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During ongoing and Up state activity, cortical circuits manifest a set of dynamical

features that are conserved across these states. The present work systematizes these

phenomena by three notions: excitability, the ability to sustain activity without external

input; balance, precise coordination of excitatory and inhibitory neuronal inputs; and

stability, maintenance of activity at a steady level. Slice preparations exhibiting Up

states demonstrate that balanced activity can be maintained by small local circuits.

While computational models of cortical circuits have included different combinations of

excitability, balance, and stability, they have done so without a systematic quantitative

comparison with experimental data. Our study provides quantitative criteria for this

purpose, by analyzing in-vitro and in-vivo neuronal activity and characterizing the

dynamics on the neuronal and population levels. The criteria are defined with a

tolerance that allows for differences between experiments, yet are sufficient to capture

commonalities between persistently depolarized cortical network states and to help

validate computational models of cortex. As test cases for the derived set of criteria,

we analyze three widely used models of cortical circuits and find that each model

possesses some of the experimentally observed features, but none satisfies all criteria

simultaneously, showing that the criteria are able to identify weak spots in computational

models. The criteria described here form a starting point for the systematic validation of

cortical neuronal network models, which will help improve the reliability of future models,

and render them better building blocks for larger models of the brain.

Keywords: spiking neural networks, up/down states, validation, benchmarking, computational models,

asynchronous irregular activity, fluctuations

1. INTRODUCTION

Experiments performed in the past decades suggest network excitability and balance as
fundamental dynamical features of local cortical networks. Evidence of high excitability comes for
instance from slice experiments in which Up states lasting hundreds of milliseconds or even
seconds emerge spontaneously or after brief thalamic stimulation (Sanchez-Vives and McCormick
2000; MacLean et al. 2005; Wester and Contreras 2012; Figure 1A). Without negative feedback
balancing excitation (Sanchez-Vives et al., 2010) or in case excitation and inhibition desynchronize
(Dehghani et al., 2016), such excitability causes seizure-like activity. Balance is demonstrated
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FIGURE 1 | Schematic representation of dynamical properties of cortical

networks. (A) Brief suprathreshold external stimulation (indicated by the

vertical dashed line) leads to prolonged intrinsically sustained activity (an Up

state) in a previously silent network. Within Up states, the membrane potential

of individual neurons is characterized by small fluctuations with coefficient of

variation CV (Vm)≪ 1. Across Up and Down states, the membrane potential

has a bimodal distribution (inset). (B) During prolonged network activation

(e.g., Up states), putative inhibitory currents (i.e., measured at 0 mV, blue

curve) on average follow excitatory ones (i.e., measured at −80 mV, red

curve). The currents balance each other around −30 mV with small

fluctuations remaining (black curve). (C) Excitatory and inhibitory currents to an

individual neuron averaged over short time windows are proportional. (D)

Activity in the network could in principle result in strongly (gray curve) or slightly

(black curve) fluctuating excitatory and inhibitory input currents compared to

their mean levels. Experimental evidence supports the latter case.

by experiments where, upon network activation, already in
single trials, excitatory currents to individual neurons are
opposed by inhibitory currents of comparable amplitude after
a few milliseconds (reviewed by Isaacson and Scanziani, 2011).
Throughout Up states lasting up to seconds, mean levels
of putative excitatory and inhibitory synaptic currents are
proportional (Shu et al., 2003; Haider et al., 2006; Figures 1B,C).
On the population level, balance is demonstrated on multiple
time scales through the tight correlation between spike rate
dynamics of excitatory and inhibitory neuronal ensembles
(Dehghani et al., 2016). During Up states and ongoing activity,
neurons spike irregularly due to fluctuations on top of the
balanced excitatory and inhibitory input that brings the mean
membrane potential just below the threshold (Destexhe et al.,
2003; Fanselow and Connors, 2010). The balanced random
network model qualitatively explains such dynamics (van
Vreeswijk and Sompolinsky, 1998; Brunel, 2000), in which
fluctuations relative to mean inputs are large compared to those
in purely excitatory stable networks. However, compared to
mean excitatory and inhibitory input currents, the fluctuations
are small, a feature we call “input stability” (Shu et al.
2003; Haider et al. 2006; Figure 1D black curve). Membrane
potential fluctuations are likewise small compared to the
mean depolarization from rest. Our reason for emphasizing
this aspect of the dynamics is that small synaptic current
fluctuations are difficult to combine with network excitability.
For example, network models based on the random balanced
network architecture with sufficient excitability to intrinsically

sustain activity tend to show large synaptic current fluctuations
(Ostojic 2014; Kriener et al. 2014, Figure 1D gray curve). Spiking
during Up states and ongoing cortical activity displays few bursts
(de Kock and Sakmann, 2008; Fanselow and Connors, 2010), and
is only slightly correlated among neurons (Eggermont and Smith,
1996; Brosch and Schreiner, 1999).

Excitability, balance, membrane potential and input stability,
and asynchronous-irregular non-bursty spiking are observed
across species, age, cortical states, and areas both in vivo
and in vitro during persistently depolarized network states
(Steriade et al., 2001; Cruikshank et al., 2007; Destexhe et al.,
2007; Johnson and Buonomano, 2007; Okun and Lampl,
2008; Compte et al., 2009; Tan and Wehr, 2009; Chauvette
et al., 2011; Chen et al., 2012; Dehghani et al., 2016) and
represent a fundamental property of local cortical networks. This
universality leads us to consider this mode of activity under
the umbrella term “persistently depolarized network states”
(PDNS). For instance, PDNS are observed during rapid eye
movement sleep and attentive wakefulness (Timofeev et al.,
2001; Destexhe et al., 2007; Steriade et al., 2001), as well
as in the form of Up states during Up-Down oscillations
in vivo during anesthesia (Steriade et al., 1993; Timofeev
et al., 2000; Waters and Helmchen, 2006; Sakata and Harris,
2009; Chen et al., 2012; Beltramo et al., 2013) and slow-
wave sleep (Timofeev et al., 2000, 2001; Chauvette et al.,
2010, 2011), and in vitro (Sanchez-Vives and McCormick,
2000; Shu et al., 2003; Hasenstaub et al., 2005; MacLean
et al., 2005; Watson et al., 2008; Wester and Contreras, 2012).
However, during slow-wave sleep or under certain types of
anesthesia (e.g., ketamine-xylazine), the duration of Down
states is strongly reduced (Chauvette et al., 2011; Haider
et al., 2013) such that sometimes no clear Down state can be
discerned. This type of activity can blur the bimodality of the
membrane potential distribution when subthreshold fluctuations
are moderate, so that the activity approaches a continuous
strongly fluctuating state (Lampl et al., 1999). However, even in
such conditions, subthreshold membrane potential oscillations
remain highly synchronous across cells (Lampl et al., 1999).
This suggests the existence of a continuous spectrum of Up-
Down-like oscillations with varying Up state durations and
frequencies, which is indicative of the flexibility of cortical circuit
dynamics. In this work, we primarily focus on well-distinguished
Up states.

