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Quantitative traits are usually controlled by numerous genomic variants with small
individual effects, and variances associated with those traits are explained in a
continuous manner. However, the relative contributions of genomic regions to observed
genetic variations have not been well explored using sequence level single nucleotide
polymorphism (SNP) information. Here, imputed sequence level SNP data (11,278,153
SNPs) of 2109 Hanwoo steers (Korean native cattle) were partitioned according
to functional annotation, chromosome, and minor allele frequency (MAF). Genomic
relationship matrices (GRMs) were constructed for each classified region and fitted
in the model both separately and together for carcass weight (CWT), eye muscle
area (EMA), backfat thickness (BFT), and marbling score (MS) traits. A genome-wide
association study (GWAS) was performed to identify significantly associated variants
in genic and exon regions using a linear mixed model, and the genetic contribution
of each exonic SNP was determined using a Bayesian mixture model. Considering all
SNPs together, the heritability estimates for CWT, EMA, BFT, and MS were 0.57 ± 0.05,
0.46 ± 0.05, 0.45 ± 0.05, and 0.49 ± 0.05, respectively, which reflected substantial
genomic contributions. Joint analysis revealed that the variance explained by each
chromosome was proportional to its physical length with weak linear relationships for
all traits. Moreover, genomic variances explained by functional category and MAF class
differed greatly among the traits studied in joint analysis. For example, exon regions had
larger contributions for BFT (0.13 ± 0.08) and MS (0.22 ± 0.08), whereas intron and
intergenic regions explained most of the total genomic variances for CWT and EMA
(0.22 ± 0.09–0.32 ± 0.11). Considering different functional classes of exon regions
and the per SNP contribution revealed the largest proportion of genetic variance was
attributable to synonymous variants. GWAS detected 206 and 27 SNPs in genic and
exon regions, respectively, on BTA4, BTA6, and BTA14 that were significantly associated
with CWT and EMA. These SNPs were harbored by 31 candidate genes, among which
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TOX, FAM184B, PPARGC1A, PRKDC, LCORL, and COL1A2 were noteworthy. BayesR
analysis found that most SNPs (>93%) had very small effects and the 4.02–6.92% that
had larger effects (10−4

× σ2
A, 10−3

× σ2
A, and 10−2

× σ2
A) explained most of the total

genetic variance, confirming polygenic components of the traits studied.

Keywords: variance partitioning, genome level SNP, GWAS, carcass traits, Hanwoo cattle

INTRODUCTION

The genetic architecture of complex traits like carcass and meat
quality in cattle includes a large number of loci with small
individual effects on each trait. Variations in those traits are
due to interactions among the loci dispersed across the genome
as well as influenced by environmental factors. It is important
to know how additive genetic variances are distributed across
different genomic regions for better understanding of the genetic
composition of complex traits. Several genome-wide association
studies (GWAS) using dense single nucleotide polymorphism
(SNP) marker panels have shown the differential contribution of
genic and non-genic (intergenic) regions of genomes to additive
genetic variance in human (Yang et al., 2011b; Lee et al., 2012),
dairy and beef cattle (Koufariotis et al., 2014), and broiler chicken
(Abdollahi-Arpanahi et al., 2016). These studies showed that
genic regions usually contributed more additive genetic variation
than non-genic regions. However, Santana et al. (2016) reported
maximum genomic variance to be attributed to intergenic and
intronic regions in beef cattle, whereas Do et al. (2015) found
almost similar genomic contributions from annotated genic and
non-genic regions in pigs. The differences among these studies
might be associated with several factors, such as SNP density in
the marker panel, statistical models used, species, and types of
traits investigated.

The Encyclopedia of DNA Elements (ENCODE) project found
that about 80% of the human genome was engaged in relevant
biochemical activities, even though only about 1% of the genome
encodes a defined product such as a protein or reproducible
biochemical signature (ENCODE Project Consortium, 2012).
Hindorff et al. (2009) reported that 88% of the total trait
associated significant variants for human were located in intron
(45%) and intergenic (43%) regions. But, importantly, SNPs
in missense and promotor regions were significantly enriched
whereas SNPs of intergenic regions were underrepresented in
association studies (Hindorff et al., 2009; Kindt et al., 2013). On
the other hand, the contribution of minor allele frequency (MAF)
classes varied greatly for carcass traits in Japanese Black cattle
(Ogawa et al., 2016) and for 17 different complex traits in Nordic
Holstein cattle (Zhang et al., 2017). Therefore, understanding
how genomic regions contribute to the variances of complex
traits and partitioning the genome into different categories will
help in describing a clear scenario of the genomic architecture of
traits.

In GWAS, stringent statistical thresholds are considered
in most cases to control false positive results using multiple
hypothesis testing and, therefore, many variants with small
effects fail to reach significance levels despite some of them
being causal variants. The proportion of phenotypic variance

explained by all SNPs is relatively lower than the estimates of
pedigree data because the former includes only the contributions
of causal variants that are in linkage disequilibrium (LD) with
genotyped SNPs (Visscher et al., 2010). This is known as the
perceived problem of “missing heritability” (Manolio et al., 2009).
Insufficient LD between genotyped SNPs and causal variants
accounts for most of the deviation in variance estimates. Lack
of LD can also arise if the MAF of causal variants is lower than
the genotyped SNPs (Lee et al., 2011). Imputation enables the
determination of SNP genotypes that are not directly genotyped
by low-density marker panels and uses information from a
reference population that has been genotyped with higher-
density SNP markers (Hickey et al., 2012). In GWAS, more
causal variants of a given trait are expected to be detected
using imputed whole-genome sequence data compared with the
number of causal variants detected by the currently used SNP
marker panels. In addition, LD between SNP markers and causal
variants increases in association analysis from imputed sequence
level SNP data, which also ensures higher reliability of genomic
predictions for quantitative traits because more SNP information
can be incorporated and genomically evaluated (van Binsbergen
et al., 2015; Gonzalez-Pena et al., 2016). Therefore, sequence level
SNP information can be used to capture the maximum numbers
of attributed additive genetic variances in a whole-genome or a
particular genomic region for better estimation of traits. Previous
studies reported higher imputation accuracy from high density
genotype to whole genome sequence variants which also provided
better prediction for genomic selection in dairy and beef cattle
(Hawlader et al., 2017; Pausch et al., 2017).

