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Abstract: The lookup table methods for decoding binary systematic Quadratic Residue (QR) code are 
presented in this paper. The key ideas behind this decoding technique are based on one to one corresponding 
mapping between the syndromes and the correctable error patterns. Such algorithms determine the error locations 
directly by lookup tables without the operations of  addition and multiplication over a finite field. Moreover, the 
methods to dramatically reduce the memory requirement by shift-search decoding are utilized. Two new algorithm 
have been verified through a software simulation in C language. The new approach is modular, regular and naturally 
suitable for System on Chip (SOC) software implementation. 
Keyword — QR code, Lookup Table method. 

 
 
 

1. INTRODUCTION 
 

In this paper, two efficient algorithms called the direct method algorithm and the Lookup Table Decoding (LTD) 
algorithm to decode the binary systematic QR codes are proposed. The advantage of  two algorithms is that they 
make use of  the lookup tables not only to determine the error patterns directly but also to avoid executing the 
operations of  addition and multiplication over a finite field. As a result, the decoding speed of  both algorithms are 
considerably faster than those methods before. Also, the use of  a systematic encoder leads to a substantial reduction 
in the memory required for lookup tables. Furthermore, the LTD method to dramatically reduce the memory 
requirement only stores the lookup tables for all error patterns of  weight less than or equal to t-1, where t is the 
number of  correctable errors. To decode the t-th error case, we utilize the shift-search algorithm. In the direct 
method algorithm, we construct all error patterns in the table and reduce the memory requirement by systematic 
encoding. However, the memory requirement is still tremendous larger than LTD algorithm. The proposed 
algorithms have been verified through a software implementation using C language. Finally, a comparison to decode 
QR codes with code word length 23, 41 and 47 between the direct method algorithm and the LTD algorithm is given 
in Table 4.2. 

 
 

2. BACKGROUND OF QR CODES 
 

In general, QR codes tend to be very good block codes with rates approximating 1/2. We examined the properties of 
polynomial over Galois field in some detail. Let n be a prime number of  the form n l 8 1 , where l is a positive 

integer. The set nQ  of  quadratic residues modulo n is the set of  nonzero squares modulo n; that is, 

 

   mod   for 1nQ j j x n x n    2{ | 1}   (2.1) 

 
Let m be the smallest positive integer such that n divides m 2 1  and let   be a generator of  the 

multiplicative group of  all nonzero elements in mGF(2 ) . Then the element u  , where mu n (2 1) / , is 

a primitive n-th root of  unity in mGF(2 ) . A binary (n, k, d) QR code is a cyclic code with the generator polynomial 

g x( )  of  the form, 
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n

i

i Q
g x x 


 ( ) ( )   (2.2) 

 
A codeword of  the (n, k, d) QR code is a binary vector c nc c c  0 1 1( , , , )  so that its associated polynomial 

n
nc x c c x c x 
    1

0 1 1( )   is a multiple of  g x( ) . If  the codeword c is transmitted through a noisy channel, 

and if  the vector nr r r r  0 1 1( , , , )  is received, then the polynomial n
nr x r r x r x 
    1

0 1 1( )   

corresponding to r can be expressed as a sum of  the code polynomial c x( )  and the error polynomial 
n

ne x e e x e x 
    1

0 1 1( )  . The set of  known syndromes is obtained by evaluating r x( )  at the roots of  

g x( ) , i.e., 
 

 i i i i i i n
i n nS r c e e e e e i Q      

        1
0 1 1( ) ( ) ( ) ( ) ( ) ( ) ,   (2.3) 

 
If, during the data transmission, v errors occur in the received vector r, then it is said that it is said that the error 

polynomial has v nonzero terms, namely, vl le x x x  1( )  , where vl l n    10 1 . And, for 

ni Q  the syndrome iS , written as i i
i vS Z Z  1  , where jl

jZ   for j v 1 , are called the error 

locators. 