Assessing computational models for the properties of PDNS
is important for constructing unified and reliable cortical
models. Published models have provided insights into multiple
phenomena, including asynchronous irregular firing (Brunel,
2000), correlations in neuronal activity (Tetzlaff et al., 2012;
Helias et al., 2014), self-sustained activity (Compte et al., 2003b;
Kriener et al., 2014), and fast stimulus tracking (van Vreeswijk
and Sompolinsky, 1996). However, these models tend to focus
on a limited set of single-neuron and network properties while
other aspects remain unrealistic. These restrictions reduce the
predictive power of models and make it difficult to combine
them into a unified whole that simultaneously accounts for a
large set of phenomena. Furthermore, a framework that allows
one to assess the biological plausibility of the basic structure
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and dynamics of models of cortex in a systematic manner
is currently missing. We here address this issue, focusing on
the local cortical circuit as a building block for larger-scale
models of cortex. We summarize observations of excitability,
balance, and stability, which suggest that cortical circuits of
several thousand neurons are already sufficiently excitable and
balanced to intrinsically maintain complex activity. Based on
experimental data and reports we derive a set of criteria on
these dynamical features as well as on basic structural and single-
neuron properties which provides a starting point for systematic
verification of computational models of cortex. As examples, we
select three prominent computational models and test their levels
of excitability, balance, and stability. We show that each model
possesses some of these features, but none combines all features
with parameters constrained by biology. This suggests that the
criteria derived here can be useful for testing cortical models and
supporting or challenging their reliability.

2. MATERIALS AND METHODS

2.1. Membrane Potential Fluctuations
As a reference for membrane potential fluctuations during
prolonged network activation, we use intracellular recordings
from neurons in rat motor cortex undergoing Up-Down
oscillations. The data were kindly shared by Melissa Barry and
John N. J. Reynolds (University of Otago School of Biomedical
Sciences, New Zealand). Details of the corresponding experiment
are described by Wilson et al. (2010). In short, neuronal
membrane potentials were recorded with a sharp micropipette
in the motor cortex of urethane-anesthetised Wistar rats. This
resulted in 30 traces (90s duration, 0.1ms time resolution), where
the membrane potential exhibited: (1) rhythmic transitions
between depolarized (Up) and hyperpolarized (Down) states; (2)
a sustained level of short-time averaged hyperpolarization during
Down states throughout the recording time. For each trace we
distinguish periods of sustained network activation (Up states)
according to the following criteria: (1) the membrane potential
is substantially depolarized for at least 400 ms; (2) no upward or
downward trend in the membrane potential throughout the Up
state; (3) Up states are flanked by periods of hyperpolarization
with a duration of at least 150ms (Down states).We are interested
in subthreshold membrane potential fluctuations as a reflection
of the input, and therefore exclude spikes (10 ms centered at the
spike peak). An example subthreshold membrane potential trace
during consecutive Up states is shown in Figure 2.

To quantify the degree of membrane potential fluctuations
during periods of sustained network activation, we use the
coefficient of variation,

CV
[

Vm(t)
]

=
σ
[

Vm(t)
]

µ
[

Vm(t)
]

− Vrest
, (1)

where Vm(t) is the membrane potential trace, µ
[

Vm(t)
]

and σ
[

Vm(t)
]

are the mean and standard deviation of the
membrane potential, and Vrest is the resting potential. The
subtraction of Vrest in the denominator reflects the fact that it
is the depolarization from rest which characterizes the level of

FIGURE 2 | Example trace of subthreshold membrane potential during two

consecutive Up states (red curves) in a total of 3 s of in-vivo recording (gray

curve) from a neuron in rat motor cortex (Melissa Barry and John N. J.

Reynolds, personal communication).

activation of a neuron. In the experimental data, the resting
potential is estimated for each Up state (to account for possible
drifts in the membrane potential over the recording time) as the
averagemembrane potential in the 50–100 ms window before the
transition to the Up state, where no profound synaptic activity
is visible. If network activity consists of multiple Up states, the
coefficient of variation is averaged across Up states for the given
neuron. In the simulations, the membrane potential is recorded
with the same resolution as the experimental data (0.1 ms).

2.2. Synaptic Input Fluctuations
Unlike the neuronal membrane potential, the mean levels of
excitatory and inhibitory synaptic currents are not constant
and tend to decay slowly throughout Up states (Shu et al.,
2003; Haider et al., 2006; Destexhe and Rudolph-Lilith, 2012).
Therefore, Equation 1 overestimates the level of current
fluctuations when applied to Up states, due to confounding of
the fluctuations around the local mean by the change in mean
input, as illustrated in Figure 3. To correct for this effect in the
simulated data, the linear trend is removed from the recorded
synaptic current Ie (t). The magnitude of residual fluctuations
Ĩe (t) is then accessed through the coefficient of variation

CV [Ie (t)] =
σ
[

Ĩe (t)
]

µ [Ie (t)]
. (2)

Due to a lack of available first-hand experimental data, we use
a reported value of the level of synaptic input fluctuations that
has not been corrected for the change in the local mean, and
perform the correction using the method illustrated in Figure 3.
We assume a synaptic current I that is normally distributed with
probability p (I) around a linearly decaying mean level I0 (t):

p (I) =
1

σ
√
2π

exp

(

− [I − I0 (t)]2

2σ 2

)

,

I0 (t) = I1 +
t

T
(I2 − I1) , (3)

where σ is the standard deviation of the local current
fluctuations, and I1 and I2 are the initial level of synaptic current
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FIGURE 3 | Slow change in mean level of synaptic activity leads to

overestimation of input current fluctuations. Bottom: Schematic

representation of the fluctuating synaptic current with slowly decaying local

mean level. Top: Current fluctuations result in a narrow distribution of synaptic

currents measured in a small time window (red). When the whole

measurement time T is considered, the distribution of currents appears much

wider (blue). I1 and I2 are the initial and final mean current levels.

and that after time T, respectively. Then the distribution of the
current over the whole observation time,

P (I) =
1

σ
√
2π

I2́

I1

exp
[

− (I−I0)2
2σ 2

]

dI0

I2́

I1

dI

, (4)

yields

P (I) =
1

2 (I2 − I1)

[

erf

(

I2 − I
√
2σ

)

− erf

(

I1 − I
√
2σ

)]

, (5)

where erf is the error function. With the given distribution P (I)
and I1 and I2, one can numerically solve Equation 5 for σ . The
time-averaged coefficient of variation then is

〈

σ

µ

〉

=
1

T

T̂

0

σ

Ie (t)
dt =

σ

I2 − I1
ln

(

I2

I1

)

. (6)

In the simulations, synaptic excitatory and inhibitory inputs are
recorded at 0.05 ms resolution, to match the resolution of the
experimental data.