Hanwoo (Bos taurus coreanae), an indigenous cattle breed of
South Korea, has been bred intensively over the last four decades
for the improvement of carcass and meat quality traits. Hanwoo
beef is regarded as a cultural icon and is very popular for its
extensive marbling and eating quality attributes like tenderness,
juiciness, and characteristic flavor (Jo et al., 2012). Presently,
the genetic worth of individual Hanwoo is estimated based on
carcass weight (CWT), eye muscle area (EMA), backfat thickness
(BT), and marbling score (MS) traits using both pedigree and
SNP genotype data (Lee et al., 2014). Previous GWAS using a
50-K SNP marker panel detected a number of significant SNPs
associated with CWT, intramuscular fat, Warner–Bratzler shear
force, and sensory traits in Hanwoo (Lee et al., 2013, 2014;
Dang et al., 2014). Notably, the genetic evaluation of complex
traits using genomic information is increasingly being used in
different cattle breeding programs. However, until now, GWAS
or genetic architecture of carcass and meat quality traits using
sequence level SNP information has been limited to other beef
cattle breeds and has not yet been reported in Hanwoo cattle. In
this study, imputed genome sequence level SNP data were used
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to investigate genetic variance explained by subsets of genomic
regions as well as to identify genomic variants in genic and exon
regions and their contributions by GWAS for four carcass and
meat quality traits in Hanwoo cattle.

MATERIALS AND METHODS

Animals and Phenotypes
A total of 2109 Hanwoo steers born between 2004 and
2013 at Hanwoo Experiment Station, National Institute of
Animal Science (NIAS), Rural Development Administration,
South Korea, were used in this study. All the steers were progeny
of 251 sires and unrelated dams (1–3 progenies per dam). Animal
health and welfare issues were followed according to approved
guidelines of the Animal Care and Use Committee (NIAS) and
the ethics committee approval number was 2015-150. Feeding
and management practices were uniform under feedlot condition
with a concentrate mixture and rice straw-based ration. In the
total feed, the proportions of concentrate and roughage were
approximately 1.5:1, 2.5:1, and 4.5:1 in the grower (4–12 months),
fattening I (13–18 months), and fattening II (19–23 months)
rations, respectively. Crude protein and total digestible nutrients
contents in the concentrate mixtures of these three rations were
14–16 and 68–70%, 11–13 and 71–73, and 11–12 and 72–73%,
respectively. All animals were slaughtered at about 24 months
of age. The carcass and meat quality traits investigated in this
study were CWT, EMA, BFT, and MS. Feeding, management,
and trait measurements were according to Bhuiyan et al. (2017).
Briefly, the cold CWT was taken after chilling for about 24 h.
Longissimus dorsi muscle samples (approximately 1.5 kg) were
collected from the junction between the 12th and 13th rib for
the EMA, MS, and BFT measurements. MS was assessed on a
1–9 point scale according to the Korean Beef Marbling Standard
(KAPE, 2012). Descriptive statistics of carcass and meat-quality
traits are summarized in Supplementary Table S1.

SNP Genotyping and Quality Control
In total, 2605 individuals were genotyped initially using two
different SNP platforms, Illumina Bovine SNP50 BeadChip (1677
animals) and Bovine HD BeadChip (928 animals). The unphased
genotypes were converted into phased data using Eagle v. 2.3.2
based on long-range phasing approach (Loh et al., 2016). The
genotype data for all 1677 individuals were then imputed to a
high-density level (671,902 SNPs) considering the high-density
genotype data as reference sequence panel using Minimac3 (Das
et al., 2016). SNPs on the sex chromosomes were excluded.
Whole-genome sequence data of 203 progeny tested Hanwoo
bulls (South Korea Proven Bulls) were used as the reference
population for sequence level SNP imputation. Finally, high-
density genotypes of 2109 Hanwoo steers were imputed one
chromosome at a time to sequence level using Minimac3, where
each sequenced individual had 25,676,502 SNPs. We set-up
imputation R2 > 0.60 according to a previous Cross-Disorder
Group of the Psychiatric Genomics Consortium et al. (2013)
study, which included 49.12% of the total imputed SNPs. SNP
filtering was performed based on the following exclusion criteria:

MAF < 0.01 and Hardy–Weinberg equilibrium <0.0001 using
PLINK 1.9 software (Purcell et al., 2007). After quality control,
11,278,153 SNPs were retained for further analyses.

SNP Annotation
The physical positions of the imputed SNPs were determined
using the UMD 3.1 (Elsik et al., 2016) bovine genome assembly as
a reference sequence. SNP annotation, filtering, and partitioning
were performed using SnpEff v.4.3p (Cingolani et al., 2012b)
and SnpSift software (Cingolani et al., 2012a). Total SNPs
were partitioned into 14 different categories according to their
functional annotations (Table 1) except regulatory regions. Then,
all splice variants and start and stop sites were excluded because
they contained a very low proportion of the total SNPs or
because, in exon regions, SNPs might already be represented by
coding sequences and untranslated regions (UTRs). Finally, six
major functional classes of genomic regions were considered:
synonymous, non-synonymous (missense), 5′- and 3′-UTRs,
intron, regulatory, and intergenic regions. Regulatory regions
were defined as regions located 5-kb upstream and 5-kb
downstream of genes, and intergenic regions were defined as
regions more than 5-kb distant from genes. Besides, the variants
were categorized into six classes based on their MAF as 0.01–0.05,
0.05–0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, and 0.4–0.5.

Genomic Variance Partitioning
To decipher the genomic architecture of traits and predictive
ability of particular genomic regions, the total genomic
variance was partitioned based on MAF category (six classes),
chromosome (29 autosome), and functional annotations (six
classes). To do this, genomic relationship matrices (GRMs)
were estimated based on the SNPs in the respective categories
(MAF, chromosome, and functional class) following the method

TABLE 1 | Number of variants annotated in different functional classes in Korean
Hanwoo cattle using sequence level single nucleotide polymorphism (SNP) data1.

Functional class Number of variants Proportion (%)

Intergenic region 7,928,883 70.303

Intron variant 3,246,727 28.788

Exon variant 99,204 0.880

Synonymous variant 50,040 0.444

Missense variant 21,064 0.187

Downstream gene variant 469,605 4.164

Upstream gene variant 460,915 4.087

5′ UTR variant 5,119 0.045

3′ UTR variant 24,773 0.220

Splice region variant 8,903 0.079

All stop variants 226 0.002

Splice acceptor variant 184 0.002

Splice donor variant 177 0.002

Start lost variant 26 0.000

1Functional annotation of SNP variants was performed based on the cattle genome
reference sequence (UMD 3.1) using SnpEff ver. 4.3p and SnpSift software
(Cingolani et al., 2012a,b). The cumulative value is higher than 100% as some
variants are located in several transcripts and therefore, could be allocated to
multiple regions.