For any binary QR codes, there is an obvious relation among syndromes, namely, i iS S 2
2 , with sub-index 

modulo n if necessary.  
Assuminging that v errors occurred, we define the error-locator polynomial z( )  to be the polynomial of degree v 

 

 
vv

j
j j

j j
z Z z z 

 
   

1 1
( ) (1 ) 1   (2.4) 

 

where the coefficients vZ Z   1 1 ,  v vZ Z Z Z Z Z    2 1 2 1 3 1 , ,  and v   vZ Z1 . In the 

past, the most of  techniques mainly focus on the Newton identities with either Sylvester resultants or Gröbner bases 
to calculate the error locator polynomial.  

 
 

3. CONSTRUCTION OF LOOKUP TABLES AND BINARY-SEARCH ALGORITHM 
 

3.1 Generate the Decoding Table 
 

According to (2.4), we compute the syndromes corresponding to the received error patterns. The superscript v 

represents the v errors case of syndrome “ 1S ”, namely “
1

( )vS ”. The set of all syndromes corresponding to 

correctable error patterns that mapped into 
1

( )vS , are defined as follows: 

 

Case 0) For 0 error occurred, the syndrome is (0)
1 0S  . 

Case 1) For 1 error occurred, the set of syndromes is: 1(1)
1 1{ |   for  0 }iS s s i n    . 

Case 2) For 2 errors occurred, the set of syndromes is: 1 2(2)
1 1 2{ | for 0i iS s s i i n       } . 

  
Case t) For t errors occurred, the set of syndromes is: 1 2( )

1 { | forti i itS s s         

1 2 0 }ti i i n     . 

 
To avoid memory fragment, we replace these sets into two lookup tables, called Table A and Table B, to store 
syndrome values and correctable error patterns, respectively. By these two tables, the index of these syndromes in 
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the memory can be a consecutive list. Once the consecutive list is available, the binary-search is utilized to search the 
syndrome more quickly. However, the required memory size is too huge to be implemented in the SOC software. 
Therefore some methods to reduce the memory usage are necessary. 
With the systematic encoding, we could also reduce the memory requirement. According to systematic encoding, we 
do not need to store all correctable error patterns. Only those error patterns that contain at least one error appeared 
in the message part are necessary to be stored in the memory. 

Following the idea mentioned above, all correctable error pattern sets mapped into )(

1

vS  are defined as follows.  

Case 0)For 0 error occurred, the syndrome is (0)
1 0S  . 

Case 1)For 1 error occurred, the set of syndrome is 1(1)
1 1{ |   for  1 }iS s s k i n     . 

Case 2)For 2 errors occurred, the set of syndrome is 1 2(2)
1 { | fori iS s s      1 1 2 , 0}.k i n i i     

  
Case t) For t errors occurred, the syndrome of 1 2( )

1 1{ | for  ti i itS s s k i n         , 

1 10 ... }t ti i i     

 

By the definition above, the necessary error patterns reduces as: 
(1) (2) ( )
1 1 1

0 0

1t tt

i i

n k
S S S

i i 

                    
  .  

To reduce more memory requirement, the LTD algorithm by utilizing the systematic encoding property and 
constructing only 1 to t-1 error patterns in the table is proposed. As for the t-th error, we apply the shift-search 
algorithm which is introduced in Section 4. By this idea, the necessary memory sizes are reduced dramatically. The 

total number of error patterns is thus reduced as 
1 1

(1) (2) ( 1)
1 1 1

0 0

1t t
t

i i

n k
S S S

i i
 



 

                    
  .  

To describe the construction of tables, let 0 1 2 1 1( , ) ( , , , , , , , )d m k k k ne e e e e e   e e e   , 

0 1 2( , , , )d ke e e e   and 1 1( , , )m k ne e e  , be the error vectors and ie , where 0 1i n   , be a binary 

n-tuples in which only the i-th coordinate contains a nonzero value. For example, 1 (0,1, 0, ,0)e  . The pseudo 

code of generating tables is described as follows. 
 