2.3. Spike Count Correlations and
Irregularity
As a reference for non-task-related correlations and irregularity
of spiking activity we use resting-state data from massively
parallel extracellular recordings in macaque visual and rat frontal
cortices (Figure 4). Irregularity is additionally assessed based on
the Up states in the intracellular recordings from rat motor cortex
described above.

The macaque experiment is described in detail by Chu
et al. (2014b) and the corresponding open-access data set

is in Chu et al. (2014a). In short, a 64-electrode array was
implanted into primary visual area V1 of a lightly anesthetized
macaque monkey, recording spontaneous activity, including
putative attentive (Figure 4B) and drowsy (Figure 4C) periods.
Extracellular potentials from each electrode are decomposed
into low- and high-frequency components. The high-frequency
component in turn is sorted into single-unit activity according to
spike waveform. The resulting data set contains spike trains for
140 putative neurons, recorded continuously for 15 min.

The rat frontal cortex experiment is described in detail in
Watson et al. (2016b) and the corresponding open-access data
set is in Watson et al. (2016a). In short, a 64-site silicon
probe was implanted into frontal cortex (areas mPFC, OFC,
ACC, and M2) of rat (freely behaving in the home cage),
recording spontaneous ongoing activity. Extracellular recordings
were obtained continuously for more than 100 min. Spike sorting
yielded spike trains for 25 to 50 putative neurons for 13 different
recording sessions. We analyze the initial 200 s of each data
set, during which the activity pattern does not change. In total,
30 min of recordings from different frontal cortical areas are
analyzed.

To assess coordination between neurons we compute pairwise
spike count correlations (see for instance Smith et al., 2012). We
first construct a rate histogram with 10 ms bin width for each
neuron. In the models, this is done for 140 neurons randomly
selected from excitatory and inhibitory populations at a ratio
of 85 : 15, as an average of the proportions observed in monkey
(Beaulieu et al., 1992) and rat (Meyer et al., 2011) cortex. For
all pairs of neurons the Pearson correlation coefficient is then
computed. The corresponding mean value gives a measure of
joint firing rate fluctuations among neurons on the population
level. The latter can be interpreted as population synchrony on
the 10 ms time scale (e.g., Brunel, 2000). ‘Synchrony’ here should
not be confused with spike synchrony on the millisecond scale
in groups of neurons as studied by others (Riehle et al., 1997;
Maldonado et al., 2008). To avoid contamination by slow activity
fluctuations, we do not consider transient periods between Up
and Down states.

To assess spike train irregularity, we use the coefficient
of variation (CV) of interspike intervals averaged across all
simultaneously recorded neurons,

CV(ISI) =

√

1
n−1

n
∑

i=1
(Ti − T)2

T
, (7)

as well as the local variation (LV; Shinomoto et al., 2003),

LV(ISI) =
1

n− 1

n−1
∑

i=1

3(Ti − Ti+1)2

(Ti+Ti+1)2
, (8)

where Ti is the ith interspike interval and T is the mean interspike
interval for the spike train. Compared to the CV , LV is less
sensitive to modulations in firing rates.

For the experimental and simulated data sets corresponding
to Up-Down oscillations, spike count correlations and
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A B C

FIGURE 4 | Spontaneous cortical spike data from freely behaving rat and anesthetized monkey. Single-unit activity (top) and population rate histogram (bottom)

obtained from (A) anterior cingulate cortex of adult freely behaving rat (Watson et al., 2016a) and (B,C) visual cortex of lightly anesthetized monkey (Chu et al., 2014a).

The monkey data are characterized by a transition from initial stationary (B) to strongly fluctuating (C) activity.

irregularity are computed and then averaged across
individual Up states. For the other experimental and
simulated data sets, spike count correlations and irregularity
are computed in 5 s segments and then averaged across
segments. In each segment or Up state, only neurons
emitting at least five spikes are considered in the irregularity
analysis.

2.4. Excitatory-Inhibitory Balance
Despite a large number of experimental studies addressing fine
balance of excitation and inhibition in the brain (reviewed
by Isaacson and Scanziani, 2011), there is currently no
established method to quantify the precision of balance.
For example, in the work by Compte et al. (2009), the
presence of balance is inferred from numbers of excitatory
synaptic events tracked by inhibitory ones during Up-Down
oscillations. Shu et al. (2003) and Haider et al. (2006) access
the dynamic balance during Up-Down oscillations through
qualitative proportionality between excitatory and inhibitory
synaptic conductances. In turn, in Dehghani et al. (2016), the
balance during ongoing cortical activity and sleep is characterized
by the qualitative match between the z-scored population
spike rate histograms of excitatory and inhibitory neurons.
Finally, Okun and Lampl (2008) compute cross-correlation
coefficients of putative excitatory and inhibitory currents
recorded in cortex of sedated rats with a significant activity
fluctuation level, presumably reflecting that the activity did not
remain in a well-circumscribed state. Since a methodological
study is missing, however, it is unclear how comparable
estimates of balance obtained with cross-correlation analysis
across various brain states are. Therefore, we do not have a
reliable quantitative measure of excitatory-inhibitory balance
in PDNS from experimental data, and the present work uses
the proportionality of short-time-averaged (10 ms averaging

window) excitatory and inhibitory currents as the criterion for
e-i balance.

2.5. Synaptic Strength
In section 3.1.8 we estimate average synaptic strengths in local
cortical circuits in PDNS. Assuming a point neuron model
for simplicity, the driving force

(

Esyn − Vm

)

connects the
synaptic conductance gsyn with the resulting input current Isyn
according to

Isyn = gsyn
(

Esyn − Vm

)

,

where Esyn and Vm are the synaptic reversal and membrane
potentials. Thus, the effect of the driving force on the input
current at the depolarized potential Vdep is a reduction of the
input current and corresponding PSP by the factor

I1

I0
=

Esyn − Vdep

Esyn − Vrest
. (9)

compared to the resting state Vrest.
To characterize the dependence of PSPs on the effective

neuronal membrane resistance, we use the leaky integrate-
and-fire (LIF) point neuron model. The dynamics of the
neuronal subthreshold membrane potential (Vm) depends on the
membrane leak properties and synaptic input current Isyn as

dVm

dt
= (Vrest − Vm)

τm
+

Isyn

Cm
, (10)

where τm, Cm, Vrest are membrane time constant, capacitance,
and resting membrane potential, respectively. Assuming an
exponential synaptic input current with time constant τsyn and
amplitude J,

Isyn =
{

0, t < 0

J exp
(

− t
τsyn

)

, t ≥ 0
, (11)
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one can analytically solve Equation 10 to obtain the PSP time
course (β-function, Rotter and Diesmann, 1999),

PSP(t) =
J

Cm

[

exp
(

−t/τsyn
)

− exp (−t/τm)
]

[

1/τm − 1/τsyn
] , (12)

and corresponding PSP maximum

PSPmax =
J

Cm

τsyn

a− 1

[

a1/(1−a) − aa/(1−a)
]

, (13)

where a = τsyn
τm

. The membrane time constant depends on
the membrane resistance according to τm = CmRm. Thus, a
reduction in Rm leads to a proportional reduction in τm and a
corresponding change in PSPmax calculated with Equation 13.

