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Abstract
Pediatric leukemia represents a heterogeneous group of diseases
characterized by germline and somatic mutations that manifest within the
context of disturbances in the epigenetic machinery and genetic regulation.
Advances in genomic medicine have allowed finer resolution of genetic and
epigenetic strategies that can be effectively used to risk-stratify patients and
identify novel targets for therapy. This review discusses the genetic and
epigenetic mechanisms of leukemogenesis, particularly as it relates to
acute lymphocytic leukemias, the mechanisms of epigenetic control of
leukemogenesis, namely DNA methylation, histone modifications,
microRNAs, and LINE-1 retroelements, and highlights opportunities for
precision medicine therapeutics in further guiding disease management.
Future efforts to broaden the integration of advances in genomic and
epigenomic science into the practice of pediatric oncology will not only
identify novel therapeutic strategies to improve clinical outcomes but also
improve the quality of life for this unique patient population. Recent findings
in precision therapeutics of acute lymphocytic leukemias over the past three
years, along with some provocative areas of epigenetics research, are
reviewed here.
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Impact statement
Despite major advances in the treatment of pediatric leukemias,  
the etiology of pediatric leukemia remains largely unknown.  
Recent advances in molecular genetics and genomic medicine are 
discussed here that exemplify progress in the molecular classifica-
tion of this group of diseases, the genetic and epigenetic strategies 
to risk-stratify patients, and the optimization of precision thera-
pies to target initiator lesions and biochemical pathways involved 
in leukemogenesis. Although significant advances have been 
made, much work remains to be done to fully realize the power of  
precision approaches and therapeutics in the treatment of pediatric 
leukemias.

Pediatric leukemias
Pediatric leukemias result from germline and somatic mutations 
that act in concert with disturbances of the epigenetic machinery  
to give rise to altered phenotypes. Despite the large variety of  
mutations characterized to date and evidence pointing to the  
involvement of immune system defects in the context of envi-
ronmental exposures1, the exact etiology of pediatric leukemia  
remains largely unknown. Advances in molecular genetics and 
genomic medicine now allow a more precise and comprehensive  
classification of this group of diseases, finer resolution of  
genetic and epigenetic strategies to risk-stratify patients, and  
optimization of precision therapies to target the initiator lesions 
and biochemical pathways involved in leukemogenesis. Given  
that acute lymphoblastic leukemia (ALL) is the most common  
pediatric malignancy2, this review will focus on ALL unless  
otherwise noted.

Genomic profiling of ALL samples has identified a constellation  
of structural rearrangements, submicroscopic DNA copy number 
alterations, and sequence mutations3, and a large degree of  
heterogeneity in molecular deficits is associated with ALL at diag-
nosis and relapse. For example, the acquisition of additional high-
risk genetic mutations across all genetic subtypes in relapsed ALL 
clearly differentiates genetic profiles relative to time of original  
diagnosis4. Nearly 20% of relapsed ALL specimens contain 
mutations in CREB-binding protein (CREBBP), a genetic deficit  
associated with changes in histone acetylation/deacetylation5,  
and cases of relapsed ALL have also been associated with  
mutations in KRAS, 5′-nucleotidase, cytosolic II (NT5C2),  
phoshoribosyl pyrophosphate synthetase 1 (PRPS1), NRAS,  
fms-related tyrosine kinase 3 (FLT3) receptor, and PTPN116–9.  
This genomic heterogeneity emphasizes the importance of genetic  
and epigenetic interactions as key determinants of clinical  
presentation and progression of ALL phenotypes.

Genetic and epigenetic mechanisms of leukemogenesis
Chromosomal rearrangements create fusion gene products, and the 
expression of these gene products in combination with age, white 
blood cell count, the presence or absence of central nervous system 
or testicular disease (or both) at time of diagnosis, and minimal 
residual disease status is the basis for prognosis prediction and 
disease management5. Sentinel chromosomal translocations occur 
in nearly all cases of childhood B-cell ALL and many of these 
represent initiating events of prognostic significance; however, a 
major diagnostic challenge is that some of these genetic changes 
are not readily detectable by cytogenetic analysis of metaphase  

chromosomes and require reverse transcription–polymerase  
chain reaction (RT-PCR) amplification or fluorescence in situ  
hybridization (FISH) for accurate detection10. In some instances, 
BCR-ABL mutations, IKZF1 (also known as Ikaros) deletions, 
fusions of tyrosine kinase or CRLF1, and mutations of JAK1 and 
JAK2 are being tested in clinical trial settings. The availability  
of next-generation sequencing-based gene panels to evalu-
ate pediatric cancers in the future may help to advance current  
standards of clinical practice (https://www.businesswire.com/ 
news/home/20160218006343/en/Children).