Frontiers in Genetics | www.frontiersin.org 3 June 2018 | Volume 9 | Article 217

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00217 June 21, 2018 Time: 16:36 # 4

Bhuiyan et al. Partitioning of Genomic Variance for Carcass Traits in Cattle

of VanRaden (2008) using genome-wide complex trait analysis
(GCTA v.1.26) software (Yang et al., 2011a). The variance
attributable to each category was calculated separately or by
fitting all GRMs of the respective category simultaneously
in a joint analysis. Restricted maximum likelihood analysis
implemented in GCTA v.1.26 was performed using the following
linear mixed model:

y = Xβ+

n∑
G=1

gG + e

where y is the vector of phenotypes, β is a vector of fixed
effects (year and season) and covariate (age) with its incidence
matrix X, n is the number of subsets for non-overlapping SNPs
partitioning (n = 6 for joint analysis by MAF bin, n = 29 for the
number of autosomes, and n= 6 for the functional annotation of
SNPs), gG is a vector of random additive genetic effects attributed
from aggregated SNP information, and e is a random residual
error. The variance component of phenotypic values from the
joint analysis is Vg=Agσ

2
g+Iσ

2
e , where σ2

g is the additive genetic
variance tagged by SNPs, Ag is the genetic relationship matrix
calculated from SNP data, σ2

e is the error variance, and I is the
identity matrix. The proportion of variance captured by each
category is calculated as h2

G = σ2
G/σ

2
P, where σ2

P denotes the
phenotypic variance explained by all autosomal SNPs.

Genome-Wide Association and Genetic
Contribution of SNPs
Two different approaches were used for the single-marker
association analysis using SNPs in genic (exon or intronic SNPs)
and exon regions, as well as to know the contribution of exonic
SNPs to phenotypes. Phenotypic data were adjusted using a
linear mixed model for fixed effects (year and season) and
covariate (animal’s age at slaughter). The adjusted phenotypes
and constructed GRMs were subsequently used for GWAS under
a mixed linear model including all candidate SNPs implemented
in GCTA v.1.26. In GCTA, the mixed linear model assumes that
all markers are to be in LD with quantitative trait loci (QTL)
in close proximity and additive effects are derived based on the
SNP mediated overall covariance. Thus, single trait association
analysis was performed using the following model:

y = a+ bX + g + e

where y is the adjusted phenotypic value, a is the mean, b is
the additive effect (fixed effect) of the candidate SNP to be
tested for association, X is the SNP genotype indicator variable
coded as 0, 1, or 2 depending on the number of copies of a
specified allele, g is the accumulated effect of all SNPs, and e
is the random residual effect. The Bonferroni adjusted P-value
threshold was determined to correct multiple hypotheses testing
at the genome-wide suggestive (1.0/number of SNPs tested)
and significant (0.05/number of SNPs tested) levels. Manhattan
plots were drawn from genome-wide associated P-values (−log10
transformed observed P-values) using the “gap” package (Zhao,
2014) in R program. A Bayesian mixture model implemented

in BayesR software1 that fitted all markers simultaneously with
four posterior distributions of each marker was used to estimate
the variance explained by exonic SNPs. The SNPs in the
mixture model were assumed to be normally distributed with the
proportion of effect sizes 0.00, 0.0001, 0.001, and 0.01, using a
single chain length of 50,000 samples, where the first 20,000 cycles
were discarded as burn-in (Erbe et al., 2012). The percentage
of genetic contribution (%Vg) accounted for by each SNP was
calculated using the formula:

%Vg = 100 ×
2pqβ2

σ2
A

where, p and q are the allele frequencies for a given trait, β is
the additive effects of the SNPs, and σ2

A is the additive genetic
variance for a trait. Besides, the per SNP based genetic variance
explained by each annotated class was estimated according to the
methods described by Koufariotis et al. (2014) using following
formula:

VarPerSNP =
[(h2
÷ n)× 100]

10−4

where, h2is the heritability, n is the total SNPs in the respective
annotated class, results were multiplied by 100 to get percent (%)
of the genetic variance explained and results were divided by 10−4

for visualization of the data. The derived variance components
(σ2

A and σ2
P) during individual SNP effect calculation were

used for h2 estimates. Subsequently, we performed functional
annotation of the significant SNPs and searched for candidate
genes using SnpEff v.4.3q and variant effect predictor (VEP) tools
supported by Ensembl (McLaren et al., 2016).

RESULTS

Annotation and Distribution of Variants
Across the Genome
Genome sequence level SNP data were annotated into 14 different
functional classes (Table 1) However, because of the low SNP
proportion in some classes, only six major classes (synonymous,
non-synonymous, 5′- and 3′-UTRs, intron, regulatory, and
intergenic regions) were included in our analysis. As expected,
intergenic variants were the most common, followed by intron,
upstream and downstream, and exon variants, representing
70.30, 28.79, 8.24, and 0.88% of the total SNPs, respectively. The
proportions of SNPs in the other functional categories were very
low (0.002–0.22% of the total SNPs). In a previous study using
bovine next-generation sequencing data, Aßmus et al. (2011)
found almost similar proportions of intron (28.04%) and exon
variants (0.90%) in cattle; however, they reported relatively lower
proportions of intergenic (64.36%) and regulatory region (6.38%)
variants. Our results are close to the findings of Koufariotis
et al. (2014) who reported the proportion of SNPs based on
777-K data in the aforementioned four classes to be 67.0, 31.0,
8.0, and 1.0%, respectively, in beef cattle. Santana et al. (2016)
reported the distribution of SNPs in intergenic, intron, and exon

1https://github.com/syntheke/bayesR
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regions was 63.64, 28.17, and 1.46%, respectively, in Nellore
cattle, which also supports our results. Taken together, the results
indicate that several attributes like SNP density, LD among SNPs,
poor functional annotation, and types of traits may affect the
annotation results.

Partition of Genomic Variance Explained
by Individual Chromosomes
The proportions of genomic variance attributed to all SNPs were
found to be 0.57, 0.44, 0.45, and 0.49 for CWT, EMA, BFT, and
MS, respectively (Table 2), suggesting that a substantial genomic
contribution explained the phenotypic variation in the studied
population. To determine what proportions of the variance were
explained by individual chromosomes, we performed a joint
analysis by fitting 29 GRMs (from 29 autosomes) simultaneously.
The chromosomes contributed to the total genomic variance
in various degrees; namely, from 0.000 to 0.089 for CWT,
from 0.000 to 0.064 for EMA, from 0.000 to 0.044 for BFT,
and from 0.000 to 0.047 for MS. Moreover, the sum of
variances attributed to individual chromosomes was slightly
lower than the estimated total genomic variance for all four
traits (Supplementary Table S2). Notably, with few exceptions,
the amount of variance explained by each chromosome was
found to be proportional to its physical length for all four traits
(Figure 1). However, the magnitudes of linear relationships (R2)
were comparatively low and varied from 0.06 to 0.15 among the
four traits studied.