2.6. Connection Density
In section 3.1.9 we derive average connection probabilities in
local cortical circuits, where averaging is performed over a
spherical volume and can be mathematically written as

〈P〉 =
˝

P
(

dij
)

ρiρjραdridridα
˝

ρiρjραdridridα
, (14)

where ρi, ρj, ρα are the probability densities for neurons i, j to be
at a distance ri, rj from the center of the sphere and to have an
angle α between ri and rj. The distance dij between neurons i, j is

dij =
√

r2i + r2j − 2 cos (α) rirj. (15)

Due to spherical symmetry, ρα is homogeneous:

ρα =
1

π
, (16)

while ρi and ρj depend on the distance from the center as

ρi/j =
4πr2i/j
4
3πR

3
. (17)

Combining Equations 14–17 and assuming a Gaussian distance
dependence with a scale λ and connection probability P0 at
zero inter-somatic distance, one obtains the average connection
probability

〈P〉 =
9

π

P0

R6

R
ˆ

0

R
ˆ

0

π̂

0

exp

(

−
r2i + r2j − 2 cos (α) rirj

2λ2

)

r2i r
2
j dridridα.

(18)

2.7. Simulation Details
The three models investigated here are those of Brunel
(2000), Compte et al. (2003a), and Ostojic (2014). The first
two models are instances of the balanced random network
(BRN) architecture, where excitatory and inhibitory neurons,
represented by the leaky integrate-and-fire (LIF) model, are
randomly and sparsely connected with a given probability.

In these models the activity is characterized by a dynamic
excitatory-inhibitory balance. Stronger synaptic weights in the
Ostojic model lead to a dynamical state with chaotic rate
fluctuations. The BRN with minor modifications serves as a
basis for a large number of studies covering various aspects of
cortical dynamics. The third model (Compte et al., 2003a; see
also Maksimov et al., 2016) was created specifically to explain
the dynamics observed during Up-Down oscillations. Its key
element is its more detailedmodel neurons withmultiple voltage-
dependent ion channel types, which are precisely co-tuned.

All simulations were performed on a laptop with NEST
(Gewaltig and Diesmann, 2007) version 2.8.0 (Eppler et al.,
2015) using the Python interface (Eppler et al., 2009). Analysis
was performed using Python version 2.7. The simulation time
step was 0.05 ms with spike-time precision limited by the grid.
Multi-threading was used to decrease the simulation time.

3. RESULTS

In the following, based on observations from Up states in vitro as
well as persistently depolarized network states in vivo, we derive
a set of criteria on connectivity, synaptic strengths, excitability,
excitatory-inhibitory balance, membrane potential and synaptic
input stability, asynchrony, irregularity, and the mean rate of
spiking activity. Table 1 lists the resulting criteria. We illustrate
the use of these criteria on the selected computational models.

3.1. Criteria for Cortical Circuit Dynamics
3.1.1. Membrane Potential Fluctuations
To quantify the degree of membrane potential fluctuations
during prolonged network activation, we calculate the coefficient
of variation (CV) of the membrane potential during Up
states in 30 neurons undergoing Up-Down oscillations in
vivo (see section 2.1). The average value CV (Vm) = 0.22
confirms previous observations of small membrane potential
fluctuations compared to mean depolarization during ongoing
activity (Steriade et al., 2001). Other studies refer to these same
fluctuations as large since they compare the fluctuation level
with that in purely excitatory networks (van Vreeswijk and
Sompolinsky, 1996, 1998). In balanced networks consisting of
both excitatory and inhibitory neurons, the fluctuations are
increased compared to purely excitatory networks with the same
mean input level. Also compared with the level of fluctuations in
low-activity in-vitro conditions, the fluctuations during ongoing
activity are large (Destexhe et al., 2003; Fanselow and Connors,
2010). As we here use the distance between resting and mean
membrane potentials as a reference, we here refer to the
“smallness” of membrane potential fluctuations, or alternatively
“membrane potential stability”.

3.1.2. Synaptic Input Fluctuations
The smallness of single-trial membrane potential fluctuations
during active network states suggests that synaptic input current
fluctuations are also small. Intracellular recordings reported
in the literature show that, both for separate excitatory and
inhibitory synaptic inputs and for their sum, fluctuations are
smaller than the mean level (Shu et al., 2003; Haider et al., 2006;
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TABLE 1 | Criteria for the evaluation of cortical models.

# Criterion Description

1 firing rate mean firing rates of excitatory neurons fe in the range 0.18–10 spikes/s

2 irregularity for individual neurons, average CV (ISI) ∈ 0.95–1.2, LV (ISI) ∈ 0.68–1.2 for simulations with 5 s segments;

CV (ISI) ≈ 0.76 and LV (ISI) ≈ 0.56 for Up state simulations

3 non-burstiness absence of a prominent peak for interspike intervals < 10 ms in the ISI distribution of individual neurons

4 correlations mean spike count correlation CC < 0.008

5 membrane potential stability CV (Vm) ≈ 0.22

6 input stability CV (Ie) ≈ 0.15

7 balance qualitative proportionality of excitatory and inhibitory currents averaged over 10 ms time bins

8 excitability ability to sustain activity, qualitatively satisfying criteria 1–7, for hundreds of milliseconds after a brief

network stimulation without further external input

9 performance with realistic network parameters

in local networks with 6,000 neurons

the properties described in criteria 1–8 qualitatively persist for:

• PSPe←e in the range 0.03–0.6mV during ongoing network activity, when the reduction of the membrane

time constant due to shunting is accounted for

• Vth − Vrest≫ PSPe←e

• average connection probability Pe←e = 0.07 and Pi←e = Pe←i = Pi←i = 0.24.

