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Recently, antibiotics have been withdrawn from some poultry diets; leaving the birds

at risk for increased incidence of dysbacteriosis and disease. Furthermore, mortalities

occurring from disease contribute between 10 to 20% of production cost in developed

countries. Currently, numerous feed supplements are being proposed as effective

antibiotic alternatives in poultry diets, such as prebiotics, probiotics, acidic compounds,

competitive exclusion products, herbs, essential oils, and bacteriophages. However,

acidic compounds consisting of organic acids show promise as antibiotic alternatives.

Organic acids have demonstrated the capability to enhance poultry performance by

altering the pH of the gastrointestinal tract (GIT) and consequently changing the

composition of the microbiome. In addition, organic acids, by altering the composition

of the microbiome, protect poultry from pH-sensitive pathogens. Protection is further

provided to poultry by the ability of organic acids to potentially enhance the morphology

and physiology of the GIT and the immune system. Thus, the objective of the current

review is to provide an understanding of the effects organic acids have on themicrobiome

of poultry and the effect those changes have on the prevalence of pathogens and

diseases in poultry. From data reviewed, it can be concluded that the efficacy of organic

acids on shifting microbiome composition is limited to the time of administration, the

composition of the organic acid product, and the current health conditions of poultry.

Keywords: poultry, organic acids, lactic acid producing bacteria, prebiotics, microbiome

INTRODUCTION

With the removal of antibiotics from some poultry integrators and the implementation of
antibiotic-free birds (ABF), the industry is challenged with identifying a valid alternative to
antibiotics with similar capabilities to that of antibiotics (1, 2). As antibiotics have been noted
to improve weight gain, through the reduction of subclinical and clinical infection by mitigating
the presence of bacteria in the gastrointestinal tract (GIT) and consequently reducing nutrient
competition, immune stimulation, thinning the intestinal wall, and enhancing nutrient digestibility
(3, 4), these are considered the qualities expected of an effective alternative. Many antibiotic
alternative products improve growth performance characteristics of poultry by directly impacting
the environment of the GIT, such as altering the bacterial populations, physiology, and the pH of
the GIT (5). Although there are numerous alternatives currently on the market, organic acids are a
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valid alternative with the capability to reduce pathogenic bacteria
and increase nutrient digestibility through their effect on the
pH in the GIT (5–7). Because the digestive process extensively
includes microbial fermentation, organic acids are commonly
produced by beneficial bacteria (probiotics) present in the crop,
intestines, and ceca (3). Furthermore, the supplementation of
prebiotics has the potential to increase the production of organic
acids by probiotic bacteria. Thus, there are several application
methods to alter the GIT: the dietary introduction of acidic
compounds either directly via feed supplements containing
organic acids, or indirectly as a shift in fermentation originating
from the presence of probiotics, prebiotics, or combined as
synbiotics in the GIT. The current review aims to elaborate on
the use of organic acids and organic acid stimulating dietary
supplements, probiotics and prebiotics, and their subsequent
effects on pathogen prevalence and the developing avian GIT
microbiome.

Antibiotics in the Livestock Industry
After the rapid expansion of the poultry industry in the 1940s,
there was a need for basic feed components. Due to this
accelerated growth in the commercial poultry industry, there was
a shortage of fishmeal and other animal protein sources (8–10).
With the necessity for more animal protein sources, the industry
sought to determine what the Animal Protein Factor (APF), the
factor in animal protein sources that promoted increased poultry
performance, consisted of and to find a suitable alternative
(8). APF was later discovered to be Vitamin B12 in 1948 (8–
10). Ultimately, the search to find an effective alternative to
APF helped fuel the discovery of antibiotic growth promoters
(AGPs).

Alexander Fleming, an English scientist, discovered penicillin
in 1928 when he was testing the ability of mold to reduce
staphylococci on agar plates (8). However, it took until the early
1940s for scientists, Ernst Chain and Howard Florey, to isolate a
sufficient quantity of penicillin to be tested and validated as an
effective treatment for illnesses (8). Shortly after the discovery of
antibiotics, a growth promoting component of fungal mycelia, an
antibiotic, was observed outperforming APF, vitamin B12 (8, 11–
14). Moore et al. included antibiotics in chicken feed and was
the first research group to show an increase in weight gain due
to the inclusion of antibiotics (15). Later, the use of antibiotics
in feed would be coined as the term “AGPs” and be utilized
for prophylactic purposes that prevented or reduced the risk for
infection, as well as promoted growth in broilers.

AGPs in the poultry industry are administered in the diet
when there is no clinical sign of infection, however the risk
still exists. Prophylactic application of AGPs have resulted in
improved weight gain, reduced bacterial presence in the GIT,
reduced nutrient competition, and reduced immune stimulation
(4). After the introduction of AGPs to the industry, there were
concerns for the residues in meat and fungal overgrowth in
animals. However, since the poultry industry does not employ
antibiotics that are absorbed by the digestive tract, the concern for
antibiotic residues inmeat andmeat products was not considered
a direct concern (16, 17). As time progressed, the concerns have
evolved due to consumer perception and scientific reports (8).