Partition of Genomic Variance Explained
by Functional Annotation
To determine the genomic variation that was explained by the
six major functional classes, at first, similarity matrices of each
category were used separately and then all the matrices were fitted
simultaneously in a joint analysis. The separate analyses showed
that the six classes explained substantial amounts of the genomic
variations for all traits, and their contributions were larger than
those from the joint analysis (Tables 2, 3). For the separate
analyses, the LD between SNPs in the different functional classes
might have led to overestimation of the genomic variance for each

class. For the joint analysis, the genomic variances explained by
genic (synonymous, non-synonymous, and 5′- and 3′-UTRs) and
upstream and downstream regulatory variants were negligible
and close to zero (data not shown) for the four traits studied.
Therefore, the variants in those functional classes were merged
with the exon and intergenic classes, respectively. The sum of
variances for both the functional classes and the MAF categories
were similar to the estimates for the separate and joint analyses
using all the SNPs (Tables 2, 4) for all four traits and justified the
well-fitted genome partitioning analysis.

In the joint analysis, the genomic variances that accounted
for the six functional classes varied among the carcass and meat
quality traits. For example, the genomic heritability explained by
exons was 0.13 and 0.22 for the BFT and MS traits, respectively,
but close to zero for the CWT and EMA traits, whereas the
genomic heritability explained by intron and intergenic regions
ranged from 0.22 to 0.32 for the CWT and EMA traits, and from
0.09 to 0.19 for the BFT and MS traits. These results suggest
distinct genetic architectures underlie the processes involved
in muscle development and fat biosynthesis in the studied
population. In particular, when the different functional classes
in the exon regions (5′- and 3′-UTRs, synonymous and non-
synonymous) were considered in the joint analysis, the genomic
variances attributable to the synonymous class were significantly
more than those attributable to the 5′- and 3′-UTRs and non-
synonymous classes for all four traits. In the joint analysis,
the genetic variance explained by each SNP was estimated to
determine the contribution of the SNPs in each class. Regardless
of the trait studied, the per SNP analysis also revealed that
the variants in coding and UTR regions contributed more to
the variance than variants in the intron and intergenic regions.
Specifically, the largest proportion of the genetic variance was
explained per SNP in the synonymous class, particularly for the
CWT, BFT, and MS traits (Figure 2). Relatively lower genetic
variance was explained per SNP in the UTRs for the CWT, EMA,
and MS traits, and by SNPs in the non-synonymous class for
the BFT and MS traits. In the intron class, the genetic variance
explained per SNP was low, but higher than that for the upstream
and downstream and intergenic classes for all four traits.

TABLE 2 | Estimates of the variance explained by the SNPs located in exon, intron, and intergenic regions for four carcass and meat quality traits in Korean Hanwoo
cattle.

Category Number of SNPs Calculation method∗ h2 (S.E.)

CWT EMA BFT MS

Exon 99204 Separate 0.45 (0.04) 0.34 (0.04) 0.38 (0.04) 0.43 (0.04)

Joint 0.0001(0.07) 0.0001(0.08) 0.13 (0.08) 0.22 (0.08)

Intron 3246727 Separate 0.53 (0.05) 0.41 (0.05) 0.41 (0.05) 0.46 (0.05)

Joint 0.32 (0.11) 0.24 (0.11) 0.13 (0.10) 0.09 (0.11)

Intergenic 7928883 Separate 0.55 (0.05) 0.43 (0.05) 0.43 (0.05) 0.46 (0.05)

Joint 0.25 (0.09) 0.22 (0.09) 0.19 (0.10) 0.18 (0.09)

Total 11278153 Separate 0.57 (0.05) 0.44 (0.05) 0.45 (0.05) 0.49 (0.05)

Joint 0.57 (0.05) 0.45 (0.05) 0.45 (0.05) 0.49 (0.05)

∗Separate means individual analysis was performed for each trait considering the SNPs of respective functional annotation, joint means all three categories (exon, intron,
and intergenic) were considered in a single analysis, values in the parentheses denote standard error of h2 estimates, CWT, carcass weight; EMA, eye muscle area; BFT,
backfat thickness; MS, marbling score.
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FIGURE 1 | Estimated proportion of variance explained by each chromosome for carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT), and
marbling score (MS) against its length. Genomic partitioning was performed by joint analysis. The number in the circles represent the chromosome number.

Partition of Genomic Variance Explained
by MAF Class
The distribution of SNPs in the six different MAF classes was
27.90, 14.70, 18.40, 14.20, 12.60, and 12.10% of the total SNPs

(Table 4). Similar to the results for the functional annotations,
the variance explained by the six different MAF bins from a joint
analysis varied greatly among the traits and MAF categories. In
general, two common alleles groups (0.10–0.20 and 0.30–0.40)

TABLE 3 | Estimated proportion of variance explained by the synonymous, non-synonymous, and 5′–3′ UTR SNPs for four carcass and meat quality traits1.

Category Number of SNPs Calculation method∗ h2 (S.E.)

CWT EMA BFT MS

5′–3′ UTR 28100 Separate 0.37 (0.04) 0.30 (0.04) 0.31 (0.04) 0.36 (0.04)

Joint 0.09 (0.06) 0.10 (0.06) 0.04 (0.06) 0.09 (0.06)

Synonymous 50040 Separate 0.44 (0.04) 0.32 (0.04) 0.38 (0.04) 0.42 (0.04)

Joint 0.30 (0.09) 0.22 (0.09) 0.30 (0.09) 0.29 (0.09)

Non-synonymous 21064 Separate 0.38 (0.04) 0.28 (0.04) 0.33 (0.04) 0.37 (0.04)

Joint 0.06 (0.07) 0.02 (0.07) 0.04 (0.07) 0.05 (0.07)

Total 99204 Joint 0.45 (0.04) 0.34 (0.04) 0.38 (0.04) 0.43 (0.04)

∗SNPs in exon regions were analyzed either separately for each functional category (synonymous, non-synonymous, and UTR) or jointly in a single analysis. 1See Table 2
for trait abbreviations.
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TABLE 4 | Estimated proportion of variance explained by different minor allele frequency (MAF) category for four carcass and meat quality traits in Korean Hanwoo
cattle1.

MAF of SNPs Number of SNPs Calculation method∗ h2 (S.E.)