Destexhe and Rudolph-Lilith, 2012; Tahvildari et al., 2012). In
the present work we measure input fluctuations through the
coefficient of variation of detrended excitatory input currents (see
section 2.2). Unfortunately, such data are not readily available
in the literature. Instead, Destexhe and Rudolph-Lilith (2012)
measure the standard deviation σ and the mean µ of synaptic
currents of individual neurons from multiple Up states pooled
together. Averaging the ratio σ

µ
across the 5 neurons reported in

section 3.3.3 of Destexhe and Rudolph-Lilith (2012) gives a value
of 0.24. Because Up states vary from trial to trial, pooling together
multiple Up states effectively widens the current distribution and

thus
〈

σ
µ

〉

∼ 0.24 is an upper limit for the CV in individual

Up states. Moreover, this measure mixes fluctuations around
the local mean with changes in the local mean over time (see
Figure 3). To disentangle these two, we use Equation 6 (see
section 2.2). From the intracellular current recordings during
Up states reported by Shu et al. (2003), Haider et al. (2006),
and Destexhe and Rudolph-Lilith (2012) we estimate I1 ≈
400 pA and I2 ≈ I1/2 for excitatory currents recorded near
the inhibitory reversal potential. The linear approximation of
the time dependence of the input current is well met for these
recordings. Usingmean current levels Ie = 300pA andCV (Ie) ≈
0.24 as above, one can estimate the standard deviation of the
overall current distribution as 72 pA. Numerically solving for
the width of the local current distribution using Equation 5 gives
σ (Ie) = 43 pA. Using Equation 6, we find that the time-averaged
coefficient of variation equals CV (Ie) = 0.15, where Ie (t) is the
detrended excitatory input current.

3.1.3. Spike Count Correlations
On the population level, spiking activity observed during Up
states or ongoing spontaneous activity is asynchronous according
to visual inspection of spike trains recorded from multiple
neurons simultaneously (see Luczak et al. 2007, 2009; Sakata
and Harris 2009; Figure 4). However, despite an abundance
of neuronal spiking correlation measurements during stimulus
presentation or behavioral tasks (e.g., Kohn and Smith 2005;

Middleton et al. 2012), quantitative measurements of such
correlations during ongoing spontaneous activity are sparse.
Therefore, we consider continuous recordings from the freely
behaving rat (Watson et al., 2016b) and the lightly anesthetized
monkey (Chu et al., 2014b), of which Figure 4 shows 20 s. For the
rat data, the mean spike count correlation (see section 2.3) lies in
the range 0.0001–0.008 for the 13 recording sessions considered
(a total of 30 min of recordings split into 5-s segments), with
the average value CC = 0.002, which indicates low pairwise
correlation. In the monkey data, however, an initial period of
30 s of relative stationarity with CC = 0.007 (within the range
in the rat data, Figure 4B) is gradually replaced by prominent
activity fluctuations (Figure 4C) with CC reaching 0.06 (similar
to the value measured in anesthetized animals; Smith et al.,
2012). The latter case probably reflects a transition from alertness
to drowsiness (cf. membrane potential recordings of whisking
and quiet awake mice; Poulet and Petersen, 2008; Gentet et al.,
2010), and does not represent persistent network activation. In
comparison to the monkey data, the rat data corresponds to
a much more local neuronal population due to the recording
electrode configuration (see section 2.3). Nevertheless, the mean
spike count correlation in the rat data is smaller than in the
monkey data. This contrasts with previous work (Rosenbaum
et al., 2017), where spike count correlation was shown to decay
with distance, and highlights the predominant influence of brain
state on the correlations (Kohn et al., 2009). Taking together both
data sets, for the models we require average CC < 0.008 to
account for decorrelated neuronal spiking.

3.1.4. Spiking Irregularity
The rat data yield spike train irregularity (see section 2.3) with
mean CV(ISI) = 1.05 and LV(ISI) = 0.9 (corresponding ranges
0.95–1.2 and 0.68–1.2 for 13 sessions), close to the irregularity
of Poisson spike trains (Shinomoto et al., 2003). For the initial
stationary period, the monkey data yield mean CV(ISI) = 1.12
and LV(ISI) = 1.09 (within the range in the rat data). The
subsequent fluctuating activity is characterized by mean values
CV(ISI) = 1.3 and LV(ISI) = 1.12, which are only slightly higher
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than the values during the more stationary period. In contrast,
spiking irregularity calculated during Up states from intracellular
recordings in rat motor cortex neurons (see section 2.3) is
characterized by mean CV(ISI) = 0.76 and LV(ISI) = 0.56,
indicating more regular activity. However, this difference can be
attributed to the shorter segment length (see section 2.3) rather
than differences in activity, because estimating the irregularity of
the spiking data from the freely behaving rat with 1 s segments
(similar to the duration of Up states) instead of 5 s results in
very similar estimates (CV(ISI) = 0.78 and LV(ISI) = 0.63).
Thus, the spiking activity has a short-time irregularity that is very
similar for PDNS in awake attentive and anesthetized conditions.
Overall, for the models we require CV(ISI) ∈ 0.95–1.2, LV(ISI) ∈
0.68–1.2 for simulations of ongoing activity, averaged across 5 s
segments, and CV(ISI) ≈ 0.76 and LV(ISI) ≈ 0.56 for simulated
Up states.

3.1.5. Excitatory-Inhibitory Balance
During the sustained network activation in Up states, short-
time averaged putative inhibitory currents (recorded near the
AMPA reversal potential) closely follow average excitatory
ones (recorded near the GABA reversal potential) (Shu et al.,
2003; Haider et al., 2006; schematically shown in Figure 1B).
The proportionality of the excitatory and inhibitory currents
reflects a reduction of both currents over the course of an
Up state (Figure 1C). Similarly, during ongoing activity in
vivo, inhibitory inputs closely track excitatory inputs to nearby
neurons (Okun and Lampl, 2008), suggesting that the same holds
for individual neurons. We use the qualitative proportionality
between excitatory and inhibitory synaptic input currents (see
section 2.4) to test for balance.

3.1.6. Excitability
Small cortical circuits can in many cases sustain balanced and
stable activity without external input. For example, cortical layers
5 and 6 can spontaneously generate Up-Down oscillations even
when isolated from layers 1–4 (Sanchez-Vives and McCormick,
2000). Moreover, intact layers 1–6 of rat cortex can generate
Up-Down oscillations already in slices with a surface area of
400 µm by 500 µm (Sanchez-Vives and McCormick, 2000).
Assuming an approximate density of 80,000 neurons per mm2

of cortical surface (Beaulieu, 1993; MacLean et al., 2005), this
suggests that a cortical network with about 16,000 neurons is able
to spontaneously generate prolonged activity. A similar number
is suggested by Up-state-like activity propagating first across
layers and then along the pia in response to brief thalamic or
cortical stimulation in slices of rat barrel cortex (Wester and
Contreras, 2012). The high potency of local cortical circuits
to sustain complex in-vivo-like activity is not a side effect of
slice preparation, as this to a good approximation preserves
network operation (see Supplementary Material). Also, the fact
that substantial activity is initially only present in a single
barrel column indicates that local circuits inside a single column
(n ≈ 19, 000 neurons, Meyer et al., 2010) are sufficient to
successfully sustain Up-state activity for at least few hundred
milliseconds. Similar experiments in the smaller cortex of mice

(Beierlein et al., 2002; MacLean et al., 2005) show that Up-state-
like activity can emerge after brief stimulation already in single
barrel columns with approximately 6,000 neurons (Lefort et al.,
2009). In addition to the models in their original size, we examine
how well the models with this number of neurons can capture the
tested features.