ETV6-RUNX1 rearrangements are of particular interest given 
their involvement in 25% of standard-risk childhood B-cell ALL10. 
Interestingly, ETV6-RUNX1 mutations can be detected in sam-
ples from patients who do not go on to develop ALL, suggesting 
that this translocation functions in the context of additional muta-
tions to become pathogenic11. Rearrangements of KMT2A (also 
known as mixed lineage leukemia 1, or MLL1) are also of interest  
given that over 100 fusion partners have been identified which  
combine sequence alterations with loss of epigenetic control  
through disruption of lysine methyltransferase activity12,13.  
KMT2A rearrangements occur in about 75% of infants with B-cell 
ALL, especially those less than six months of age, and in 2% of 
older children, adolescents, and adults with ALL13. Additionally, 
FLT3 is commonly overexpressed in infant patients with KMT2A 
rearrangements14, but the use of FLT3 inhibitors has not resulted  
in advantageous clinical outcomes15. Thus, current efforts are 
focused on drug candidates targeting histone deacetylases  
(HDACs) or methyltransferases as possible therapeutic agents 
(ClinicalTrials.gov Identifiers: NCT02141828, NCT01483690, 
NCT01321346, and NCT02828358)10.

The BCR-ABL1 rearrangement resulting from the t(9;22) 
(q34;q11.2) fusion (that is, Philadelphia chromosome) is present 
in nearly all chronic myelocytic leukemia cases as well as a subset  
of patients with ALL (3 to 5% of childhood B-cell ALL)10. Ph+  
ALL cases oftentimes carry deletions in IKZF1 and PAX5  
(also known as paired box 5) transcription factors, both of which  
are involved in the regulation of B-cell development16. Studies to  
evaluate the efficacy of imatinib—an ABL tyrosine kinase  
inhibitor (TKI)—in combination with intensive chemotherapy in  
children with Ph+ ALL have reported dramatic improvements in  
overall survival17–19. However, because long-term imatinib therapy 
can result in ABL tyrosine kinase domain point mutations that 
afford decreased TKI sensitivity, additional research into effective  
combination therapies that can specifically target molecular  
deficits is needed20,21.

A BCR-ABL1–like ALL has also been described with activated 
kinase expression profiles that closely resemble Ph+ ALL but 
that also involve unregulated activation of cytokine signaling  
pathways and mutation of B cell–associated transcription  
factors16,22,23. Translocation of “Abelson kinase (ABL) class”  
genes such as ABL1, ABL2, colony-stimulating factor 1 receptor  
(CSF1R), and platelet-derived growth factor receptor beta (PDG-
FRB) results in fusion proteins that activate receptor tyrosine  
kinase or non-receptor tyrosine kinase signaling23. A very high  
frequency of IKZF1 deletions, fusions of tyrosine kinase genes, 
fusions of CRLF2, and mutations of JAK1 and JAK2 have been 
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detected in patients with Ph-like ALL16,23. High-risk B-ALL patients 
who are Ph-like have a predicted five-year event-free survival of 
less than 60%24. Since tyrosine kinase fusion partners, including  
ABL1, ABL2, CSF1R, PDGFRB, and FGFR, respond well to 
the addition of TKIs23, introducing TKI therapy after induction  
chemotherapy may improve survival in patients with Ph-like ALL. 
The safety and efficacy of dasatinib in combination with standard 
conventional chemotherapy in treating Ph-like ALL in children  
are currently being tested in a Children’s Oncology Group  
clinical trial (ClinicalTrials.gov Identifier: NCT02883049).