Step 0: Initial index 0 . 
Step 1: For 1 Error pattern  

for i 1  k-1 until n do 
begin 
De_tableA[index] record of 1i ; 

1i
e e ; 

De_tableB[index]  
me ;  

index   index +1; 
end; 

Step 2: For 2 Error patterns  
for i1   k-1 until n do 
for i2   i1-1 until 0 do 
begin 
De_tableA[index] record of 1 2i i  ; 

1 2i i e e e ; 

De_tableB[index]  
me ; 

index   index +1; 
end; 
  

Step t: For t Error patterns  
for i1   k-1until n do 
for i2   i1 until 1 do 
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  
for it-1   it-2 until t-2 do 
begin 
De_tableA[index] record of 1 2 1ti i i      ; 

1 2 1ti i i   e e e e ; 

De_tableB[index]  
me ; 

index   index +1; 
end; 

Step t+1:De_tableB[] is sorted according to the sorting pattern of the syndrome array of De_tableA[]. 
 
Both arrays of De_tableA[.] and De_tableB[.] are called the lookup Table A and the lookup Table B, respectively. 

 
 

3.2 An Example of  Binary-Search Algorithm 
 

To find the syndrome in the lookup Table A efficiently, the binary-search algorithm is necessary and is introduced 
below. The C-program example of  (47, 24, 11) QR code of  binary-search algorithm is shown as follows: 
 
int Bin_Search(unsigned int syndrome, unsigned int De_tableA[]){ 

 int high =184806, low = -1, middle; 
 while (high - low > 1){ 
         middle = (low + high) >> 1; 
         if (De_tableA[middle] > syndrome) 
             high = middle; 
         else 
             low = middle; 
     } 
      if (low == -1 || De_tableA[low] != syndrome) 
          return -1; 
      else 
          return low; 
} 

 
By using of binary-search algorithm, the complexity is O(log n). Although in linear- search algorithm, the complexity 
is O(n). In other words, the worst case of finding the target element takes 14 and 184,806 comparisons, respectively. 
 
 
4. THE SHIFT-SEARCH ALGORITHM AND THE DECODING ALGORITHMS 
 
4.1 Shift-Search Algorithm 
 
The idea of the shift-search decoding algorithm is described as follows: 
For 0 to t-1 error cases, it is easy to decode the new decoding algorithm directly. Suppose more than t-1 errors, say t 
errors, are received. In order to decode the code for the t errors case by received r(x), we first change one bit of the 
received r(x), i.e., let '( ) ( ) pr x r x x  , 0 1p n   . Then, each syndrome is described as follows: 

 

 p t pS r r S p n          ( )
1 1'( ) ( ) , for 0 1.   (4.1) 

 

According to (4.1), ( )
1
tS  becomes 1 2( )

1 ( ) ( ) ti i itS r e          , where 

1 2 0 1ti i i n      . For p  in (4.1), there are only p’s that can match an error position and we need to 

search at most 1 tn  times. If ( )
1
t pS  = ( 1)

1
tS  , it becomes the syndrome of a 1t   errors cases that can be 

found in the lookup Table A. Otherwise we obtain the syndrome of a 1t   errors case (i.e., ( ) ( 1)
1 1
t p tS S   ).  

For 0 to 1t  error cases, it is easy to decode by new decoding algorithm directly. Suppose more than t-1 errors are 
received, to decode the code for the t-th error case by received r(x), one first changes one bit of  the received r(x), i.e., 
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let '( ) ( ) pr x r x x  , 0 1p n   . Then, for each syndrome as follows: 
 

 i v pS r r S p n          ( )
1 1'( ) ( ) , for 0 1   (4.2) 

 

According to (4.2), ( )
1
tS  becomes ( )

