; see Sect. S15, Table S10).
Despite these deviations, the correlations between observa-
tions and simulations were reasonable (range between 0.30
and 0.85, median= 0.68).

For the biocides, the model predicted a rather uniform dis-
tribution of concentration peaks around the year, reflecting
the precipitation patterns. The observations, however, sug-
gest a bi-modal seasonal pattern with higher concentrations
in spring and autumn. This pattern resulted in low correla-
tions (r of 0.30 and 0.37; see Sect. S13, Table S10) and poor
NSE values (−0.05 and 0.08), which is also reflected by the
poor relationship between the P/Q ratio and the observed
biocide concentration over the year (Fig. S10). A possible
reason for this temporal pattern is a seasonal biocide appli-

cation. However, there are no data available for testing this
hypothesis.

The residuals pointed to systematic deviations between
observed and modelled concentrations (Fig. S11). The data
are grouped into two clusters. One of the clusters showed sys-
tematic underestimations of the observations, while the other
showed the opposite. Comparison with the time series re-
vealed on the one hand that for most compounds, the highest
observed concentrations peaks were (substantially) underes-
timated during calibration (see for example S-metolachlor or
terbuthylazin in Fig. 3). These peak concentrations were un-
derestimated by 13 % to 83 % (Table 4). On the other hand,
the second cluster of data points indicates that concentrations
of some (smaller) events were overestimated. This pattern
suggests that the model structure did not capture the full dy-
namic range of the pesticide concentrations.

Despite these limitations, the concentrations were reason-
ably well represented by the model. The GRI indicates that
the predicted concentrations of the agricultural herbicides
were within a range of 1.9 to 2.5 of the observations (Figs. 4–
5). When the timing is ignored and only the accuracy of the
simulation of the cumulative concentration distributions is
considered – this is generally relevant for water quality as-
sessment – these values range between 1.4 and 2.2. As can
be seen from Figs. 4–5, the performance for the biocides was

Hydrol. Earth Syst. Sci., 22, 4229–4249, 2018 www.hydrol-earth-syst-sci.net/22/4229/2018/



A. Moser et al.: Modelling biocide and herbicide concentrations 4241

Table 4. Over- or underestimation of maximum concentrations (site–compound combinations) in percentage of the observations. For the
herbicides, only the peaks during spring application were considered. IPU: isoproturon, MEC: S-metolachlor, TBA: terbuthylazine, CBZ:
carbendazim, DIU: diuron. NADUF: National long-term surveillance of Swiss rivers, NAWA SPEZ: NAWA SPEZ: National Surface Water
Quality Monitoring Programme – Special Campaigns, IRMS: International Rhine Monitoring Station (Basel).

IPU MEC TBA CBZ DIU

Calibration Mönchaltdorf −13 −51 −53 −62 −66
Ossingen −71 – −83 – –
Summerau – −58 – – –

Validation NAWA SPEZ Furtbach 6 −10 431 61 715
Salmsacher Aach 114 17 1898 229 1201
Surb 123 −53 56 −32 859
Limpach 103 −14 17 −57 2772
Mentue 2405 45 43 84 370

Validation NADUF Thur −9 −47 – −57 91
Rhine Rekingen 22 20 – −65 70
Murg −42 −61 – −97 221
Toess −35 −37 – 458 265
Glatt 92 −45 – 4 789

Validation IRMS Rhine Basel −67 −60 368 239 931

Figure 4. Overview of the overall predictive power to simulate the
concentrations levels during the calibration and validation phase
as quantified by the geometric reliability index (GRI). A value of
1 (green horizontal line) indicates a perfect match; the larger the
value, the stronger the deviation. Cal: calibration; Val: validation;
NW: NAWA SPEZ: National Surface Water Quality Monitoring
Programme – Special Campaigns, ND: National long-term surveil-
lance of Swiss rivers (NADUF), RM: International Rhine Monitor-
ing Station (Basel), Time: evaluation of concentration time series;
-Cum: evaluation of cumulative concentration distributions (sorted
according to size); blue: agricultural herbicides; red: dual-use (ur-
ban and agricultural) biocides.