Although genetic and epigenetic profiling data on T-cell ALL 
are not as abundant as what has been published on B-cell ALL,  
Furness et al. recently demonstrated interesting findings in regard 
to the evolution of genetic alterations in STIL-TAL1 + T-cell  
ALL25. Using single-cell multicolor FISH, Furness et al. found  
that both STIL-TAL1 fusion and loss of both CDKN2A alleles  
were present in the earliest detectable leukemic subclones but  
that other alterations such as NOTCH1 and PTEN mutations 
appeared to be secondary events. These findings are of signifi-
cance given that (1) these mutational events can serve as potential  
markers for minimal residual disease monitoring and (2) the 
TAL1 regulatory complex could be a future target for therapy25. 
Further studies are needed to examine the genetic and epigenetic  
complexity that exists among T-cell ALL subtypes.

Molecular mechanisms of epigenetic control in 
leukemogenesis
Many of the chromosomal rearrangements that alter cellular  
differentiation and result in leukemogenesis do so by interfering  
with epigenetic mechanisms or the epigenetic machinery or 
both26,27. As such, a brief discussion of the molecular deficits in  
epigenetic control within the context of leukemogenesis is  
warranted. Epigenetic mechanisms encompass a repertoire of  
heritable alterations in gene expression that occur in the absence 
of changes to the DNA sequence. In the case of leukemias,  
epigenetics carries added significance given that B- and T-cell 
maturation is associated with changes in DNA structure that 
allow these cells to differentially recognize molecules and that, by  
necessity, will require further fine-tuning through the epigenetic 
machinery. Transient changes in the epigenetic machinery, as seen 
upon binding of transcription factors to DNA or the reversible 
acetylation of histones to mediate chromatin unwinding, are not 
heritable. Instead, epigenetics is concerned mainly with covalent 
DNA and histone modifications that are replicated in daughter cells 
upon cell division. The placement, removal, and interpretation of 
these marks are denoted in the literature as writers, erasers, and 
readers, respectively, to identify the complex set of enzymes that 
catalyze these reactions.

DNA methylation
DNA methylation is a pivotal component of cellular differentiation,  
gene expression, and genome-wide maintenance and stability  
and is currently recognized as the most prevalent epigenetic  
modification in the development of ALL. Methylation within the 
5′–3′ cytosine guanine (CpG) dinucleotide sequence has been 
most studied, particularly in regions of the genome having a GC 
content greater than 50% and thus referred to as CpG islands28,29. 
These islands are generally found in the 5′ region of genes and 

are specifically involved in regulation of gene expression. DNA  
methyltransferases (DNMTs) (1, 2, 3a, and 3b) are the enzymes 
responsible for the transfer of methyl groups and are known to  
play important roles in the development and progression of cell 
division.

Both targeted and genome-wide alterations in DNA methylation 
can play key etiological roles in pediatric leukemias28,30. Initial  
studies have suggested that aberrant promotor methylation 
is associated with prognosis31, cytogenetic alterations32 and  
subtypes33, and likelihood of relapse34. Subsequent studies have 
identified hypermethylated CpG islands across various genetic and 
immunophenotypic leukemia subtypes, suggesting that deficits 
in DNA methylation are key to malignant transformation across  
multiple ALL subtypes34–38. Others have presented data suggest-
ing that bidirectional allele-specific gene expression may be due to  
random distribution of CpG methylation39. A caveat of these  
studies is the small number of patients examined, thus limiting the 
clinical generalizability of these findings.

Analysis of 137 B-cell lineage and 30 T-cell lineage childhood  
ALL samples using microarrays and genome-wide cytosine  
methylation profiling has shown that different ALL subtypes 
exhibit unique DNA methylation signatures that correlate with 
gene expression patterns39. Importantly, a common epigenetic 
methylation signature involving signaling molecules (TIE1, MOS, 
CAMLG, and GPRC5C), cell cycle regulation and proliferation 
(MCTS1 and DGKG), RNA metabolism (PABPN1 and PABPC5), 
transcription factors and transcription regulators (PROP1, 
TAF3, H2AFY2, ELF5, ZBTB16, CNOT1, and TADA2A), and  
homeobox genes (HOXA5 and HOXA6) was identified in all  
cases of ALL examined39. This analysis compared all leukemia 
samples against a cohort of normal B cells at various stages of  
differentiation, confirming that the methylation signature could 
not be attributed to differentiation status alone. The common  
epigenetic signature correlated with gene expression in 65% of 
the genes identified, supporting the conclusion that alterations in  
cytosine methylation likely impact leukemogenesis.