1
1

( ) ( ) j
t

it

j
S r e  


   , where  0 ji n  . For p  in (4.2), there are 

only t p’s that can match an error position and one needs to search at most 0 p n t    times. If  
( ) ( 1)
1 1
t p tS S   , it becomes the syndrome of  a v-1 error case that can be found in the lookup Table A. Otherwise 

one obtains the syndrome of  a v+1 error case (i.e., ( ) ( 1)
1 1
v p vS S   ). However, if  syndrome ( 1)

1
vS   equals 

syndrome of  ( )
1 , 1 1vS v t   , the LTD algorithm fails the decoding. To avoid this situation, the necessary 

condition of  correcting exactly v error cases is, 
 

 v vS S v t    ( ) ( 1)
1 1 , 1 1   (4.3) 

 
A syndrome is to be satisfied with (4.3) and the following Theorem is necessary. 
 
Theorem 1.  
Let ( )g x  divide ( )e x , where ( )g x  is generator polynomial and the weight of  ( )e x  is equal to d, i.e. 

( ( ))wt e x d . Then syndrome ( ) ( )
1 1
t d tS S  , where t is the number of  errors. 

 

Proof. Since ( ) 0g    and ( )g x  divide ( )e x , one has ( ) 0e   . Let ( ) ( ')
1 1
t tS S , where t and 't  are different 

numbers of  the error pattern case, then ( ) ( ')
1 1 ( ) 0t tS S e    . Denote the weight function by wt(.).  Since 

( ( ))wt e x d , an error pattern could be as follows 
 

1 2
1 ( ) dl l lS e         , where 10 1dl l n     .  

 

The syndrome 1S  can be written as 

 

 tt t dll l l l l t d t

t d t

e S S        



          11 2 2 ( ) ( )
1 1( ) ( ) ( ) 0     (4.4) 

 

Therefore, (4.4) holds for ( ) ( )
1 1
t d tS S  and the theorem is proved.      □ 

 

For example, if  the minimum distance of  this QR code is 11d  , we obtain (1) (10)
1 1S S , (2) (9)

1 1S S , 
(3) (8)
1 1S S , (4) (7)

1 1S S  and (5) (6)
1 1S S . Although some syndromes of  six errors that could be equal to the 

syndromes of  5 errors i.e. (5) (6)
1 1S S , the LTD algorithm would not fail to decode because the syndrome of  5 

error case does not exist in the lookup table. 

Note that if  all 1 to t-1 error patterns appear in the remainder block dr , it would be regarded as a t error case 

because the syndrome of  these error patterns does not exist in the lookup table. Moreover, if  the p-th position also 

occurs in the remainder block dr , this syndrome cannot be found in the lookup table by the LTD algorithm. On the 

other hand, if  the p-th position occurs in the message block mr , the syndrome will be found in the lookup table, i.e., 
( 1) ( )
1 1
v v pS S    , where ( 1) / 2 1n p n     and 1 2v t   . Therefore, ( 1)

1
vS   could be found in 

the table and we obtain the error patterns me , According to the LTD algorithm, the receive vector could be 
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corrected as '
pm m m m   r r e e r , where pe  is set of  binary ( 1) / 2n  -tuples in which only the p-th 

coordinate contains a nonzero value at p-th position. 
The flowchart of  the new decoding algorithm is depicted in Figure II. The LTD algorithm, shown in Figure II, 

has also been programmed in C language. 
 
 
4.2 The direct method algorithm and the LTD Algorithm 

 
As long as the table is constructed, the algorithm of  algorithm of  direct method is thus applied to decode the QR 
codes which can be summarized by the following ten steps: 
 
The direct method algorithm 
1) Initialized by letting 1p k  . 
2) Compute the syndromes 

1S  for a received vector r. 
3) If 

1S =0 go to stop.  
4) If syndrome is in T, go to step 9. 
5) Check 

1S + p  value in T. If syndrome is in T, go to step 8. 