Figure 5. Cumulative distribution of the fold difference between ob-
served and simulated concentrations Cmax of all compounds during
the calibration and validation phase.

considerably poorer but the cumulative distribution was also
reproduced better that the concentration time series.

Based on the relative RMSE one can compare the cal-
ibration performance across sites. Mönchaltdorf and Sum-
merau yielded better calibrations for S-metolachlor and ter-
buthylazin than the Ossingen dataset (Sect. S15, Table S8)
The opposite was true for isoproturon. In the case of Ossin-
gen, a long dry period followed after the isoproturon appli-
cation, resulting in very low concentrations without a pro-
nounced peak related to the recent application. This last as-
pect points to the fact that single-calibration datasets may
represent special situations, hampering the predictive power
during normal conditions. The application of S-metolachlor
and terbuthylazine in Ossingen, for example, took place just
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before an intensive precipitation event. Through direct short-
cuts, such as manholes of drainage systems and storm drains,
the transfer to the river was accelerated and very high con-
centrations were measured (Doppler et al., 2012).

So far, we have compared the observations to the deter-
ministic model predictions. Comparing the observations to
the simulations including the prediction uncertainties due
to the estimated parameter uncertainty (of the determinis-
tic model) and the total predictive uncertainty accounting for
input and model structure deficits reveals that the parame-
ter uncertainty contributes only a small fraction. Taking into
consideration all sources of uncertainty leads to uncertainty
bands that include most of the observations, as can be seen
from the cumulative concentration distributions depicted in
Sect. S14 and Figs. S27–S28.

All calibrated parameters of the deterministic model had
priors based on physical reasoning or empirical data; hence,
the maximum likelihood values are not expected to devi-
ate strongly. This held true for the decay rate, the loss
rates (ε and β), the background concentration and the ob-
jective temperature. The parameters describing the herbi-
cide (de-)sorption processes (initial availability ρ, transfer
rates ks−w and kw−s) changed considerably. In general, the
sorption coefficient values were higher and degradation rates
smaller than the a priori estimates, meaning that the avail-
able mass for release was smaller but more persistent. For
sorption, this could be explained to some degree by different
soil–water ratios of undisturbed soils and the conditions dur-
ing the experimental procedure from which the priors were
derived (Gomides Freitas, 2005). However, stronger sorption
in the model could also compensate for pesticide applications
that were missed by the model.

5.2 Validation

The different calibrated parameter sets were used to pre-
dict the corresponding concentrations for the validation case
studies. To that end, the model output having a daily resolu-
tion was aggregated to the time periods of the real sampling
strategies at the respective sites. In contrast to the calibration
procedure, the validation step also included the simulation
of the compound input. This included the estimation of the
applied amounts and the timing of the applications.

For the agricultural herbicides, several calibration datasets
were available. All of them were first tested on the NAWA
SPEZ sites. Based on their performance, one set per com-
pound was used for simulating the larger NADUF and IRMS
sites. Based on the correlation coefficients and the NSE cri-
terion the parameter sets calibrated at Mönchaltorf for the
compounds isoproturon and terbuthylazine and the parame-
ter set from Summerau for S-metolachlor were used for the
other catchments (see Sect. S14, Table S8).

At the IRMS, the validation of the model was partially re-
stricted due to the low concentrations that often remained
below the limit of quantification (LOQ) of 5 ng L−1 for S-

Figure 6. Comparison of predicted isoproturon concentrations
along the River Rhine for 2011 compared to the observations at the
measuring site at Lobith. ICPR: International Commission for the
Protection of the Rhine.

metolachlor and terbuthylazine. Nevertheless, concentrations
were high enough to evaluate the model performance during
the application period.