Although survival is relatively high for patients with ALL  
managed in accordance with established protocols, the prognosis  
for relapsed patients remains a major clinical challenge40. Thus, 
efforts to identify biomarkers of relapse at the time of diagnosis  
can be of great clinical benefit and help guide future treatment 
modalities. In this regard, numerous studies have attempted to use 
DNA methylation signatures at diagnosis to predict relapse36,41–43 
but these studies  have yielded variable results in small patient 
cohorts. In a study of 33 B-cell precursor ALL cases by Hogan  
et al., higher DNA methylation levels in CpG islands were  
measured at relapse44. In another study, by Nordlund et al.,  
27 paired samples with variable ALL subtypes showed that  
relapse-associated CpG sites overlapped with genes regulated by 
transcription factors such as REST, SOX2, NANOG, and OCT436. 
Conversely, a study by Kunz et al. examined 13 T-cell ALL paired 
samples and reported increased hypomethylation of promotor  
regions in relapsed samples45. Such heterogeneity of findings  
likely reflects epigenetic and genomic alterations throughout  
disease progression and across different leukemia subtypes.
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To date, alterations in DNA methylation have generally been  
studied in solid malignancies, and increased DNA methylation 
and consequent silencing have been notable in promotor regions  
coupled with global hypomethylation of repetitive elements and 
subsequent genomic instability. In sharp contrast, Bujko et al.46 
reported that repetitive elements tend to be hypermethylated in 
hematologic malignancies. These investigators examined overall 
DNA methylation status of LINE-1 and ALU elements in patients 
with adult acute myeloid leukemia (AML) and childhood B-cell 
lymphoblastic leukemia. Higher DNA methylation of LINE-1 was 
observed in adult AML and pediatric ALL samples compared with 
normal controls, and additional increased methylation of ALUs was 
observed in patients with B-cell ALL. Furthermore, higher meth-
ylation levels were seen in B-cell ALL samples compared with 
both AML and control samples, and a positive correlation was seen 
between DNA methylation and total leukocyte count46. Although 
the significance of these findings remains to be established, the  
data suggest that regulatory control of repetitive sequences  
involved in chromosomal rearrangements is differentially regulated 
compared with other cancer types.

In the aforementioned study by Hogan et al., DNA methylation 
was examined in 33 matched B-cell precursor ALL samples at the 
time of diagnosis compared to relapse. A total of 1147 CpG sites 
in 905 genes showed increased methylation levels at relapse. More  
specifically, gene expression profiles also differed for early  
relapse (less than 36 months) versus late relapse (greater than  
or equal to 36 months). Many of the unique targets were genes 
within the Wnt signaling cascade44 and were subsequently found  
to be responsive to decitabine47, potentially implicating the Wnt  
pathway in relapsed disease. These data speak to the role of  
epigenetic modifications in leukemic disease progression and  
again suggest the possible use of DNA methylation inhibitors as 
therapeutic agents.

Covalent histone modifications
Histone tail modifications (such as acetylation, methylation, 
phosphorylation, sumoylation, and ubiquitylation) can alter 
gene expression, and specific marks and positions within the  
N-terminal tail are linked to either transcriptional activation or  
repression48. Histone modifications are catalyzed by various 
enzymes, including histone lysine demethylases (HKDMs), histone  
acetyltransferases (HATs), and HDACs, which in coordination 
with other DNA-binding proteins help to define chromatin archi-
tecture. Four core histone proteins (H2A, H2B, H3, and H4) 
form a basic scaffolding structure called a nucleosome, and post- 
translational modifications of histone tails go on to define chromatin  
architecture and control chromatin accessibility. Acetylation and 
methylation are stable modifications that regulate gene expres-
sion, and modifications such as these are subject to epigenetic  
control. Other modifications such as phosphorylation, sumoylation, 
and ubiquitylation represent transient modifications of functional 
significance. The combination of both stable and transient histone 
modifications is often referred to as the “histone code” that defines 
the terms of transcriptional regulation for the genome.