3.1.7. Mean Spiking Activity
As a final criterion on the activity, we consider the mean
firing rate across excitatory neurons, as the most numerous
and uniform neuron class. In persistently active cortical circuits,
the mean firing rate of excitatory neurons can be as low as
0.18 spikes/s in superficial layers 2/3 (de Kock and Sakmann,
2009; Sakata and Harris, 2009) and can reach 7–10 spikes/s
in layer 5 (Fanselow and Connors, 2010; Hengen et al., 2013),
as measured via whole-cell and juxtacellular recordings. Unlike
extracellular techniques, these methods are not biased toward
more active neurons (Barth and Poulet, 2012). Here, we note that
firing rates during Up states tend to be higher on average than
during ongoing activity (Jercog, 2013, Ch. 4.4); still, the mean
activity in both cases lies within the given range.

3.1.8. Synaptic Strength
Besides the emerging activity, we also require the most
conspicuous structural network properties to be realistic. We
here derive synaptic strengths for which the dynamical properties
listed in the previous sections should persist.

Most data about the synaptic strength of excitatory
connections come from in-vitro recordings, where background
activity is absent and membrane potentials are near the
resting potential, resulting in an average size of excitatory
postsynaptic potentials in excitatory neurons (PSPe←e) in
the range 0.2–1.7 mV for cortical primary sensory areas of
young animals (Thomson et al., 2002; Lefort et al., 2009; Jiang
et al., 2015). However, during the synaptic bombardment
accompanying active brain states, the average effective excitatory
PSP (ePSP) size is reduced due to decreased driving force,
synaptic depression, and decreased membrane resistance
(synaptic and action-potential-induced shunting; Waters and
Helmchen, 2006).

With the typically observed values of excitatory synaptic
reversal potential Esyn ≈ 0mV, resting potential≈ −70mV, and
depolarization during ongoing activity by ∼ 15 mV from rest,
the driving force is expected to reduce ePSCs (and corresponding
ePSPs) to∼80% of their control value according to Equation 9, in
agreement with experimental observations (Markram et al., 1997,
Figure 9).

Short-term synaptic depression due to vesicle depletion also
leads to a reduced post-synaptic response. In vitro with a Ca2+

concentration of 2 mM the steady-state ePSP evoked by a
10 spikes/s pre-synaptic spike train is expected to be ∼ 65% of
the initial ePSP (Markram et al., 1997; Tsodyks and Markram,
1997;Maffei et al., 2004; Feldmeyer et al., 2006; Kapfer et al., 2007;
Levy and Reyes, 2012). At lower spike frequencies < 7 spikes/s,
which are typical for cortical neurons in vivo and in vitro, this
ePSP reduction is smaller.
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Finally, the effective membrane resistance shrinks up to
multiple times during active network states (Destexhe et al., 2003;
Waters and Helmchen, 2006; Watson et al., 2008). Assuming
τsyn = 5 ms (Maffei et al., 2004; Gabernet et al., 2005; Feldmeyer
et al., 2006) typical for EPSCs onto excitatory neurons and a
three-fold decrease in τm (Destexhe et al., 2003; Watson et al.,
2008; Reig et al., 2015) from the initial value of ∼ 21 ms (Mason
and Larkman, 1990; Frick et al., 2007; Lefort et al., 2009) yields an
estimated reduction in ePSP amplitude to ∼ 68% of the control
value (see Equation 13).

Overall, these estimates suggest that in active cortical networks
in vitro (mean firing rate up to 10 spikes/s) from young animals
incubated in aCSF with high Ca2+ concentration (2 mM) one
could expect an average ePSP reduction to ∼ 35% of the
control value measured at rest in a silent network. However, the
composition of the extracellular fluid in vivo differs from that
of the classic aCSF (see Supplementary Material). In particular,
the Ca2+ concentration in vivo is lower than that in classic
aCSF (1–1.2 mM and 2 mM, respectively). Low in-vivo Ca2+

concentration results in an average initial postsynaptic response
reduced to 12–50% (from now on we consider the mean, 31%)
compared to slice conditions due to a lower release probability
(Mintz et al., 1995; Tsodyks and Markram, 1997; Dittman
and Regehr, 1998; Silver et al., 2003). The value of 12% is
obtained from Tsodyks and Markram (1997) by extrapolating
data given at 2 and 1.5 mM to 1 mM

[

Ca2+
]

using a power
law (Mintz et al., 1995) exponent 3.1, which was extracted from
the same data. The value of 50% is obtained from Dittman
and Regehr (1998). At the same time, a low initial synaptic
release probability should result in a negligible level of synaptic
depression in vivo, as confirmed by recent observations (Pala
and Petersen, 2015). Thus, we estimate that the combination of
driving force, reduced membrane resistance and low

[

Ca2+
]

in
active networks in vivo reduce the postsynaptic ePSP amplitude
to 79% × 68% × 31% ≈ 17% of the control value measured
from rest in aCSF with high

[

Ca2+
]

. In slices with high
[

Ca2+
]

,
network activity reduces ePSPs to roughly 35%, as mentioned
above. Combining the 0.2–1.7 mV range of PSPe←e measured
in the control condition with a reduction to 17–35% of the
control value we arrive at the range 0.03–0.6 mV for the average
PSPe←e expected in active cortical networks in vitro and in
vivo.

The balanced random network models we simulate in
the following have current-based static synapses, which by
definition do not incorporate the effects of shunting, driving
force, and short-term plasticity described here. When adapting
these models to more closely approximate biological values, we
manually adjust the synaptic strengths and neuronal membrane
resistance to the active state, since this is the state these
models were designed to capture and the state we primarily
characterize.

3.1.9. Connection Density
In terms of network topology we consider the cell-type-specific
average connection probability between pairs of neurons (i.e.,
the probability of at least one synapse between a given pair of
neurons). In particular, the connection probability between pairs

of excitatory neurons (e ← e) is often reported to lie in the
range∼10–20 %, while for other connection types (e← i, i← i,
i← e) experiments suggest a high connectivity around 40–60 %
when averaged across an inter-somatic distance of ∼150 µm
(Markram et al., 1997; Beierlein et al., 2003; Holmgren et al.,
2003; Maffei et al., 2006; Ali et al., 2007; Kapfer et al., 2007;
Silberberg and Markram, 2007; Lefort et al., 2009; Fino and
Yuste, 2011; Packer and Yuste, 2011; Avermann et al., 2012;
Levy and Reyes, 2012; Ma et al., 2012; Koelbl et al., 2015;
Pala and Petersen, 2015). The characteristic decay length λ is
similar across all four combinations of e/i ↔ e/i connection
types (Holmgren et al., 2003; Avermann et al., 2012; Levy and
Reyes, 2012) and can be estimated from the results reported by
Packer and Yuste (2011) and Perin et al. (2011) to be about
160µm assuming a Gaussian distance dependence of connection
probability P