The quality of the predictions varied between compound
use classes and the validation catchments. The GRI values
demonstrate that the agricultural herbicides were simulated
better than were the biocides (Fig. 5, compare red and blue
distributions). The (cumulative) distribution of observed con-
centrations was better represented by the model compared
to the actual time series. Interestingly, the model performed
better in the larger catchments (Fig. 5) despite the fact that
calibrations were up-scaled to areas that are between 4 and
70 000 times larger than the calibration catchment (Table 2).
This might be explained by averaging out regional differ-
ences and variabilities in local application dates – and hence
also input uncertainty – across larger scales.

The quality of the predicted maximum concentrations
changed from the calibration to the validation step. While the
values were systematically underestimated during calibra-
tion, this pattern changed substantially for the validation. De-
pending on the site–compound combination, the maximum
concentrations were either clearly under- or overestimated
(Table 4). Irrespective of the sign of the deviation, the fold
difference between observed and simulated concentrations –
indicating by which factor observations were over- or under-
estimated – mostly ranged between 1 and 4 (Fig. 6). How-
ever, there were a few cases of extreme deviations because
of either the observation of a pronounced and very high peak
or very low measured values hardly exceeding the observed
background. Again, the model performed better for the her-
bicides where for 50 % of the predictions (site–compound
combinations) the maximum concentrations were predicted
within a factor of 2.0 deviation from the observations. For the
biocides, the value was larger (> 3.0). We also observed clear
compound-specific patterns such as systematic overestima-
tion of diuron concentrations (see e.g., Sect. S13, Fig. S32).

As during the calibration step, the Nash–Sutcliffe values
were low, pointing again to the problem of properly simulat-
ing the exact timing of concentration peaks (Fig. S33). This
was very pronounced for the biocides. The correlation coef-
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ficients provided a mixed picture. For some compounds such
as diuron, the correlations coefficient range between 0.29
and 0.68 (median= 0.56) for the NAWA SPEZ and NADUF
sites. For others such as carbendazim or isoproturon the cor-
relation was very variable, especially between the NAWA
SPEZ sites (see Sect. S14, Table S10). At the station on the
Rhine in Basel, the correlations varied between being non-
existent to fairly strong (isoproturon: r = 0.84 assuming load
aggregation across the Rhine basin).

Effects of routing

For the IRMS measuring site, we compared the perfor-
mance of the simple load aggregation procedure and the
explicit routing with AQUASIM (see Table S10). Differ-
ences between both approaches were moderate. The rout-
ing yielded better results because some of the pronounced
concentration peaks predicted by load aggregation were sub-
stantially smoothed. Therefore, the maximum concentrations
were overestimated to a lesser degree. The median differ-
ence between observed and simulated maximum concentra-
tions with and without routing were 3.1- and 3.4-fold, re-
spectively (averages: 2.6 and 4.8, respectively). The slightly
better NSE values also suggest a better performance with an
explicit routing. These results provided evidence that at the
scale of such large basins of 30 000 km2 and beyond the ex-
plicit routing makes a relevant difference for pesticides stud-
ied at a daily resolution.

5.3 Predictions for the Rhine basin

Based on the findings reported above on the effects on rout-
ing, we only report the findings based on AQUASIM for
the predictions of the main tributaries (Aare, Neckar, Main
and Moselle) and the further measuring sites downstream of
Basel. The total river length for which the routing was ex-
plicitly simulated with this module was 1773 km. We focus
here on the three herbicides (isoproturon, S-metolachlor and
terbuthylazine) because for them a minimum set of observa-
tions was available.

The observed isoproturon concentrations revealed the two
peaks in spring and autumn, as also measured at the other lo-
cations (Fig. 6). The model predicted the timing of the spring
peak very well. The absolute concentrations level of the peak
was also simulated well (within 30 % of the observation).
Concentrations during the summer months were slightly un-
derestimated; the autumn peak was missed because no appli-
cation was included in the model (see above).