6) Compute 1p p  . 
7) If p>n-1, go to stop. Otherwise return to step 5. 
8) If the index corresponding to the syndrome in the lookup table A, then the error pattern '

me  is obtained by 

index to find in lookup table B. Addition '
me  by one bit at p-th position, obtaining error pattern 

me  (i.e., 

'  pm m e e e  where pe  is a binary k-tuples in which contains only a nonzero value at p-th position), go to step 

10. 
9) Look for the index corresponding to the syndrome in the lookup table A, then error pattern 

me  is obtained by 

index to be found in the lookup table B. 
10) Subtract the error pattern 

me  from received vector 
mr , obtaining the message block 

mc , go to stop. 

 
The flowchart of the direct method algorithm is shown in Fig. 1. 
 
To decode all the (23, 12, 7), (41, 21, 9) and (47, 24, 11) QR codes, we construct sorted syndrome values in the 

memory, namely set T. The set T is designated as 
( )
1
v

v
T S . This algorithm is summarized by the following ten 

steps: 
 
The LTD algorithm 

 
1) Initialized by letting 0p . 

2) Compute the syndromes 1S  for a received vector r. 

3) If 1 0S   go to stop.  

4) If syndrome is in T, go to step 9. 

5) Check 1
pS   value in T. If syndrome is in T, go to step 8. 

6) Compute 1p p  . 
7) If p n t  , go to stop. Otherwise return to step 5. 
8) If 1p k  ,look for the index corresponding to the syndrome in the lookup table A, then the error pattern 

'
me  is obtained by index to find in lookup table B. Addition '

me  by one bit at p-th position, obtaining error 

pattern 
me  (i.e., '  pm m e e e  where pe  is a binary k-tuples in which the p-th coordinate contains a nonzero 

value only at p-th position), go to step 10. 
9) Look for the index corresponding to the syndrome in the lookup table A, then error pattern 

me  is obtained by 

index to be found in the lookup table B. 
10) Subtract the error pattern 

me  from received vector 
mr , obtaining the message block 

mc , go to stop. 
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The above new decoding schemes have been verified exhaustively for v errors, where 0 v t   , by a 

computer simulation. The computer simulation comparisons among errors of QR codes with different methods are 
shown in the Table 4.1. In computer simulation, we test 1,000,000 codewords for each error case. According to the 
simulation results, all codewords can be decoded within 4*10-6 second. 

The new decoding schemes are suitable for both software and hardware realizations. However, in searching the 
syndrome of t errors case, we could not avoid that all 1 to t-1 error patterns occurred at remainder d(x). In this 
situation, the error would be found after executing the shift-search algorithm. Therefore, some computer simulation 
time would be increased. 

 
 

5. COLCLUSION 
 
The result in Table 4.1 is quite practical that can be utilized in the SOC software. Moreover, the memory 
requirement of the direct method algorithm is about ten times larger than of the LTD algorithm, but the CPU time 
of the direct method algorithm is half of the LTD algorithm. Finally, the flowchart for each algorithm is given in 
Fig.1 and Fig.2.  

 
Table 4.1 Comparisons among different methods for each QR code 

QR Code v errors Direct method LTD algorithm 

(23, 12, 7) 
1  0.27s 

10K Bytes 
0.75s 

1.03K 
Bytes 2  0.42s 0.92s 

3  0.58s 1.34s 

(41, 21, 9) 

1  0.49s 
991K 
Bytes 

2.36s 
89.4K 
Bytes 

2  0.95s 1.89s 
3  1.04s 1.93s 
4  1.10s 2.92s 

(47, 24, 11) 

1 0.516 s  
 
9640 K 
Bytes 

3.765 s  
 
1050 K 
Bytes 

2 1.125 s 2.968 s 
3 1.515 s 1.984 s 
4 2.063 s 1.782 s 
5 2.094 s 3.884 s 
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Fig.1 The flowchart of direct method algorithm 
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Fig. 2. LTD algorithm Flowchart of the (n, k, d) QR encoder and decoder. 
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