CWT EMA BFT MS

0.01–0.05 3151789 Separate 0.39 (0.04) 0.32 (0.04) 0.36 (0.04) 0.39 (0.04)

[0.279] Joint 0.06 (0.05) 0.02 (0.05) 0.15 (0.06) 0.08 (0.06)

0.05–0.1 1661170 Separate 0.43 (0.04) 0.42 (0.05) 0.36 (0.04) 0.40 (0.04)

[0.147] Joint 0.01 (0.06) 0.09 (0.07) 0.00001(0.06) 0.06 (0.07)

0.1–0.2 2079582 Separate 0.53 (0.05) 0.42 (0.05) 0.39 (0.05) 0.44 (0.05)

[0.184] Joint 0.26 (0.09) 0.14 (0.09) 0.09 (0.09) 0.12 (0.10)

0.2–0.3 1603981 Separate 0.51 (0.05) 0.40 (0.04) 0.40 (0.05) 0.42 (0.05)

[0.142] Joint 0.10 (0.09) 0.02 (0.09) 0.07 (0.10) 0.00001(0.10)

0.3–0.4 1421961 Separate 0.51 (0.05) 0.39 (0.04) 0.39 (0.04) 0.44 (0.04)

[0.126] Joint 0.10 (0.09) 0.10 (0.10) 0.14 (0.10) 0.23 (0.10)

0.4–0.5 1359670 Separate 0.48 (0.04) 0.39 (0.04) 0.36 (0.04) 0.40 (0.04)

[0.121] Joint 0.05 (0.08) 0.07 (0.08) 0.00001(0.08) 0.002 (0.09)

Total 11278153 Separate 0.57 (0.05) 0.44 (0.05) 0.45 (0.05) 0.49 (0.05)

Joint 0.58 (0.05) 0.44 (0.05) 0.45 (0.05) 0.49 (0.05)

∗Separate means five analysis were performed separately for traits under each MAF bin, joint means all five MAF categories were considered in a single analysis, values
in the parentheses denote standard error of h2 estimates, values in the square brackets represent the proportion of SNPs in each MAF category. 1See Table 2 for trait
abbreviations.

FIGURE 2 | Estimated proportion of genetic variance explained by single nucleotide polymorphism (SNP) under each functional class when fitted jointly in the model.
The genetic variance attributed with each SNP is expressed as percentage.

contributed more to the variance for all traits than the other allele
groups. Specifically, the highest genomic variance was explained
by SNPs in MAF category 0.10–0.20 for the CWT (0.26) and EMA
(0.14) traits, and by SNPs in MAF category 0.30–0.40 for the MS
(0.23) and BFT (0.14) traits. Remarkably, the low frequent alleles
(MAF< 0.05) accounted for the highest variance only for the BFT
(0.15) trait. The other three MAF bins explained comparatively
lower proportions of the genetic variance (from close to zero to
0.10) for all four traits investigated. This finding supports the idea
that different genomic architectures exist between carcass and
meat quality traits in Hanwoo cattle.

Identification of Genomic Variants
Through GWAS
Genome-wide association study was performed using SNPs
in both genic (exon and intron together) and exon regions

to identify their intra-genetic association with the four traits
studied. Considering all the SNPs in the genic region (a total of
3,345,931 SNPs), the mixed linear model-based GWAS revealed
206 SNPs significantly associated with CWT (P < 1.49 × 10−8)
and six SNPs significantly associated with EMA. These significant
SNPs were located on BTA6 and 14, and were harbored by 24
candidate genes (Figure 3, Table 5, and Supplementary Table S3).
The most significant SNPs (rs109438687 and rs109467519) were
located in the introns of FAM184B on BTA6 and were associated
with CWT. The top seven intronic SNPs were in TOX on BTA14
(rs41724548, rs41724547, rs41724546, rs42406058, rs42406039,
rs109374728, and rs41724619) and had the second highest
association with CWT. Significant SNPs for the CWT and EMA
traits were located at 3.32 Mb on BTA6 and were in LAP3,
FAM184B, NCAPG, LCORL, and SLIT2. Besides, significantly
associated SNPs for CWT spanned a 13.69 Mb region on BTA14
that harbored 19 genes, among which PRKDC, XKR4, IMPAD1,
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FIGURE 3 | Manhattan plot of genome-wide association study (GWAS) using SNPs of genic (exon and intron) regions for CWT (A) and EMA (B) traits where Y-axis
defines −log10 (P)-value against their respective positions on each chromosome (X-axis). The horizontal solid and dot lines indicate the Bonferroni adjusted
significant (P < 1.49 × 10−8) and suggestive (P < 2.99 × 10−7) thresholds level, respectively.

SDCBP, TOX, DNAJC5B, PREX2, C8orf46, and C8orf34 were
notable (Table 5 and Supplementary Table S3). These results
indicate that these two regions of BTA6 and BTA14 were potential
candidates for carcass traits in Hanwoo cattle. However, none of
the SNPs reached significant levels for the BFT and MS traits
(Supplementary Figure S1).

In GWAS, only a few markers with the largest effects cross the
significant threshold level through multiple hypothesis testing,
and most variants fail to reach statistical significance, even
though some of them are causal. To overcome the limitations
of stringent criteria, we selected only the exonic SNPs (a total of
99,204) for further association study. The mixed linear model-
based GWAS identified a total of 27 significant SNPs on BTA4,
6, and 14 (Table 6 and Supplementary Figures S2, S3) for the
CWT and EMA traits (P < 5.04 × 10−7). The significant exonic
SNPs were harbored by 14 candidate genes, seven of which had
already been detected when the SNPs in genic (exon and intron

together) regions were used in the mixed linear model-based
GWAS. Among the candidate genes, TOX, COL1A2, PPARGC1A,
PRKDC, IMPAD1, DNAJC5B, and CRH were noteworthy
(Table 6). Importantly, the coding variants on COL1A2,
PPARGC1A, and CRH were significantly associated only with
the exonic SNPs. The most significant SNP (rs110132121) was
located in the 3′-UTR of TOX (P < 5.31 × 10−15) on BTA14
for CWT, followed by two synonymous SNPs (rs461493029 and
rs449968016) in PRKDC (P < 6.22× 10−14), also for CWT.

Contributions of Genomic Variants
The SNP effects were estimated using BayesR to determine the
proportion of genetic variance explained by individual SNPs and
are presented in Table 7 and Supplementary Figures S2–S5. We
limited the analysis to the SNPs in the exon regions because of the
heavy computational requirements of BayesR. The SNPs that had
the largest effects for the investigated traits were located mostly
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on BTA2, 4, 6, 12, 14, 17, 19, and 24; however, these effects were
small compared with the total genetic variance. Notably, 93–
96% of the SNPs had close to zero effects, and the other 4–7%
had different degrees of genetic contribution to the traits studied
(Table 6). In particular, the proportion of SNPs that had the
largest effects (10−3

× σ2
Aand 10−2

× σ2
A) varied between 0.26–

0.41% of the total numbers but explained 33.42–62.73% of the
total genetic variance.