Removal of Antibiotics From the Poultry
Industry
The poultry industry began to turn away from the use of
antibiotics due to growing public concern over antibiotic
resistant pathogens. As early as the late 1960s, the Swann
Committee in the European Union (EU) researched the
possibility of bacterial resistance due to the use of antibiotics
in livestock diets (18). It was found in the years between 1963
and 1965 that the resistance to antibiotics could be transferable
to other bacteria, as was seen in the epidemic of antibiotic
resistant Salmonella Typhimurium (18). The epidemic of S.
Typhimurium led the United Kingdom (UK) government to
appoint the Swann Committee to monitor and identify possible
resistance of pathogenic bacteria to antibiotics from animal
origins (18). The Swann Committee later recommended in 1969
that the antibiotics used as growth promoters in feed diets be
those that “have little or no application as therapeutic agents in
man or animals and will not impair the efficacy of a prescribed
therapeutic drug or drugs through the development of resistant
strains of organisms” (18). The Swann Committee in that same
statement deemed the use of chlortetracycline, oxytetracycline,
penicillin, tylosin, and the sulphonamides as unsuitable for
growth promotion (18). The statement was later adopted by the
UK in 1998 (19). As the continued concerns grew in the UK
and across the world, the poultry industry experienced extreme
pressure to terminate the use of AGPs in the diet of poultry and
other livestock.

The first country in the EU to officially ban the use of AGPs
was Sweden in 1985 (18). Sweden, after joining the EU in 1995,
heavily campaigned for the termination of the use of antibiotics
as growth promoters in animal feed in the EU (18). In 1996,
the United States (US) implemented the National Antimicrobial
Resistance Monitoring System (NARMS), which monitored the
antimicrobial resistance in bacteria (8). Within that same time
period (1997 and 1998), the World Health Organization (WHO)
and Economic and Social Community of the European Union
deemed the use of antimicrobials in food animals as a public
health concern, citing risks to the long-term use of antibiotics,
such as resistance to antibiotics (17).

The EU finalized the ban on AGPs with the creation of
Regulation 1831/2003 which eliminated the use of all AGPs as
of January 1, 2006 (17). Although the overall use of antibiotics
has decreased by 55% from 1986 to 1999 in conjunction with
a low prevalence of antimicrobial resistance (20), there is still
concern for the increase in use of therapeutic antibiotics due to
the increase in infections (21).

Current concerns over antibiotic resistance have been backed
by the prevalence of antibiotic resistance stemming from
livestock origin. Poultry have been linked to the resistance
of Campylobacter and Salmonella to multiple antibiotics. For
example, a few years after the introduction of fluoroquinolones
in The Netherlands, there was an increase in fluoroquinolone-
resistant Campylobacter of poultry origin (22). The EU also
experienced gentamicin resistance inCampylobacter from broiler
meat origins that ranged from 0 to 6.3% (23). The US has
seen Campylobacter coli resistance to gentamicin increase from
1% in 2007 to 18% in 2011 from chicken meat isolates and
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an increase from 1 to 6% between 2007 and 2011 from
chicken isolates at slaughter (24). In addition, Salmonella
spp. have been noted to develop a multi-drug resistance to
antibiotics such as tetracyclines, sulfonamides, streptomycin,
kanamycin, chloramphenicol, and some β-lactam antibiotics
(25–27). However, there has been a relatively stable reporting
of resistance among these antibiotics since 1996 (4). The
resistance to other antibiotics has increased relatively, as seen
in amoxicillin/clavulanic acid and ceftiofur, which have been
associated with increases from <2 to 15% from 1998 to 2005,
respectively (28).

Currently, the US poultry industry has initiated phasing out
AGPs partly due to the increase in consumer concern over
the usage of AGPs and the increase in AGP free exportation
requirements. However, numerous growers have observed an
increase in “dysbacteriosis,” a condition in which the small
intestines’ experience bacterial overgrowth (3). The solution
is to find alternatives with similar effects as AGPs such as:
(1) reducing the number of incidences and the amplitude
of subclinical infections; (2) reducing the use of nutrients
by bacteria; (3) improving absorption through the thinning
of the intestinal wall; and (4) by reducing the amount of
“growth-depressing metabolites” produced by Gram-positive
bacteria (3).

ALTERNATIVES TO ANTIBIOTICS:
ORGANIC ACIDS

Several alternatives have been proposed to replace AGPs in
the poultry industry including exogenous enzymes, competitive
exclusion products, prebiotics, probiotics, herbs, essential oils,
acidic compounds, and bacteriophages (3, 29). Currently, the

more common alternatives applied in broiler diets are prebiotics,
probiotics, and organic acids. All are utilized with the ultimate
goal of ameliorating the condition of the poultry GIT by
mitigating the presence of enteric bacteria present in the GIT
and improving the performance of the bird (29). It is of
interest to determine how each alternative product specifically
achieves improvement in bird gut health. Both organic acids
and probiotics appear to have similar mechanistic impacts on
bird health as many probiotics improve the physiology and
anatomical structure of the intestinal cell wall, enhancement
of immunological functions in the GIT, and the increased
resistance to enteropathogenic bacteria activity (3). This occurs
either by direct introduction of organic acids including short
chain fatty acids (SCFA) in the feed or in the case of
probiotic bacteria generating SCFA, hydrogen peroxide, and
intermediary metabolites with antimicrobial activity once they
become established in the GIT (3). Organic acids include not only
SCFAs but also lactic and formic acids as well as longer carbon
chain acids. Prebiotics are also of interest, as they stimulate
the proliferation and maintenance of beneficial bacteria such as
Lactobacillus, which in return increases the production of SCFA
(30). Thus, organic acid, probiotic, and prebiotic supplements are
interlinked because of their role in the production of SCFA and
other fatty acids (31–33).