(

d
)

. In the present work we focus on networks
of ∼6,000 neurons to approach the smallest unit that appears
to possess excitability and balance even without external input.
Here, the number 6,000 is chosen since this is the approximate
number of neurons in a mouse barrel column (Lefort et al.,
2009), which can sustain Up states while the surrounding cortex
is silent; however, variability between columns should be kept
in mind (Lee and Woolsey, 1975). Assuming a spherical cortical
volume with an approximate density of 70,000 neurons per mm3

(Meyer et al., 2010), a network of 6,000 neurons corresponds to
a radius of R ≈ 270 µm. At this distance, the spatial dependence
of connection probability already becomes prominent, while
the benchmarked models of Brunel (2000) and Ostojic (2014)
feature homogeneous connectivity. Therefore, we average each
connection probability across the spherical volume and require
that the total number of connections in a given volume is
preserved.

Substitution of R = 270µm and λ = 160µm into Equation 18
gives 〈P〉 = 0.34 P0. We consider P0e←e = 0.2 and P0e←i =
P0i←i = P0i←e = 0.7 (Markram et al., 1997; Gupta et al., 2000;
Beierlein et al., 2003; Holmgren et al., 2003; Maffei et al., 2006;
Ali et al., 2007; Kapfer et al., 2007; Silberberg andMarkram, 2007;
Lefort et al., 2009; Fino and Yuste, 2011; Packer and Yuste, 2011;
Avermann et al., 2012; Levy and Reyes, 2012; Ma et al., 2012;
Xue et al., 2014; Koelbl et al., 2015), yielding benchmark average
connection probabilities Pe←e = 0.07 and Pe←i = Pi←i =
Pi←e = 0.24.

3.1.10. Neuronal Excitability
In principle, neural networks may derive their excitability
both from intrinsic neuronal excitability and from network
interactions. In cortex, however, only a minority of neurons
predominantly in deep layers appear to have pacemaking
properties (Yang et al., 1996; Mao et al., 2001; Le Bon-Jego and
Yuste, 2007). Moreover, most cortical neurons have a rheobase
current and spiking threshold voltage far exceeding the effect of a
single synaptic input (e.g., Lefort et al., 2009), so that multiple
synaptic inputs need to be integrated simultaneously to evoke
spiking. To address the fact that integration of synaptic input is
an important basis of cortical processing, we require the distance
from rest to the spiking threshold in excitatory neurons to far
exceed the average ePSP size in the model.
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3.1.11. Tolerance of Criteria
With regard to spiking asynchrony and irregularity as well
as membrane potential and input stability, a caveat is that
the corresponding measurements were not obtained in isolated
networks as small as 6,000 neurons. Our reason for assuming
that the criteria in question apply also to such small networks
is based on the similarity of neuronal dynamics during the first
few hundreds of milliseconds after brief external stimulation
where the local circuit is activated in the otherwise inactive slice
preparation, and the following period where activity spreads to
a larger cortical volume; as well as on the ability of single barrel
columns to maintain Up states in vivo (see section 3.1.6).

Besides the possible dependence on network size, the exact
pattern of cortical activity varies from experiment to experiment
and between laboratories. Therefore, we define our criteria in
a conservative manner to allow for differences between species,
individual animals, cortical areas, layers, neuron types, state of
arousal and attention, and recording conditions. We distinguish
three levels of model performance for each criterion: “green” if
the model meets the requirement with a deviation not larger than
20%; “yellow” if the model approximately meets the requirement
with a deviation not larger than 60%; “red” if the model does
not qualitatively meet the requirement. If the criterion has no
quantitative definition, then qualitative agreement is indicated in
green.

3.2. Evaluation of Computational Models
With Respect to Experimental
Observations
Here we revisit three prominent computationalmodels of cortical
circuitry and use them as test cases for the set of criteria derived.
In addition to the models in their original form, we consider
versions with parameters adjusted to more closely approximate
biological values. We start with the classic balanced random
network (BRN) (Brunel, 2000), as it serves as a basis for various
more complex models. Then we explore the case of stronger
synapses in a BRN (Ostojic, 2014). This case more faithfully
represents the synaptic weights in some animals and cortical
layers (e.g., rat layer 5; Thomson et al., 2002), and exhibits
dynamics different from the classic BRN. Finally, we test the
model of Up-Down oscillations by Compte et al. (2003b), which
includes biologically detailed models of excitatory and inhibitory
neurons. Focusing on the dynamics of excitatory neurons, we
evaluate the performance of these models with respect to the
derived criteria summarized in Table 1.

3.2.1. Balanced Random Network
The parameters of the balanced random network (BRN) model
are listed in Table 2. The difference from the original model
(Brunel, 2000) is that we use exponentially-shaped synaptic
currents to allow characterizing synaptic current fluctuations. In
this section we benchmark the network with weak synapses, both
in its original form with PSPe←e = 0.2 mV, and with PSPe←e =
0.1 mV (near the lower boundary of the ePSP range defined in
criterion 9). In short, Ne excitatory and Ni inhibitory neurons
are connected randomly with probability p with fixed numbers
Ce = Ne · p of excitatory and Ci = Ni · p inhibitory inputs per

TABLE 2 | Parameters of the classic BRN model with weak exponentially-shaped

synapses.

Vth 20 mV threshold potential

Vr 10 mV reset potential

τm 20 ms membrane time constant

Cm 100 pF membrane capacitance

τref 2 ms absolute refractory time

θ 1.5 intensity of Poisson input relative to threshold

Ne 8,000 number of excitatory neurons

Ni 2,000 number of inhibitory neurons

g 5 ratio of inhibitory vs excitatory PSPs

p 0.1 connection probability

d 1.5 ms synaptic delay

τsyn 5 ms synaptic time constant

J 6.3 pA amplitude of excitatory PSCs, leading to

PSPe←e = 0.2 mV

neuron. We allow neither multiple connections between pairs of
neurons (multapses) nor self-connections (autapses). All neurons
are represented by the leaky integrate-and-fire (LIF) model with
spike threshold Vth, reset potential Vr, membrane time constant
τm, and refractory time τref. The resting membrane potential is
taken to be 0mVwithout loss of generality. Synapses are modeled
using synaptic time constant τsyn = 5 ms, transmission delay
d and PSC amplitude J for excitatory and −g · J for inhibitory
connections. To sustain activity in the network, external Poisson
input is provided to all neurons with a rate θ times threshold
νthext =

Vth·Ce
J·τm·τsyn and synaptic weight J.