DISCUSSION

Quantitative traits are controlled by the additive effects of a
large number of genes spaced over an entire genome. Therefore,
it is important to identify the genomic regions that contribute
most to the genetic variations for complex traits like carcass and
meat quality. In this study, we investigated for the first time,
the genomic variances explained by different functional classes
and performed GWAS using sequence level SNP information in
Korean Hanwoo cattle.

Partitioning of Genomic Variance by
Chromosome
We found a linear but weak relationship between the variance
explained by each chromosome and its length, which is consistent
with the study of Jensen et al. (2012). They reported low R2-values

(ranged between 0.11 and 0.21) for chromosomal variance on
chromosomal lengths for complex traits in Holstein cattle. They
also stated that aggregated chromosomal variance accounted for
96–97% of the total genomic variance, which is similar to our
findings (Supplementary Table S2). Pimentel Eda et al. (2011)
found that relatively broader linear relationships (R2) varied from
0.03 to 0.77 for milk production and milk composition traits in
Holstein cattle, which is in partial agreement with the present
study. Similar results were also found by Yang et al. (2011b)
and Lee et al. (2012) who reported low to strong (R2

= 0.03–
0.80) linear relationships between genetic variance explained by
each chromosome with its length for four complex traits and a
complex genetic disorder, schizophrenia in human. Remarkably,
we observed notable differences in genetic contribution among
chromosomes of similar lengths, which is supported by the
findings of Yang et al. (2011b). Taken together, these results
indicate that the low R2-values between chromosomal lengths
and their contributing genomic variances reflected only a weak
relationship, which may be because genes that had large effects
contributed a greater proportion of genomic variance for the
harboring chromosome. The results of the present study also
indicate that major genes or QTLs are not evenly segregated
across the Hanwoo genome. For instance, DGAT1 and PLAG1
on BTA14 are known to make large contributions to genomic
variance for carcass and milk traits in cattle, and accordingly we
found the highest variance was attributed to BTA14, which is a

TABLE 5 | Significant genic SNPs harbored genes for CWT and EMA traits in Korean Hanwoo cattle.

Ensembl ID1 Gene symbol BTA2 Position3 (bp) No. of SNPs P-value4

ENSBTAG00000005989 LAP3 6 38577764 ∼ 38583582 6 1.22E-08

ENSBTAG00000005932 FAM184B 6 38648218 ∼ 38670165 5 1.06E-16

ENSBTAG00000021582 NCAPG 6 38794618 ∼ 38804348 5 1.35E-08

ENSBTAG00000046561 LCORL 6 38849296 ∼ 38900113 11 1.35E-08

ENSBTAG00000005108 SLIT2 6 41262050 ∼ 41526051 10 1.02E-08

ENSBTAG00000047743 KCNIP4 6 41845249 ∼ 41900486 2 2.84E-09

ENSBTAG00000044106 SPIDR 14 20753321 ∼ 20875591 5 5.95E-09

ENSBTAG00000017019 PRKDC 14 21043161 ∼ 21151156 32 1.15E-12

ENSBTAG00000044050 XKR4 14 24332803 ∼ 24474674 8 1.36E-08

ENSBTAG00000015637 IMPAD1 14 25546508 ∼ 25560744 6 1.29E-11

ENSBTAG00000005287 CYP7A1 14 26351959 ∼26351959 1 2.82E-15

ENSBTAG00000019910 SDCBP 14 26443481 ∼ 26445603 2 5.75E-15

ENSBTAG00000008958 NSMAF 14 26496858 ∼ 26496858 1 3.62E-16

ENSBTAG00000004954 TOX 14 26631471 ∼ 26941314 48 1.25E-08

ENSBTAG00000026283 ASPH 14 28702223 ∼ 28712341 6 1.09E-08

ENSBTAG00000001299 CYP7B1 14 31058827 ∼ 31064078 3 1.49E-08

ENSBTAG00000008629 MTFR1 14 31766665 ∼ 31766665 1 4.63E-10

ENSBTAG00000011614 PDE7A 14 31820412 ∼ 31851268 10 4.63E-10

ENSBTAG00000015229 DNAJC5B 14 32053374 ∼ 32135874 6 9.43E-09

ENSBTAG00000021009 TRIM55 14 32186730 ∼ 32186730 1 5.34E-10

ENSBTAG00000002192 C8orf46 14 32761431 ∼ 32770549 5 3.95E-10

ENSBTAG00000044080 CPA6 14 33605805 ∼ 33606681 2 3.5E-11

ENSBTAG00000022169 PREX2 14 34132990 ∼ 34240707 20 4.82E-09

ENSBTAG00000022588 C8orf34 14 34435605 ∼ 34442538 9 5.14E-10

1Gene ID names were retrieved from Ensembl database using variant effect predictor (VEP) tools (McLaren et al., 2016) based on Bos taurus genome reference assembly
UMD 3.1; 2Bos taurus autosome; 3Only first and last variant positions are presented for each gene; 4Represents the lowest P-value among the SNPs identified in a gene.
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TABLE 6 | Significant SNPs of exon regions in genome-wide association study (GWAS) for CWT and EMA traits in Korean Hanwoo cattle.

SNP BTA Position1 (bp) Minor alleles MAF2 P-value3 SNP location/effect4 Gene Contri.5