Organic acids are organic compounds that retain acidic

properties (5). Most organic acids consist of carboxylic acids
(-COOH). Organic acids are primarily composed of SCFAs

(≤C6), also commonly referred to as volatile short-chain fatty

acids (VSCFA), such as fumaric, propionic, acetic, lactic, butyric,
and others. Other organic acids consist of medium-chain fatty
acids (MCFA; C7 to C10), and long-chain fatty acids (LCFA;

≥C11) (Table 1).

TABLE 1 | A list1 and description of straight-chain monocarboxylic acids2,3,4 and their derivatives5.

Acid Chemical name Formula MW pKa

Formic2 Formic Acid HCOOH 46.03 3.75

Acetic2 Acetic Acid CH3COOH 60.05 4.76

Propionic2 2-Propanoic Acid CH3CH2COOH 74.08 4.88

Butyric2 Butanoic Acid CH3CH2CH2COOH 88.11 4.82

Lactic 2-Hydroxypropanoic Acid CH3CH(OH)COOH 90.08 3.83

Sorbic 2,4-Hexandienoic Acid CH3CH:CHCH:CHCOOH 112.14 4.76

Fumaric 2-Butenedioic Acid COOHCH:CHCOOH 116.07 3.02

Caproic2 1-Hexanoic Acid CH3CH2CH2CH2CH2COOH 116.16 4.88

Malic 2-Hydroxybutanedioic Acid COOHCH2CH(OH)COOH 134.09 3.40

Caprylic3 1-Octanoic Acid CH3CH2CH2CH2CH2CH2CH2COOH 144.21 4.89

Tartaric 2,3-Dihydroxy-Butanedioic Acid COOHCH(OH)CH(OH)COOH 150.09 2.93

Capric3 Decanoic Acid CH3(CH2)8COOH 177.26 4.90

Citric 2-Hydroxy-1,2,3-Propanetricarboxylic Acid COOHCH2C(OH)(COOH)CH2COOH 192.14 3.13

Lauric4 Dodecanoic Acid CH3(CH2)10COOH 200.32 5.30

1 Adapted from Dibner and Buttin and Cherrington et al. (6, 34).
2 Classified as a short-chain fatty acid (SCFA; ≤C6).
3 Classified as a medium-chain fatty acid (MCFA; C7-C10).
4 Classified as a long-chain fatty acid (LCFA; ≥C11).
5 Derivatives of saturated straight chain fatty acids: unsaturated (sorbic), hydroxylic (citric, lactic), multicarboxylic (fumaric, malic, tartaric, and citric).
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Due to the lipophilic nature of LCFA, their antimicrobial
properties may be a constituent of their potential to incorporate
themselves into target cell membranes and promote leakage
of cellular protons or ions, such as in Gram-positive bacteria
(35–37). However, it has been demonstrated by Shue and
Freese that the resistance possessed by Gram-negative species
to MCFA and LCFA is in part due to the presence of the
lipopolysaccharide (LPS) layer in the cell wall (38). Thus, LPS
prevents MCFA and LCFA from crossing the cell membrane
and into the cell (34). Further, Gram-negative bacteria, such as
E. coli, possess the ability to assimilate MCFA and LCFA into
the cell and subsequently metabolize them per the β-oxidation
cycle (39).

Alternatively, specific bacterial groups such as Salmonella and
Escherichia coli are capable of utilizing SCFA as energy sources
(39–43), whereas fermentative bacteria produce organic acids
when oxygen is not available (29). More specifically, acetic acid
is a source of carbon and energy for bacteria by activating
enzymes of the glyoxylate pathway, isocitrate lyase, and malate
synthase (39). Furthermore, lactobacilli, streptococci, lactococci,
and enterococci are all capable of fermenting sugars to produce
lactate; however, if sugar is scarce these bacteria are capable of
generating acetate, formate, and ethanol from fermentation to
enhance ATP production (44).

Organic acids were initially added to feed for sanitization
purposes such as to reduce fungal contamination in feed and
as a preventative against salmonellosis in poultry (45–47).
However, in the past 30 years, formic and propionic acid have
been examined for bactericidal activity, in vivo, of poultry
(48). Organic acids utilized in feed are not only capable of
decontaminating feed but have the potential to reduce enteric
bacteria internally in poultry.

Weak organic acids (C1-C7) with a pKa between 3 and 5
are explicitly used for their antimicrobial activity (5). There
are two major types of organic acids (Table 2). The first group
(lactic, fumaric, citric) are capable of generally lowering the pH
of the stomach, thus reducing the acid sensitive bacteria present
indirectly. The second group (butyric, formic, acetic, propionic,
and sorbic) lower the pH in the GIT by directly acting upon
the cell wall of Gram-negative bacteria (5, 49). Organic acids
ameliorate the conditions of the GIT through the reduction of
GIT pH, promoting proteolytic enzyme activity and nutrient
digestibility, intensifying pancreatic secretions, encouraging
digestive enzyme activity, creating stability of the microbial
population and stimulating the growth of beneficial bacteria, and
by being bacteriostatic and bactericidal to pathogenic bacteria
(5). With the need to find a suitable alternative to AGPs, a
wide range organic acids have been utilized in poultry diets
for the potential to mitigate pathogen prevalence in the GIT of
poultry.