To date, a number of studies have implicated covalent histone 
modification in the development of pediatric ALL. For example, 
a t(4;11) translocation results in the creation of the KMT2A-AF4 
fusion gene, which is the most common KMT2A rearrangement 

identified to date in infant ALL40. This fusion protein binds fewer 
genomic regions than KMT2A wild-type, leading to abnormal 
DNA methylation and extensive chromatin remodeling49. However, 
not all infant ALL samples contain KMT2A rearrangements and 
thus studies have sought to examine the genetic abnormalities in 
these cases. As such, a BRD9-NUTM1 fusion gene resulting from 
t(5;15)(p15;q14) was described in two KMT2A-r–negative infant 
ALL cases12,50. Additionally, BRD9 is a bromodomain-containing  
protein that likely functions in chromatin remodeling and that 
has recently been implicated in AML51, while NUTM1 enhances 
the HAT activity of EP300, a CREBBP homolog known to fuse 
with BRD4 in NUT midline carcinoma52. Furthermore, recent  
transcriptome sequencing studies have found other NUTM1 fusion 
genes in severe sporadic ALL cases (including IKZF1-NUTM1, 
AFF1-NUTM1, and ZNF618-NUTM1)53,54. The development 
of innovative personalized therapies based on the use of DOT1L 
inhibitors for the treatment of pediatric and adult MLLr has shown 
encouraging results55. DOT1L catalyzes the mono-, di-, and  
tri-methylation of H3K79 within the ordered core of H3 and is 
required to initiate tumorigenesis and maintain the malignant 
phenotype of MLLr56. Thus, DOT1L inhibitors hold considerable 
promise in the clinical management of leukemia.

In other studies, loss-of-function mutations in the CREBBP gene 
located on chromosome 16 have been observed in 18% of relapsed 
ALL cases as well as early T-cell precursor ALL57. Zinc finger  
protein 284 (ZNF384) rearrangements have recently been described 
in a new subtype of B-cell precursor ALL, in which up to 80% of 
patients have a mutation of translocation involving an epigenetic  
regulating gene54,58. Importantly, fusion of ZNF384 with 
either CREBBP or EP300 results in dominant-negative loss of  
histone lysine acetyltransferase activity and global reduction of  
histone acetylation and subsequently increases sensitivity to  
HDAC inhibitors in vitro53. This emerging pattern implicates  
coordinated regulation between chromosomal rearrangements 
and epigenetic dysregulation as pivotal events in leukemogenesis. 
This interpretation opens the door for development of signifi-
cant advances in precision diagnosis and treatment for pediatric  
leukemia involving ETV6-CBX3, RUNX1-ASXL1, and  
NOL4L-ASXL1 fusions49,53.

MicroRNA mechanisms
Altered microRNA (miRNA) expression has the ability to effect 
several known regulatory pathways in ALL pathogenesis59–62.  
miRNAs are small non-coding RNA molecules that function in 
transcriptional and post-transcriptional regulation of gene expres-
sion via base pairing with complementary sequences. The interac-
tion of miRNAs with their target mRNAs results in  cleavage of 
the mRNA strand, destabilization through poly(A) shortening, 
or deficits in translation or a combination of these.  Although 
most of what we now understand about miRNA biology defines 
intracellular events, evidence establishing an important role for  
miRNAs as extracellular, circulating signaling molecules is fast 
accumulating63. Over 1000 known miRNAs have been identified in 
the human genome64, and of the miRNAs implicated in ALL, miR-34,  
miR-128, miR-142, and miR-181 are overexpressed59,65,66 whereas 
miR-100 and miR-196b are underexpressed61,65.

A study by Schotte et al. comparing 397 miRNAs in 81 pediatric 
ALL cases against 17 normal CD34+ stem cell controls reported 
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unique miRNA signatures for various ALL subtypes and found 
miR-143 and miR-140 to be 70- to 140-fold lower in B-cell ALL 
samples versus control67. These investigators also examined the 
impact of miRNA expression on chemotherapy responsiveness 
and found that decreased miR-454 expression was associated with  
L-asparaginase resistance but that increased expression of  
miR-99, miR-100, and miR-125b was associated with vincristine  
and daunorubicin resistance. Furthermore, eight miRNAs  
(miR-10a, -134, -214, -484, -572, -580, -624, and -627) were  
associated with longer event-free survival, leading the team to 
hypothesize that those associated with increased event-free sur-
vival likely had tumor suppressor functions exerted via apoptotic  
signaling (miR-10a), inhibition of proliferation (miR-10a  
and -214), and downregulation of SOX2 (miR-134)67. These find-
ings have opened the door for the design of precision diagnostics 
where patients are screened for the presence of these miRNAs at 
time of diagnosis to define an optimal chemotherapy regimen for 
their disease. Furthermore, in cases where miRNA expression is 
repressed by hypermethylation65,68–71, a DNMT inhibitor regimen 
could be implemented to reverse epigenetic modifications and 
improve survival.