The comparison of the simulated chemographs along the
Rhine show some slight temporal shifts of the peaks caused
by different application periods. Despite of the size of the
basin, however, these shifts due to varying phenology were
small, corresponding to a few days only.

The simulations show very similar patterns for the other
two herbicides in the different tributaries (see Sect. S13,

Figs. S25–S26). The time shifts between the different sub-
basins were also very small. Unfortunately, these findings
cannot be tested against observations because the LOQ (10
and 50 ng L−1 for S-metolachlor and terbuthylazine, respec-
tively) values were too high. Nevertheless, the observed peak
concentration for S-metolachlor at Lobith (20 ng L−1) was
close to the simulated value of 15 ng L−1. For terbuthylazine,
all simulated values at Lobith remained below the LOQ. This
demonstrates at least that the concentrations were not over-
estimated. This contrasts with the results at Basel, where the
model predicted a maximum concentration 1.9 times the ac-
tual observation.

In our simulations, we have assumed that the compounds
behave like conservative tracers without degradation or sorp-
tion taking place. Although this is not completely true, the
travel times through the river network are so short that rel-
evant dissipation can be expected to be negligible for the
model compounds considered in this paper.

6 Discussion

6.1 Model performance

We presented here a series of predictions for herbicide and
biocide concentrations in streams without any local calibra-
tion or model adaptations. In this sense, the results corre-
spond to predictions in ungauged catchments covering tens
of thousands of square kilometres based on calibration catch-
ments covering less than 30 km2 in total. Despite the chal-
lenges that go with this task, the model validation demon-
strated that the concentration levels could be predicted within
a factor of 2 to 4 for 50 to 75 % of the predictions. This is
comparable to what has been observed for models predicting
concentrations of micropollutants from point sources (John-
son et al., 2008). The seasonality of the herbicide concentra-
tion peaks was well represented too, while that of biocides
was not well reflected (see below). Overall, the results sug-
gest that such a parsimonious model can be used as a mean-
ingful screening tool to identify potential hotspots in river
networks. The spatial resolution of such an analysis, how-
ever, may be strongly limited by a lack of spatial data on
compound use and data on local factors influencing transport.
Accordingly, it is expected to be valid at a regional instead of
a local scale. Models of a similar degree of parsimony have
been developed for point source pollution (e.g., Ort et al.,
2009) but are largely lacking in compounds with rain-driven
input dynamics.

Despite these positive aspects, one has to be clear about the
limitations of the model and the resulting predictions. Defi-
ciencies are obvious when evaluating the performance met-
rics. The NSE or correlation coefficients obtained are low
compared to values typically called satisfactory or good for
hydrological models. However, our results need to be put into
the context of comparable water quality studies dealing with
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Table 5. Examples of reported Nash–Sutcliffe efficiency values and Pearson correlation coefficients between observations and simulations
reported for a selection of water quality modelling studies. C: calibration, S: scenario calculations, V: validation.

Reference Compound C/V NSE r

Bannwarth et al. (2014) Atrazin C
V

0.92
0.61

–
–

Chlorothalonil C
V

0.67
0.28

–
–

Endosulfan C
V

0.86
0.31

–
–

Parker et al. (2007) Atrazine C −0.18/−1.03/−3.50a 0.12/0.30/0.64a

Metolachlor C −0.84/−3.53/−33.4a 0.14/0.46/0.57a

Trifluralin C −30.2/−16.9/−3.2a
−0.16/0.35/0.14a

Boulange et al. (2014) Mefenacet S 0.65/−9.72/−14.7b 0.78/0.87/0.92b

Holvoet et al. (2008) Atrazine C 0.66 –
Holvoet et al. (2007) Chloridazon C −0.69c 0.44c

Jackson-Blake et al. (2015) Suspended sediment C 0.16/0.39/0.21/0.02d 0.63/0.83/0.64/0.21d