ORGANIC ACIDS AS FEED ADDITIVES

As previously mentioned, organic acids can benefit poultry
internally by their ability to lower the pH of the gastrointestinal
tract. It has been found that organic acids such as fumaric,

TABLE 2 | Two different mechanisms of organic acids on altering the pH of the

gastrointestinal tract (GIT) and its subsequent effect on pathogens.

Acids Effect

Lactic, fumaric,

citric

Indirectly mitigating or eliminating pathogens by

decreasing the environmental pH in the GIT1.

Butyric, formic,

acetic, propionic,

and sorbic

Directly mitigating or eliminating pathogens by acting

upon the cell wall of Gram-negative bacteria and

subsequently lowering the pH in the GIT1.

1Adapted from Papatisiros et al. and Diener et al. (5, 49).

propionic, lactic, and sorbic acid have the ability to reduce the
colonization of pathogenic bacteria and the production of toxic
metabolites through acidification of the diet (50). Although the
crop and gizzard are the locations in which propionic and formic
acid are confined to, the crop is one of the initial locations for
Salmonella establishment that can lead to subsequent infection of
the bird (51). It has also been demonstrated that most Salmonella
spp. are killed when the pH value is the equivalent to that
of the crop and proventriculus, in vitro (52). In addition, the
vertical transmission and initial colonization of chicks with
Salmonella can be reduced through the dietary inclusion of
organic acids (53). Although organic acids can indirectly have
an impact on pathogenic bacteria by lowering the pH of the
GIT, they can also elicit non-pH direct toxic effects on bacterial
metabolism.

Although the most noted benefit of organic acids is its ability
to lower the pH of the GIT, organic acids can also prevent
pathogen livability on the cellular level. Organic acids possess
the ability to target the cell wall, cytoplasmic membrane, and
particular functions of metabolism in the cytoplasm associated
with replication, protein synthesis, and function (48, 54). VSCFA,
consisting of weak organic acids that are bacteriostatic without
affecting intestinal microbiota, are not regarded as acidifiers
as their mode of action is to directly diffuse across the
cell membrane of bacteria in the undissociated form without
lowering the bowel pH (55). VSCFA, once diffused across the
bacterial cytoplasm, lower the internal pH of the bacteria (55).

The specific effectiveness of a particular organic acid relies
heavily on several factors such as: type and acidity of the SCFA,
inclusion rate of acids, diet composition and buffering within the
diet, level of “intraluminal production of acids” by lactic acid
producing bacteria (LAB) in GIT, feed palpability, receptor on
the epithelial villi for bacterial colonization, vaccinate immunity,
welfare, and age (5).

Some concerns for the use of organic acids include their
inability to affect the lower part of the GIT, bacteria’s ability
to create a resistance against organic acids, and their hindering
effect on host beneficial bacteria such as LAB. Much of their
bacterial impact is related to their effective concentration present
in different compartments of the GIT. For example, Thompson
and Hinton noted that as SCFAs move along the digestive tract,
their concentration decreases due to digestion and metabolism
(51). It has also been reported by Hume et al. that most of the
propionic acid that was in the treated feed did not get past the
crop, proventriculus, and gizzard and thus never reached the
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small intestines (48, 56). Most organic acids will dissociate before
reaching the lower GIT and thus having little to no effect on
the GIT (56). Although it was stated earlier the initial site of
Salmonella colonization is the crop, it is important for organic
acids to enter the lower GIT, as the ileum and ceca are also
considered primary sites of infection. Furthermore, it is unlikely
for organic acids to prevent a large infectious dose of Salmonella
from getting past the crop (51).

To combat the potential decrease in effective concentrations
of organic acids as they traverse the GIT, encapsulation of
organic acids offers the potential to not only protect them but
control their subsequent release as they pass through the poultry
GIT. It has been demonstrated that the dietary inclusion of
encapsulated butyric acid has the capability to improve digestion
and absorption (57), reduce the infection of S. Enteritidis
throughout the GIT (55) and reduce stress-induced catabolism
and oxidative injury of tissues (58) of broilers.

ORGANIC ACIDS PRODUCED BY
INTRODUCTION OF PROBIOTICS AND
PREBIOTICS TO THE GIT

Although SCFA can be experimentally provided as feed additives
in poultry diets, they are also naturally produced by the GIT,
and their relative concentrations and types can be altered. In
chickens, ruminants, and humans the production of SCFA in
the GIT has been reported as high as 190mM (59–62). Research
has demonstrated that both probiotic and prebiotics stimulate
the production of SCFAs in the GIT of poultry (3, 63–66) either
through the direct production of SCFA by lactic acid producing
bacteria (LAB), a type of probiotic, or through the administration
of prebiotic substances which increase the presence of LAB and
their production of SCFA (67, 68). Thus, probiotic and prebiotic
supplementation can enhance SCFA production and, in turn,
their impact on the avian microbiome. The following subsection
provides discussion of specific studies that illustrate this impact.