Carcass weight

Rs380188912 4 11079716 T 0.11 3.87E-07 3′ UTR GNG11 0.012

Rs478237164 4 11661163 T 0.12 3.05E-08 Splice region COL1A2 0.436

Rs133669403 6 44875315 A 0.04 1.19E-08 Missense PPARGC1A 0.028

Rs208978122 6 44876187 A 0.04 1.19E-08 Synonymous PPARGC1A 0.044

Rs381489766 6 46252102 A 0.14 1.06E-07 missense SEPSECS 1.31E-05

Rs383916341 6 46255074 A 0.19 5.02E-07 Synonymous SEPSECS 1.22E-04

Rs208065122 6 46464755 A 0.15 4.55E-10 Missense ZCCHC4 0.106

Rs132745273 6 46492439 C 0.22 1.16E-08 Synonymous ANAPC4 0.005

Rs109593072 14 13771715 A 0.13 1.25E-10 Synonymous MYC 0.096

Rs110991194 14 13771721 C 0.17 8.55E-08 Synonymous MYC 0.002

Rs461493029 14 21119128 G 0.10 6.22E-14 Synonymous PRKDC 0.013

Rs449968016 14 21137279 T 0.09 6.22E-14 Missense PRKDC 0.004

Rs381602905 14 25560744 A 0.19 7.54E-12 5′ UTR IMPAD1 0.005

Rs41726594 14 26471148 T 0.22 2.96E-08 Synonymous NSMAF 4.18E-06

Rs41726099 14 26479472 A 0.22 2.96E-08 Synonymous NSMAF 4.41E-06

Rs41726103 14 26479946 C 0.22 2.96E-08 Synonymous NSMAF 4.90E-06

Rs110132121 14 26631471 G 0.14 5.31E-15 3′ UTR TOX 0.952

Rs207980725 14 29863346 A 0.10 7.53E-08 3′ UTR YTHDF3 4.97E-07

Rs41734594 14 29863638 T 0.08 6.46E-10 3′ UTR YTHDF3 2.45E-06

Rs109103375 14 32083468 T 0.11 9.22E-11 3′ UTR DNAJC5B 3.66E-05

Rs109953090 14 32088652 C 0.11 9.22E-11 Missense DNAJC5B 4.53E-05

Rs42682459 14 32164650 A 0.12 1.34E-09 Synonymous TRIM55 1.03E-05

Rs109986397 14 32177663 A 0.11 3.42E-10 Synonymous TRIM55 3.55E-05

Rs109714712 14 32213754 C 0.11 4.40E-11 Synonymous CRH 1.30E-04

Rs381116984 14 32214109 T 0.11 4.40E-11 Missense CRH 3.13E-05

Eye muscle area

Rs461493029 14 21119128 G 0.10 4.82E-07 Synonymous PRKDC 0.049

Rs449968016 14 21137279 T 0.10 4.82E-07 Missense PRKDC 0.039

1Positions are based on Bos taurus genome reference assembly UMD 3.1. 2minor allele frequency. 3Significant threshold at 5% level of genome-wide significance for
Bonferroni correction was P = 5.04 × 10−7. 4Location of SNP variants or genes was performed as per cattle genome reference sequence (UMD 3.1) using SnpEff ver.
4.3p (Cingolani et al., 2012b) and variant effect predictor (VEP) tools (McLaren et al., 2016). 5Genetic contribution of each SNP was calculated using Bayesian mixture
model.

small sized autosome. However, SNP density in the marker panel,
statistical model used, types of traits investigated, and species of
interest are major contributing factors to differences between our
results and previous results. Overall, we found variable genomic
contribution attributed across all chromosomes, which support a
polygenic model for carcass and meat quality traits, and is similar
to the findings of Pimentel Eda et al. (2011) and Jensen et al.
(2012) for dairy traits in Holstein cattle.

Partitioning of Genomic Variance by
Functional Annotation and MAF Class
In agreement with our results, Abdollahi-Arpanahi et al. (2016)
found that synonymous regions explained the largest proportion
of genetic variance among six functional classes for body weight,
hen-house egg production, and breast muscle measurement
traits in broiler chicken. In human and cattle, Koufariotis
et al. (2014) and Yang et al. (2011b) reported more genetic
variances were attributed to genic regions than to intron and
intergenic regions, which supports our findings. Moreover, the

per SNP analysis revealed that both missense and synonymous
classes had the largest contributions in total genetic variance
(Koufariotis et al., 2014), which partially agrees with the
present findings. Importantly, there has been increasing interest
in synonymous SNPs, even though they do not change the
amino acid in a polypeptide chain. Previous studies reported
that synonymous mutations were associated with more than
50 human diseases (Sauna and Kimchi-Sarfaty, 2011), and
also affected immature mRNA splicing, alteration of secondary
structure of mRNA, stability of mRNA, protein folding, and the
functions of translated proteins (Hunt et al., 2014). However,
Morota et al. (2014) found that non-genic regions better
explained genomic variance than genic regions for body weight
and hen-house egg production traits in chicken, whereas for
the breast muscle measurement trait, genic regions contributed
more than non-genic regions. This variation with our findings
might be due to differences in species of interest, number
of SNPs investigated, and extent of LD between markers and
QTLs. Overall, we found both genic and non-genic regions
explained substantial amounts of genomic variances for the
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TABLE 7 | Estimates of number and proportion of exon region SNPs contributed in each mixture component by BayesR for carcass and meat quality traits in Korean
Hanwoo cattle.

Trait Nsnp σ2
G Number of SNPs in mixture component

0 × σ2
A 10−4 × σ2

A 10−3 × σ2
A 10−2 × σ2

A

CWT 3979 580.93 95225 3652 (3.68) 292 (0.30) 35 (0.04)

(95.99) [215.72] [169.74] [194.65]

EMA 5001 21.97 94198 4638 (4.68) 346 (0.35) 22 (0.02)

(94.95) [10.45] [7.57] [3.92]

BFT 5305 4.17 93899 4899 (4.94) 390 (0.39) 16 (0.02)

(94.65) [2.07] [1.64] [0.46]

MS 6859 0.845 92345 6600 (6.66) 246 (0.25) 13 (0.01)

(93.08) [0.56] [0.21] [0.08]

Nsnp, number of SNPs in model; σ 2
G, total genetic variance explained by the SNPs; values in parentheses are proportion of SNPs in each mixture component; σ 2

A , genetic
variance explained by the respective mixture component and values are presented in the square brackets. CWT, carcass weight; EMA, eye muscle area; BFT, backfat
thickness; MS, marbling score.

carcass and meat quality traits, which favors the infinitesimal
theory and highlights the importance of SNPs spread over the
entire genome.

van Binsbergen et al. (2015) reported that the frequency
of low MAF increased proportionately with the advancement
of SNP density and the proportions of low frequency alleles
varied from 25 to 30% of the total SNPs in imputed sequence
level SNP data and in whole-genome sequences. This result
is in agreement with our present findings. Using sequence
level SNP data in dairy cattle, Zhang et al. (2017) found the
highest relative contribution in genomic variance was attributed
to the common variants (MAF > 0.05–0.50) for production
traits, whereas rare and low frequency alleles were more highly
represents in the explained variance for fertility, longevity, and
health-related traits. Their findings pointed toward a polygenic
component of production traits and support our findings.
Ogawa et al. (2016) reported a higher proportion of additive
genetic variance was associated with common alleles where the
MAF category ranged from 0.20 to 0.30 for the CWT trait
in Japanese Black cattle. They also found that three major
QTLs previously identified on BTA6, 8, and 14 were within
the cited allele frequency range and potentially contributed
to the higher genetic variance. However, the differences in
MAF distribution for the CWT trait between previous and
present findings may be associated primarily with SNP marker
density. Taken together, these results suggest that common
alleles make substantial contributions to the total genetic
variance for quantitative traits and also support the present
findings for carcass and meat quality traits in the Hanwoo
population.