TDP C 0.24/0.04/−0.20/−0.60d 0.83/0.68/−0.05/0.27d

Different P forms C 0.06/−0.14/−0.60/−0.42/
−1.15/−4.18/0.19/−0.08/
−0.74/0.08e

a Values for three different models. b Values for three different model parameter sets. c NSE and r calculated from data points derived from Fig. 3 of the
reference. d Values for four different river reaches (Table 3 of the reference). e Values taken from Table 5 of the reference for diffuse P sources.

diffuse pollution. As pointed out by Pullan et al. (2016), there
is a lack of studies in this field reporting quantitative perfor-
mance metrics such as NSE or r values. However, studies
that do report such values demonstrate that the low NSE or
correlation values of our work are in similar ranges to what
others have described. Table 5 and Fig. S34 summarize a se-
lection of such findings from a number of model applica-
tions (e.g., SWAT, INC-P and others), which are much less
parsimonious than the iWaQa model used in this study. This
comparison indicates that model performance of water qual-
ity models achieved so far is generally considerably lower
compared to what purely hydrological models can accom-
plish.

The fact that a parsimonious model such as the iWaQa
model presented here was able to yield meaningful predic-
tions suggests that the model concept represents the effects of
the major drivers controlling the degree and dynamic of her-
bicide – and to some degree biocide – inputs into streams. It
also indicates that these drivers remain constant over consid-
erable spatial areas and that one can use findings from small
study areas to extrapolate to larger basins as long as the first-
order controls do not strongly change. For the iWaQa model
as implemented here this means that the herbicide input for
example is mainly triggered by discharge events. However,
in drier regions it may be possible that point sources play a
dominant role (Müller et al., 2002). In this case, the model
concept had to be complemented to account for this input
pathway, as discussed in Honti et al. (2017).

The observation that findings from small catchments can
be extrapolated to larger areas in a meaningful manner may

be considered a contradiction to earlier work where impor-
tant spatial differences between herbicide loss rates within
catchments were demonstrated (Doppler et al., 2014; Leu et
al., 2010). However, the data suggest that spatial heterogene-
ity at small scales is averaged out at larger ones such that it
does not dominate the large scale patterns.

6.2 Model limitations

Despite the positive aspects mentioned above, there are sev-
eral (major) model limitations one has to be aware of. First,
the parsimonious and empirical structure of the model re-
quires compound-specific calibration. This generally implies
that field data are available at the catchment scale with suffi-
ciently well quantified input and output fluxes.

While this calibration step is also necessary for other
(more complex) models there are also model limitations re-
lated to the model structure. During calibration, we have no-
ticed that the model was not able to fully represent the ob-
served concentration peaks (see Table 4). This suggests that
the model structure misses important processes that control
concentrations during rainfall events. A possible candidate
for such a process is drift deposition on roads and subsequent
runoff during rainfall (e.g., Lefrancq et al., 2013). Interest-
ingly, this systematic problem during the calibration phase
was only partially observed during validation. This was pos-
sibly due to the (much) larger scale of the validation catch-
ments that average over many temporally independent appli-
cation events.

Other structural model limitations are too-high herbicide
background concentrations in some sub-basins, the lack of
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Figure 7. Spatial and temporal resolution of input variables (blue), calibration data (yellow), validation data (red) and forecasts (green).
Abbreviations: prec: precipitation, temp: temperature, herb: herbicide, cons: consumption, bioc: biocides, catch: catchment.

an isoproturon application in autumn, or seasonal biocide
concentration peaks that were not represented by the model.
These limitations were rather easy to identify but not very
easy to solve. The first problem of herbicide background con-
centration levels would require a more explicit modelling of
the long-term fate of these compounds in the coupled unsat-
urated and saturated zone. To keep such a model parsimo-
nious one had to test whether these background concentra-
tions could be empirically linked to some simple catchment
characteristics. Second, the herbicide application in autumn
is much more difficult to predict compared to the spring ap-
plication because it not only depends on a single variable
such as the temperature sum over the year but it is also in-
fluenced by all the climatic variables determining the time
of harvest of the previous crop and potential intercropping.
In the future, this deficit may be overcome by deriving a
stochastic application model based on application data ob-
tained from national surveys. Regarding the third aspect, the
seasonal biocide patterns, we lack any information about bio-
cide use on buildings that could explain the observed season-
ality. Targeted surveys on actual use across the year might be
a solution. Better input data could then allow further struc-
tural deficits of this very simple biocide model to be studied
in more detail.