Probiotics and Their Influence on SCFA
Production
Lilley and Stillwell originally conceived the term probiotics as
“a substance produced by one microorganism which stimulated
the growth of another” in 1965, well after the discovery of
antibiotics (69). Although the term was not coined until after
the discovery of antibiotics, probiotics had been around since
the early Twentieth century (70). Over time as more knowledge
was obtained on the nature of what represented a true probiotic
culture, the definition started to change to define their usefulness
and application better. In 1989, the definition was modified
to a “live microbial feed supplement which beneficially affects
the host animal by improving its intestinal microbial balance”
by Fuller (70). Three years later in 1992, Havenaar and Huis
in’t Veld extended the definition to “a mono or mixed culture
of live microorganisms which, applied to animal or man,
affect the host beneficially by improving the properties of the
indigenous microflora” (70, 71). The definition of probiotics has
now been established by Fuller as “a preparation consisting of

live microorganisms or microbial stimulants which affects the
indigenous microflora of the recipient animal, plant or food in
a beneficial way” (70).

Microorganisms that have been considered as probiotics
include: lactic acid producing bacteria, avirulent mutants of E.
coli, Clostridium difficile, S. Typhimurium, yeasts, fungi, viruses,
and bacteriophages (70). Current research using probiotic
bacteria include: Bifidobacterium, Lactobacillus, Bacillus,
Enterococcus, Streptococcus, Pediococcus, and Saccharomyces (5).
Probiotics serve to protect the GIT microbiota through bacterial
antagonism, bacterial interference, barrier effect, competitive
exclusion, and colonization resistance (70).

The most common probiotic spp. utilized in poultry diets
are from the genera Lactobacillus, Enterococcus, Pediococcus,
and Bacillus; however, extensive research has been conducted
on Lactobacillus species (63, 72, 73). Further, various probiotic
spp, differ in their ability to colonize the GIT of animals.
Those that are considered colonizing species are Lactobacillus
and Enterococcus spp., while Bacillus spp. and Saccharomyces
cerevisiae are free-flowing and do not colonize the GIT (3). As
stated earlier, the benefits of probiotic supplementation include:
onset of changes of the physiology and anatomical structure of
the intestinal cell wall; enhancement of immunological functions
in the GIT; and the enhanced resistance to enteropathogenic
bacteria (3). These actions are typically accomplished via
coupling with the production of SCFA, hydrogen peroxide, and
intermediary metabolites with antimicrobial activity (3).

Probably the best-characterized group of probiotics are lactic
acid producing bacteria (LAB), such as Lactobacillus. LAB
generate lactic acid in vitro and the lactic acid produced is
utilized for the production of butyric acid by Clostridial clusters,
which supports the concept of cross-feeding (3). Lactobacillus
spp. have been found to reduce pathogenic attachment to the
ileal epithelial cells through exclusion and competition (72).
Lactobacillus also elicits antibacterial effects by producing lactic
acid (63). Lactic acid, an organic acid, can lower the GIT pH, thus
creating a hostile environment for resident pathogenic bacteria.
Lactobacillus acidophilus is found to be the most sufficient
candidate as a dietary appurtenance (71). L. acidophilus has the
potential to decrease the external pH to lower values than other
lactic acid producing bacteria and can reach a medium pH of 3.5
(64). Thus, Lactobacillus spp. are considered excellent candidates
as AGP alternatives.

Prebiotics Influence on SCFA Production
Prebiotics have also been considered as valid AGP alternatives
(74). Prebiotics are described as beneficial non-digestible feed
ingredients that when fed selectively enhance populations
of bacteria in the GIT (59). More recently, prebiotics have
been described as “a substrate that is selectively utilized by
host microorganisms conferring a health benefit” (75). Thus,
prebiotics influence the GIT by acting as substrates for beneficial
bacteria. Prebiotics include non-digestible carbohydrates such
as oligosaccharides and polysaccharides, particular peptides,
proteins, and specific lipids (76). Poultry research investigating
the application of prebiotics as antibiotic alternatives typically
revolves around the administration of oligosaccharides which
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include mannanoligosaccharides (MOS) galactooligosaccharides
(GOS), and fructooligosaccharides (FOS) (32, 33, 75, 77–79).

The dietary inclusion of prebiotics has been demonstrated
to influence the microbial profiles of the avian GIT. Kim et
al., reported the increased concentration of lactobacilli at the
the ileal cecal junction of 4 week old broiler chickens fed
diets containing 0.25% FOS and 0.25% MOS and a decrease
in the populations of Clostridium perfringens in birds fed diets
containing 0.25% FOS, 0.05% MOS, and avilamycin (80). The
dietary inclusion of MOS (5 g/kg) and FOS (5 g/kg) have also
been shown to change the jejunal, ileal, and cecal Lactobacillus
community profiles of 25 d Cobb 500 broilers, with differences in
Lactobacillus communities being noted between MOS and FOS
treated broilers (81). Although research has demonstrated the
effect prebiotics have on bacteria, performance has been shown to
not be improved by the dietary inclusion of MOS or FOS (80, 81).
In contrast, the addition of Bio-Plus 2B R© into diets of Ross 308
broilers improved the feed conversion ratio (FCR) throughout
the entirety of the study (42 d) compared to those fed control
diets (82).