GWAS and Contribution of Genomic
Variants
Previous GWAS using both 50K and 777K data have revealed
major QTL(s) on BTA14 associated with CWT and bovine
stature in different cattle breeds including Hanwoo (Lee et al.,
2013). Here, a wider range of significant SNPs was detected
in BTA14 as well as in BTA4 and BTA6 using sequence level

SNP information. These findings may help to identify more
causal variants associated with economically important traits in
cattle. Earlier studies reported genetic variants in and around
PLAG1 and a nearby major QTL on BTA14 for their associations
with bovine stature (Karim et al., 2011), CWT (Nishimura
et al., 2012), early life body weight, and peripubertal weight
(Littlejohn et al., 2012), as well as birth weight (Utsunomiya
et al., 2013) in different cattle populations. In our study, variants
of neighboring genes of PLAG1 were found to be significantly
associated with CWT, but the most significant SNP marker
(rs41724548) was located in TOX, which is 1.61 Mb distant
from PLAG1, and also confirmed the previous findings of
Lee et al. (2013). Based on 50K SNP chip data, Lee et al.
(2013) reported that PLAG1, CHCHD7, FAM110B, CYP7A1,
SDCBP, and TOX were positional and functional candidate
genes for a CWT QTL in Hanwoo cattle, which supports our
findings. In addition, they reported that the variants located
near PLAG1 and CHCHD7 had non-significant associations with
CWT, which is similar to the present findings. TOX acts as a
transcription factor in the hypothalamus and plays a key role
in the development of puberty in Brahman cattle (Fortes et al.,
2012). Causal variants of TOX were associated with reproductive
traits in Nellore cattle (de Camargo et al., 2015). Altogether,
previous studies have reported that SNP variants associated with
carcass traits were centered on PLAG1. However, we found
SNP variants in an extended region between 20.7 and 34.4
Mb were associated with CWT, suggesting synergistic effects of
multiple genes for the major QTL(s) on BTA14 in the Hanwoo
population.

In previous studies, a QTL on BTA6 around the NCAPG–
LCORL region was found to be associated with CWT and
body frame size in Japanese Black cattle (Setoguchi et al., 2009,
2011) and birth, weaning, and yearling weight in crossbred
beef cattle (Snelling et al., 2010). Setoguchi et al. (2011)
found a LD block spanning a 591 kb region encompassed
FAM184B, DCAF16, NCAPG, and LCORL where a causal variant
(Ile442Met) was located in NCAPG. Recently, Xia et al. (2017)
reported 11 significant SNPs associate with a skeleton trait in
Simmental cattle that were located in or nearby LAP3, FAM184B,
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LCORL, and NCAPG on BTA6, which have been regarded as
positional candidate regions for carcass and growth traits in cattle
(Lindholm-Perry et al., 2011). Importantly, we found a number
of significant markers within this region associated with CWT
and EMA, and confirmed the previously reported association
using sequence level SNP data for the first time in Hanwoo
cattle.

In addition, similar to our study, a number of coding variants
on PPARGC1A, COL1A2, and CRH have been documented
for their association with growth, carcass, and meat quality
traits in mammals including cattle. PPARGC1A encodes a
transcriptional coactivator that regulates the genes involved in
lipid and glucose metabolism, and has been regarded as a
positional and functional candidate gene for carcass traits in beef
cattle (Shin and Chung, 2013). The synonymous (c.396G > A)
and missense (g.1181G > A) mutations of this gene had
significant associations with body weight and average daily gain
in Nanyang cattle (Li et al., 2014), as well as with growth,
slaughter, and meat quality traits in Brangus steers (Soria et al.,
2009). Besides, Shin and Chung (2013) reported two intronic
SNPs in PPARGC1A to be significantly associated with the
carcass trait EMA in Hanwoo, which supports our findings.
CRH plays important roles for growth and development in
mammals, and two coding SNPs (synonymous and missense)
of this gene had significant association with CWT in our
study. A missense mutation of CRH (G1084A) was significantly
associated with the EMA trait in Hanwoo (Seong and Kong,
2015), which is in agreement with the present study. COL1A2,
which encodes the pro-alpha2 chain of type I collagen, has
been extensively investigated in human. Mutations in this
gene were associated with several bone-related pathogenicity-
like osteogenesis imperfecta and dental fluorosis. We found
significant association with variants of COL1A2 for CWT in
Hanwoo. Above all, the coding variants detected in our study
spanned three different genomic regions on BTA4, 6, and 14,
whereas earlier studies documented major QTL(s) for carcass
traits only on BTA14 in Hanwoo populations. Using sequence
level SNP data, we detected two additional genomic regions
(a 0.58 Mb region on BTA4 and a 1.61 Mb region on BTA6)
in this study that may be new candidate loci for carcass traits
in the investigated population. This information can be used to
detect causal variants as well as in genomic selection programs in
Hanwoo cattle.

Our results on the effect sizes of SNPs are in agreement with
the infinitesimal theory as well as with the findings of Erbe et al.
(2012) and Moser et al. (2015). Previous studies suggested that
the minimum number of effective loci was between 400 and
4000 for capturing almost all genetic variances that accounted
for milk production and disease resistance traits (Pimentel
Eda et al., 2011; Erbe et al., 2012). In another investigation,
Moser et al. (2015) reported that the number of SNPs with
larger effects (10−4

× σ2
A, 10−3

× σ2
A, and 10−2

× σ2
A) varied

greatly (between 2633 and 9411) among seven human diseases.
Moreover, they found that more than 96% of the SNPs were
attributed with very small effects, close to zero. In our study,
the number of large effect SNP variants in exon regions varied
between 3979 (CWT) and 6859 (MS) among the investigated

traits for explaining almost all of the total genetic variance,
whereas the majority of the SNPs (>93%) were involved with
the remaining genetic variance, which indicated the traits were
polygenic in nature and were consistent with the previously
reported findings in livestock and human. The types of traits
investigated and the total number and category of SNP variants
(exon, intron, or intergenic) included in the analysis might be
major contributing factors for the differences between previous
and present studies.

CONCLUSION

Imputed genome sequence level data revealed the contributions
of both genic and non-genic SNPs to phenotypic variations for
four carcass and meat quality traits. Intragenic SNPs explained
more genomic variance than intergenic variants, and the highest
variance was attributed to synonymous SNPs. Genomic regions
partitioned based on functional annotations, chromosome, and
MAF category showed distinct differences in the variance
explained for carcass and meat quality traits, and thus depicted
different genetic architectures between the two types of traits.
A wide range of significant SNPs and their contributions were
established through this study. Some of these variants or genes
that harbor them, first reported in this study, could be included
in the genomic evaluation of quantitative traits in Hanwoo. Only
4–7% of the genic variants potentially contributed to the total
explained genetic variance, while the remaining thousands had
close to zero contribution and largely point toward the polygenic
composition of these traits.
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