These examples demonstrate that the model limitations are
often a mixture between a too-simplistic model structure and
a lack of input data. This agrees with the findings from the er-
ror models (see Sect. S14 and Figs. S27–S28). The predictive
uncertainty due to poorly identified parameters only explain
a small fraction of the deviations between observations and

the deterministic model predictions in the calibration phase.
The estimated uncertainty for the full error model, however,
covers most of the data. Nevertheless, one should not over-
state this observation because the fraction of uncertainty as-
signed to different sources depends on how the error model
was formulated (Honti et al., 2014).

One could conclude that a more complex model was war-
ranted to overcome such limitations. While this would be
definitely worth considering one should be aware of the se-
vere limitations that come with the input uncertainty regard-
ing the chemicals to be modelled. To illustrate this point, we
have quantified the spatial and temporal density of input data
needed for the model (Fig. 7). Compared to the drivers of
the hydrological part such as precipitation the density of data
on biocide and herbicide input into the system was orders
of magnitude lower. While there is hourly precipitation data
available on a 1×1 km2 grid for the entire model domain we
could only approximate the herbicide input based on average
national sales data. For biocides, one had to rely on a single
rough estimate per compound for the entire basin.

Given this level of input uncertainty, it comes as no sur-
prise that the observed concentrations may be substantially
over- or underestimated in a given sub-catchment. The de-
gree of mismatch between observations and simulations was
still in a range that allowed the model to be used as a screen-
ing tool for identifying potentially critical catchments in a
basin. This was probably thanks to the widespread use of the
selected model compounds. For less frequently used com-
pounds, one can assume that the input estimates based on
sales statistics would be even more uncertain due to, for ex-
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ample, region-specific application patterns. Accordingly, the
predictive uncertainty would increase further.

7 Conclusions

Our findings suggest that even a very parsimonious model
with a maximum of eight global parameters that need to be
calibrated is sufficient to capture the key drivers and pro-
cesses for diffuse agricultural herbicide and urban biocide
losses reasonably well, so as to predict levels of peak con-
centrations within a factor of 2 to 4. This demonstrates that
land use as a proxy for compound use, weather data for the
timing of herbicide applications, and discharge or precipita-
tion as drivers for fast transport are first-order controls for
diffuse pollution for the compounds in our study area. The
results further demonstrate that the impact of these factors
can be scaled spatially across at least 4 orders of magnitude
(from < 3 km2 to > 30 000 km2).

At the same time the results also point to clear model defi-
ciencies such as the simulation of background concentrations
or the lack of the autumn application of certain herbicides.
Unfortunately, the analysis of model performance is limited
by the lack of adequate validation data that have to com-
bine reliable information on the timing and amount of the
chemicals used as well as on concentrations in the streams.
Progress in modelling and in measuring will remain closely
coupled in this area and mutually benefit from each other.

Finally, it should be recognized that despite using a very
parsimonious model, collecting the necessary input data and
bringing it into a consistent form across a large water basin
such as the Rhine is very time consuming. Hence, sharing
model codes and even more importantly the required data
will benefit the scientific community by not having to re-
invent the wheel.

Code and data availability. The source code and the input data
for the models have been placed in GitHub at https://github.com/
moserand/crosswater (Moser, 2018a) and are also available online
at https://doi.org/10.5281/zenodo.556143 (Moser, 2018b).
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