In addition, the dietary supplementation of prebiotics has
demonstrated the enhanced production of organic acids in the
GIT. The dietary inclusion of FOS has demonstrated the ability to
increase populations of Bifidobacterium and Lactobacillus in the
intestinal and cecal digesta of 49 d old male Avian Farms broilers
(83). Thus, the increase of LAB species such as Lactobacillus
and Bifidobacterium may enhance the production of SCFA in
the GIT. Furthermore, Lactobacillus rhamnosus, Lactobacillus
acidophilus, Bifidobacterium longum, and Bifidobacterium bifidus
in the presence of millet dietary fibers have exhibited the ability
to produce SCFAs such as acetate, propionate, and butyrate, in
vitro, with the production of acetate being most significant (84).
A study investigating the inclusion of inulin (1%)in the diets of
42 d old Cobb 500 broilers reported the increased concentration
of acetate in the jejunum and an increase in the proportions
of n-butyrate and n-valerate in the cecal digesta in broilers fed
diets containing inulin compared to those fed control diets (85).
In short, the dietary supplementation of prebiotics appears to
contribute to the increased production of SCFA in situ.

MECHANISMS OF ORGANIC ACIDS VS.
LACTIC ACID PRODUCING BACTERIA

Research has demonstrated that both organic acids and LAB
have the capability to improve broiler performance and reduce
pathogenic bacteria (86–90). Since the modes of action for both
organic acid supplements and LAB involve the lowering of the
pH of the GIT, many of their benefits appear to be similar.
However, LAB and organic acids should also still be considered
in some respects considerably different in their effectiveness,
mechanisms, and interaction with one another.

Although LAB do not directly destroy enteric bacteria,
LAB are able to inhibit colonization and further growth
and establishment of pathogenic bacteria. Furthermore, LAB
byproducts beyond SCFAs, such as hydrogen peroxides, and
intermediary metabolites also contribute to the reduction of

pathogens present in the GIT. In fact, research has demonstrated
when S. Enteritidis at 106 CFU and L. salvarius at 108 CFU were
gavaged orally and simultaneously into the proventriculus of 1-
day old broiler chicks, at 21 days of age all birds were negative for
Salmonella (91). It has been noted that SCFAs when interacting
with Gram-negative bacteria are not only bacteriostatic but can
also be bactericidal (51). Furthermore, organic acids such as
SCFAs are produced in millimolar concentrations in the GIT
of animals due to the prevalence of anaerobic bacteria. Organic
acids, being SCFA, also possess the ability to lower the pH of
the GIT and improve broiler performance similar to LAB. Thus,
previous research has seen both methods to be beneficial in the
reduction of pathogenic bacteria (86–90).

Another challenge of using organic acids as an alternative
to AGP is the resistance bacteria can develop to stressful
environments. It has been reported that E. coli and Salmonella
can elicit a tolerance to environments that induce stress such as
an acidic environment created by the use of organic acids (48). In
addition, Diez-Gonzalez and Russell have reported the increased
resistance to extreme acidic conditions of E. coli O157:H7 after
exposure to SCFAs (92). Likewise, Conner and Kotrola previously
observed that E. coli exhibited the ability to live in acidic
condition (pH ≥ 4.0) below 4.0◦C and for up to 56 d, however,
the temperature and type of acidifier affect their survival (93). In
addition, pH-independent tolerance is also possible. For example,
Kwon and Ricke reported the increased acid resistance displayed
by S. Typhimurium occurred after exposure to a single SCFA at
high concentration but neutral pH (94). Furthermore, it has been
reported that the proportions of SCFAs within the large intestines
can influence the cross-resistance of S. Typhimurium 14028s to
other stressors such as an extreme pH (pH 3.0), 2.5M NaCl, and
20mMH2O2 (95).

Not only can bacteria build a resistance to organic acids,
but pathogenic bacteria can also lower their internal pH to
protect themselves from the acidic properties of organic acids,
thus rendering them ineffective in being bactericidal against
pathogenic bacteria (48). Furthermore, fermentative bacteria
have the ability to lower their intracellular pH in the event that the
extracellular pH becomes highly acidic. If the intracellular pH is
lowered, the bacterium has amuch smaller pH gradient across the
cell membrane and will be protected from anion accumulation
(53).

The most significant challenge to organic acid feed additive
use is their potentially detrimental effect on LAB. In previous
research, the use of organic acids in the diet reduced not only
the amount of lactic acid but the LAB present in the GIT. As
early as 1989, Impey and Mead reported that adding 1.0% formic
acid into a food slurry containing Salmonella and Lactobacilli,
not only killed Salmonella but Lactobacilli as well (pH < 4.0;
37◦C) (96). It was also observed by Hume et al. that organic
acids reduced LAB (56). The finding by Hume et al. is consistent
with the conclusion by Thompson and Hinton that LAB were
reduced by the inclusion of organic acids (51, 56). In one of the
studies conducted by Thompson and Hinton, 68% formic acid
and 20% propionic acid product, was added to a poultry diet and
resulted in an increase of propionic and formic acid, as well a
decrease in lactic acid in the crop (51). This interaction suggests
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that propionic and formic acid inhibit LAB and thus reduced
lactic acid. Consequently, SCFAmay be counterproductive to the
overall development of microbiota in the GIT of broiler chickens.