Transposable elements and leukemias: unanswered 
questions
Little is known about the role of transposable elements in leuke-
mogenesis, and most efforts to date have focused strictly on AML. 
A previous report on ALL has implicated translocation junctions  
at the transcription factor 3 (TCF3)/E2A immunoglobulin  
enhancer-binding factors E12/E47 (E2A) locus clustered within, 
or in proximity to, transposable element sequences68. Transposable  
elements make up 45% of the human genome69. Given the  
important role of these elements in regulating the transcriptional 
activity of genes, there is interest in determining their putative role 
in leukemogenesis. LINEs, abundant retrotransposons in the human 
genome, are major sites of epigenetic control because of the high 
density of CpG islands contained within these sequences. These 
elements influence gene expression via several mechanisms; the 
most notable and probably best understood is their ability to induce 
insertion mutations into open reading frames or intronic regions 
following a full cycle of retrotransposition.

Early studies of the life cycle of L1 retroelements established a 
causal relationship between L1 insertion mutations and cancer70. 
More recently, data on hypomethylation-mediated reactivation of 
LINEs have prompted investigations aimed at elucidating the role 
of LINEs in the regulation of chromatin dynamics and genome 
stability across the full spectrum of human development. At its 
most fundamental level, L1 mobilization can disrupt local genome 
architecture, induce DNA strand breaks, mediate alternative  
splicing, increase the frequency of recombination, and induce loss 
of transcriptional control of neighboring genes. Most L1 inser-
tions are truncated at the 5′ end and carry insertions/deletions that  
render these newly inserted elements unable to retrotranspose71.

Previous work has established that genetic ablation of RB  
proteins leads to reactivation of L1 retroelements16,70. pRB inter-
acts with HDAC1, DNMT1, pRB-associated protein 48 (RbAp48), 
suppressor of variegation 3-9 homolog 1 (Drosophila) (Suv39H1), 
and suppressor of variegation 4-20 homolog 2 (Drosophila)  

(Suv420H2) to induce signatures of epigenetic silencing16.  
Epigenetic reactivation of L1 by DNA-damaging agents involves 
proteasomal-mediated degradation of DNMT1 and loss of 
RB-mediated silencing72,73. These findings are of potential  
relevance given previous reports implicating Rb-1 as a prognostic 
factor in pediatric ALL74.

Rb-1 is normally expressed in hematopoietic cells and inactivated 
by point mutations with predominance for exons 20–24 in various 
cancers. In these studies, bone marrow from 26 pediatric patients 
with leukemia (18 ALL and eight AML) was studied. In ALL cases, 
two samples in exon 20 (11.11%), one in exon 21 (5.56%), and 
four in exon 22 (22.22%) had altered conformation. All but one 
of these cases were classified as high-risk leukemia patients who 
either relapsed or never achieved remission. In addition to having  
the ability to disrupt the architecture of the genome, LINEs  
regulate gene expression patterns in cells via epigenetic  
mechanisms. Thus, leukemia may involve derangements in  
LINE-1 expression that compromise genome integrity and  
function. This hypothesis has never been rigorously examined.

Perspectives for the precision medicine era
Molecular signatures defined on the basis of DNA methylation, 
covalent histone modifications, and miRNA expression profiles 
can help to better stratify disease phenotypes both at the time of 
diagnosis and during the course of disease progression. Further-
more, these molecular signatures can optimize medical therapies  
designed to target specific molecular deficits and minimize adverse 
reactions. These are the foundational underpinnings of precision 
medicine, and although significant advances have been realized  
in the clinical management of several solid and liquid tumor  
malignancies, more remains to be done in the diagnosis and treat-
ment of pediatric leukemias. Future avenues of research include 
systematic mapping of epigenetic modifications on a genome-
wide scale in primary ALL cells to assess the impact of somatic  
mutations on cellular programming and, consequently, cellular 
behavior. In this context, the Blueprint Consortium (which maps 
human blood cell epigenomes) has contributed genome-wide data 
on histone modification in primary ALL cells from 15 patients 
with B-cell precursor ALL75. Use of these data can help establish a  
regulatory mechanism for hereditary risk of high hyperdiploidy 
ALL, a hypothesis put forth by the consortium to evaluate a  
risk allele within the enhancer element on chromosome 10p21.2 
that disrupts RUNX3 binding, decreases ARID5B expres-
sion, and arrests normal lymphocyte development to initiate  
leukemogenesis76.