Poultry are born without an established microbiota in
their GIT (97) and are removed from maternal care to be
incubated in a controlled environment. Thus, poultry housed
in modern production facilities have difficulty in establishing
beneficial microbiota associated with a mature GIT microbiota
(70). This corresponds with research where intestinal infections
affect germ-free animals more than those with an established
microbiota (98, 99). Probiotics have been especially important
in improving the microbiota composition of poultry, as well as
protecting poultry from intestinal infections and are recognized
as an alternative to AGPs. If the use of organic acids in poultry
reduces the concentration of LAB present in the GIT, it could
increase the chance of Salmonella colonizing the GIT. This
especially could occur as organic acids are limited to the crop
and may not be able to handle a high inclusion of Salmonella
(51). Probiotics (LAB) serve to protect the GIT microbiota
through bacterial antagonism, bacterial interference, barrier
effect, competitive exclusion, and colonization resistance (70).
LAB are not only beneficial in protecting the bird from pathogens
but also provides the bird with physical enhancements to the GIT.
These enhancements include strengthening the gut wall integrity,
enhance anti-inflammatory response, and correct dysbacteriosis
(29).With all of the benefits that LAB provide to poultry, it is vital
to ensure their survival and utilization in poultry.

As both organic acids and LAB are potential alternatives
to AGPs, it is imperative to understand the specific effect
attributable to each method that can be associated with bird
performance and welfare, as well as the interactions they have on
one another within the bird GIT.

SCFA AND POTENTIAL APPLICATION OF
AVIAN MICROBIOME RESEARCH
TECHNOLOGIES

Due to current poultry industry practices, prior to hatch, the
GIT of chicks are presumed relatively sterile (100). However,
immediately after hatch, the chick’s microbiome begins to
develop as the colonization of the GIT occurs until a diverse and
dynamic microbiome is established (101). Previously, research
has indicated that on day 0 (post-hatch) of age the cecal
microbiome of broilers consists of 50 genera, whereas, by 42 days
of age the cecal diversity is increased to over 200 genera (102).
Additionally, shortly after post-hatch, the chick’s nutrient source
is shifted from the yolk to the carbohydrate- and protein-based
diet (103, 104). The shift in the nutrient source is accompanied by
the rapid development on the GIT and associated organs which
can be directly affected by the gut microbiome (105, 106) Thus, it
is imperative to alter the GITmicrobiome at an earlier age, before
what would be considered the adult diverse microbiome becomes
stabilized.

Currently, the application of next-generation sequencing
technologies to delineate the gut microbiome of poultry is
becoming more routine and this, in turn, has resulted in

TABLE 3 | Predominant phyla and bacterial population in the chicken

gastrointestinal tract1.

Gastrointestinal

segment

Phylum Genus

Crop Firmicutes Lactobacillus

Actinobacteria Bifidobacterium

Proteobacteria Enterobacter

Proventriculus Firmicutes Acetanaerobacterium, Clostridium,

Faecalibacterium, Lactobacillus,

Megamonas, Peptococcus,

Pseudobutyrivibrio, Ruminococcus,

Sporobacter, Subdoligranulum

Fungi Candida

Ventriculus Firmicutes Lactobacillus, Enterococcus

Small Intestine Firmicutes Candidatus Arthromitus, Clostridium,

Lactobacillus, Ruminococcus

Proteobacteria Enterococcus, Escherichia

Ceca2 Bacteroidetes Bacteroides

Proteobacteria Bilophila, Escherichia

Archea Methanobrevibacter, Methanobacterium,

Methanococcus, Methanopyrus,

Methanosphaera,Methanothermobacter,

Methanothermus,

Large Intestines Fimicutes Lactobacillus

Proteobacteria Escherichia, others

1 Data was adapted from Qu et al. (107), Saengkerdsub et al. (108, 109), Gong et al.

(110), and Yeoman et al. (111).
2 Taxa of the ceca was constricted to the most pertinent phyla and genera although many

more have been described.

an enhanced understanding of how bacteria of the GIT may
influence the development and performance of poultry. The
prominent phylum in the crop, gizzard, small intestines, and
ceca is the bacterial phylum Firmicutes [Table 3; (107, 112,
113)]. The proportion of Firmicutes, primarily Lactobacilli,
has been reported to be >90% in the GIT (112, 114). Thus,
the microbiome of the small intestines consists mainly of
Lactobacillus, Enterococcus, and Clostridiaceae species (97, 112,
115–118). However, the greatest diversity and quantity of bacteria
is located within the ceca, where microbial fermentation is also
the most active (112). The ceca are characterized by possessing
a high proportion of Firmicutes, 50–90% of all taxa (107, 113).
The predominant phyla in the ceca have been reported as
Bacteroidetes (23–46 %), Proteobacteria (1–16 %), and Archaea
(0.81 %) (107–110).

The GIT microbiome has a fundamental role in the
production of SCFA (119). The ceca, especially, generate SCFA
through various fermentation pathways and may recover up to
10% of energy available in the diet (120, 121). In the ceca, a vast
majority of the Families within the phylum Firmicutes belongs
are members of the Clostridiales, a significant component of
SCFA metabolism (107, 122). In the ceca, SCFA production
is derived from the hydrolysis and fermentation of non-starch
polysaccharides [NSP; (123)].