Deregulated H3K9ac77, global acetylation78, and increased HDAC 
activity79 occur in ALL cells, and epigenetic modifications are  
more commonly observed in relapsed ALL cases verses those 
at the time of diagnosis. Although we do know that epigenetic  
alterations are likely implicated in the initiation, development, 
and relapse of pediatric ALL, most epigenetic trials to date have 
been completed in adults and thus major knowledge gaps per-
sist in regard to how this information translates to pediatric ALL 
cases. To date, the analysis of DNA methylation has proven 
valuable in determining leukemic cell origin and cytogenetic 
features and can be developed as a biomarker of ALL in the  
future. The challenge remains to understand how these and 
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other epigenetic alterations operate within the framework of 
gene fusions and other somatic mutations in ways that can be  
targeted for precision medicine intervention.

The constitutive activation of kinase signaling pathways in ALL 
suggests that the development of kinase inhibitors that target  
specific molecular deficits may be of value in the precision  
medicine space. PDGFRB rearrangements commonly occur in 
patients who fail to respond to induction chemotherapy (greater 
than or equal to 25% residual disease). As such, this mutation  
can be screened for in cases where conventional therapies are of 
diminished value. To this end, current clinical trials are examining  
the use of dasatinib or ruxolitinib in combination with  
chemotherapy for patients with ABL-class fusions or JAK  
signaling pathway alterations, respectively80.

Whole genome testing could be considered during induction  
therapy in order to identify appropriate clinical trials for these 
patients. The utility of this approach can be exemplified in patients 
with trisomy 21–associated ALL. These patients carry a 10-fold 
higher risk of developing ALL (almost always of B-cell lineage) in 
addition to an increased risk of chemotherapy toxicity81. As many  
as 50 to 60% of Down syndrome–associated ALL cases have 
CRLF2 rearrangements, most commonly characterized as a 
P2RY8-CRLF2 fusion due to deletion of the pseudoautosomal 
region of the sex chromosomes82. Fifty percent of CRLF2- 
rearranged Down syndrome–associated ALL cases have  
concomitant JAK mutations (commonly a JAK2 R683G point 
mutation)83, but JAK inhibitors have yet to be formally evaluated 
in clinical trials.

Activating mutations in RAS pathway genes have also been 
identified in several pediatric ALL subtypes, including high  
hyperdiploid and hypodiploid ALL, infant ALL, and certain cases 
of Ph-like ALL84,85. Genes implicated include GTPases, KRAS, 
NRASM, HRAS, protein tyrosine phosphatase non-receptor type 
11 (PTPN11), casitas B-lineage lymphoma (CBL), and FLT3. 
Further research is needed to elucidate the causal relationships in  
the context of leukemogenesis that would be of significance 
given that these gene targets would be suitable for the application  
of precision therapy.

The importance of precision approaches in the clinical manage-
ment of pediatric leukemias is emphasized by the high frequency  
of chemoresistance-associated mutations during the course of 
therapy and the potential role of predisposing genetic polymor-
phisms in determining disease onset, progression, and response 
to treatment. Continued translational and clinical research is 

needed to further define (1) the evolving genomic complexity 
of the disease and (2) the need for stratification of a highly het-
erogeneous group of diseases. At the core of precision approaches 
in cancer is the need for better resolution of molecular pheno-
types and the identification of mechanism-based and mecha-
nism-agnostic approaches to prognosis, diagnosis, and clinical  
management of the disease.

A significant limitation at present is the need for coordinated drug 
discovery and drug repurposing programs that can help identify 
small molecules and biological approaches to therapy. Another 
challenge is the fact that most studies to date focus on the use  
of single agents in poor-phenotype cohorts. As such, concerted 
efforts are needed to evaluate combination therapies in a system-
atic fashion and to better match treatment to molecular phenotypes 
across a highly heterogeneous group of patients, and longitudinal 
follow-up is necessary to evaluate disease-free survival and long-
term risks associated with therapy. Although significant advances 
have been made in this space, much work remains to be done in 
pediatric oncology to fully realize the power of precision approaches 
and therapeutics.
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