The bacterial fermentation of NSPs in the ceca has been
reported to consist primarily of acetic acid, propionic acid,
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and butyric acid (124). Sergeant et al. identified fermentation
pathways encoded in the cecal metagenome that are responsible
for the production of acetate, propionate, and butyrate (125).
The authors identified gene clusters, encoding enzymes
methylmalonyl-CoA epimerase and methylmalonyl-CoA
decarboxylase, from Bacteroidetes and Firmicutes to be
involved in the production of propionate in the chicken ceca
(125). Further, Sergeant et al. speculated the involvement of
Megamonas and Dialister in a novel propionate fermentation
pathway (125). The butyrate fermentation pathway is encoded
in the BCD/ETF complex and phosphotransbutylase/butyrate
kinase genes of butyrate-producing bacteria and sequences are
reported to be from Bacteroidetes (125).

There is limited research investigating the effect organic
acids have on the GIT microbiome of poultry. Early
research demonstrated the negative correlation between
Enterobacteriaceae and organic acids such as acetate, butyrate,
and propionate in the ceca of broilers (126). More recently,
Oakley et al. supplied organic acids as a dietary feed additive
(propionic acid and MCFA), in the water supply (formic acid,
propionic acid, ammonium formate, MCFAs, an emulsifier, and,
propylene glycol), or a combination of the two and examined
the subsequent change in the cecal microbiome of Ross × Cobb
male broilers over a 42-d period (102). Oakley et al. reported that
treatment had little to no effect on the cecal microbiome (102).
Instead, the authors demonstrated that the drastic changes in
the cecal microbiome occurred as a function of bird age (102)
which agrees with the increase in cecal microbiome diversity
with age observed by others (127–130). Furthermore, Oakley
et al. identified the cecal microbiota to primarily consist of
Flavonifractor, Pseudoflavonifractor, and Lachnospiracea on
d 7, Faecalibacterium (23–55 % of sequences) on d 21, and
Faecalibacterium and Roseburia on d 42 (102). Also, on d 42,
Lachnospiracea incertae sedis and Oscillibacter were recorded as
being abundant (102). Some members of Lachnospiracea incertae
sedis and Oscillibacter have been identified as SCFA producers
(131, 132). In another study, the dietary supplementation of
a microencapsulated feed additive consisting of a phenolic
essential oil, thymol, and an organic acid, sorbic acid, resulted
in the decrease of Campylobacter jejuni and a reduction in the
abundance of Streptococcus in Ross 308 broilers inoculated with
104 CFU of C. jejuni (A2008a and G2008b) (133).

Although the microbial diversity in the ceca increases with age
(102, 127–130), it has been demonstrated that organic acids reach
their highest concentrations in the GIT of broilers on d 15 (126).
As mentioned previously, SCFA production can be enhanced
with the dietary supplementation of prebiotics (83–85). The
increase in SCFA production is a consequence of the increased
colonization of LAB species within the GIT. Birds fed diets
containing FOS have been reported to alter the microbiome by
enhancing the production of Bifidobacterium and Lactobacillus
which in return enhance digestive enzyme activity and suppress
pathogens such as E. coli (83). Therefore, by increasing the
population of LAB or by supplementing diets with SCFA, the
concentration of SCFA in the GIT may be enhanced beyond the
peak experienced on day 15.

Future studies should be aimed at evaluating the potential
of novel feed additives, organic acids, probiotics, prebiotics,
on their potential to change the concentration of specific
microbiome populations that may enhance or hinder the
performance of poultry. More specifically, studies should focus
on the change of Enterobacteriaceae. A negative correlation
between the concentration of SCFAs such as acetate, propionate,
and butyrate and the concentration of Enterobacteriaceae has
been observed in the ceca of broilers (133). Furthermore, the
ratio of Firmicutes to Bacteroides has been identified as a
potentially significant index due to its possible correlation with
performance. In mice, it has been reported that an increase
in Bacteroidetes has been linked to a decrease in nutrient
absorption, while the increase in Firmicutes has resulted in
an increase in nutrient absorption (134). Another population
for monitoring is Lactobacillus spp. as their presence in
the lower small intestines has been associated with reduced
performance (135).

CONCLUSIONS

As the poultry industry is faced with increased demand for
ABF, an alternative to antibiotics needs to be identified that
enhances the GIT microbiome of poultry. It is also crucial
that this alternative is easily integrated into nutrition, genetics,
housing, and veterinarian care for future application. Thus,
it is imperative for research to be conducted to determine
the most effective method in reducing pathogenic bacteria in
the gut, improving broiler performance, and improving gut
morphology. To accomplish this will require the application of
methodologies that increase the understanding of the avian GIT
microbiota. Indeed, the availability of microbiome sequencing
offers opportunities to characterize the poultry GIT microbial
community in response to organic acids. However, it will
be essential to profile GIT populations along the entire GIT
from crop to ceca to get a better understanding of where
organic acids are eliciting their effects and how this influences
bird performance and control of pathogen colonization in the
GIT. Once more becomes understood, it should be possible
to develop more precisely targeted strategies for employing
organic acids as feed additives and eventually optimizing
multiple hurdle combinations of probiotics and organic acid
combinations.
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