Simulation of this model yields the spiking pattern shown
in Figure S1A with an average excitatory firing rate fluctuating
around 14 spikes/s (Figure S1B). Spiking irregularity is evident
from the wide ISI distributions in Figure S1C with mean
CV(ISI) = 1.2 and LV(ISI) = 0.9. The absence of a peak at
short interspike intervals characterizes the activity as non-bursty
(criterion 3). The average cross-correlation coefficient CC =
0.011moderately exceeds the upper limit given in criterion 4. The
size of the membrane potential fluctuations (Figure S1D) with
average CV (Vm) = 0.52 is more than two-fold higher than the
value given in criterion 5. The average CV of excitatory synaptic
currents is small and conforms well to criterion 6 (CV (Ie) =
0.19, Figure S1E), and locally averaged excitatory and inhibitory
currents are proportional (criterion 7; Figure S1F). However,
when the Poisson drive is switched off, the activity dies out within
a few tens of milliseconds, as noted before (Kriener et al., 2014).
This is expected, as the BRN model with current-based synapses,
while it has been used to account for responses to changes
in input, does not attempt to capture state changes such as
transitions from silent to active states: it expressly incorporates an
external drive that represents the embedding of the local circuit
in its larger environment in the active state. This restriction to
ongoing activity means that the classic balanced random network
model is not locally excitable (criterion 8).

To test themodel performance withmore realistic parameters,
we modified the balanced random network with exponential
synapses to fulfill criterion 9. To vary the network activity level
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for a given PSPe←e we set all other synaptic weights to modified
values PSP∗ (except for the external drive) throughmultiplication
by factors ke←i, ki←i, and ki←e , such that, for example, PSP∗i←e =
ki←e · PSPi←e. This results in a three-dimensional parameter
scan, where we simulate and analyze 5 s of network activity
from three trials with different random generator seeds for
each parameter set. Adjusted model parameters are listed in
Table 3. The simulation results for PSPe←e = 0.1 mV are
shown in Figure 5. Compared to the network with PSPe←e =
0.2 mV, that with PSPe←e = 0.1 mV has lower excitatory firing
rates, which are between 2 and 7 spikes/s for the parameter
ranges considered. Within this range, weaker inhibitory feedback
through weakened i ← e or e ← i or enhanced i ← i
connections leads to higher firing rates. The pairwise spike count
correlation, local variation of ISI, and membrane potential and
excitatory current fluctuations conform to the values given in
criteria 2–6 for most parameter sets and trials, while CV(ISI)
is smaller than the range given in criterion 2 (Figure 5B,F). In
some trials, however, network activity is not stable and switches
between synchrony and asynchrony (Figure 5G). This instability
effectively increases themean fluctuation level. In the stable trials,
excitatory and inhibitory currents binned at 10 ms show only
weak coupling (Figure 5H, black dots), which is a reflection of a
nearly stationary activity level. Gradual reduction of the network
activity by reducing the external input reveals the proportionality
of excitation and inhibition (Figure 5H, gray dots). The ISI
distribution indicates non-bursty activity (Figure 5I). When
external input is switched off, the network activity dies rapidly.

We conclude that the balanced random network model
(Brunel, 2000) to a good approximation captures many aspects
of observed cortical activity, including excitatory-inhibitory
balance, input stability, and asynchronous, irregular, and non-
bursty spiking activity. However, by design, activity in the model
heavily depends on the external input, reflecting the absence of
local excitability. Also, the model shows a membrane potential
fluctuation level higher than that recorded from the cortex during
persistently depolarized network states. When adjusted for more
realistic network properties according to Table 3 (case of weak
synapses), the model still fails to ensure excitability (again with
the caveat that the synaptic strengths are adjusted to the active

TABLE 3 | Parameters of the BRN model modified for realistic membrane

properties and synaptic strengths expected during ongoing network activity, and

connection probabilities to fit criterion 9.

Ne 4,800 number of excitatory neurons

Ni 1,200 number of inhibitory neurons

pe←e 0.07 connection probability

pi←e 0.24

pe←i 0.24

pi←i 0.24

PSCe←e 4.7 pA amplitude of excitatory PSCs leading to

PSPe←e = 0.1 mV. Used in case of weak synapses.

28.4 pA amplitude of excitatory PSCs leading to

PSPe←e = 0.6 mV. Used in case of strong synapses.

τm 6.7 ms membrane time constant (three times as low as the

value in a silent network)

state) and is prone to instability leading to network-wide spiking
synchrony.

3.2.2. Balanced Random Network With Stronger

Synapses
As shown by Ostojic (2014), enhancing synaptic weights in the
balanced random network model leads to an activity regime
different from the classic asynchronous irregular state. We first
choose the same parameter values as in the original work,
with the difference that e ← e synaptic weights equal to
0.8 mV are implemented with exponentially-shaped synaptic
currents (see Table 4). As shown in Figure S2A, the spiking
activity is characterized by an average firing rate of excitatory
neurons fluctuating around 52 spikes/s (violating criterion 1)
and a large amount of spike bursts often synchronized across
neurons (violating criterion 3). This leads to large fluctuations
in the excitatory population histogram (Figure S2B), and the
corresponding average cross-correlation coefficient CC = 0.026
far exceeds the upper limit given in criterion 4. The interspike
interval distributions are dominated by burst-related short
intervals mixed with few large inter-burst intervals (Figure S2C),
resulting in mean CV(ISI) = 4.4 and LV(ISI) = 0.5 violating
criterion 2. The greater irregularity indicated by the CV(ISI)
compared to the LV(ISI) is likely due to the firing rate fluctuations
associated with bursting, to which LV(ISI) is less sensitive.
The tendency for bursting arises due to large fluctuations in
the membrane potential with average CV(Vm) = −0.85 for
excitatory neurons (criterion 5). The negative value results from
the fact that the mean membrane potential is more negative
than the resting potential (Figure S2D). Short-time-averaged
excitatory and inhibitory currents are proportional (Figure S2F)
and express large fluctuations (mean CV (Ie) = 0.53, Figure
S2E). When activity in the model is initiated by a short supra-
threshold stimulation, it is further sustained without external
input. In this case, however, the network fluctuation level is
further increased, resulting in fe = 5.2 spikes/s, CV(ISI) = 3,
LV(ISI) = 0.6, CC = 0.06, CV (Vm) = −3.8, CV (Ie) =
3.5. As a control we also benchmark the BRN architecture
with conductance-based synapses (see Figure S3), as these were
suggested to improve the compatibility of self-sustained activity
with small membrane potential fluctuations (Kumar et al., 2008).
Although the benchmarking results are closer to the defined
criteria compared to the case of current-based synapses, the
model fails to combine excitability with stable irregular activity.

Similar to the case of weak synapses, we perform a parameter
scan and analysis of the network activity with parameters
adjusted according to criterion 9 (see Table 3). For this scan,
we choose PSPe←e = 0.6 mV, which is the upper limit
of the range given in criterion 9. The results are shown in
Figure 6. Mean firing rates of the excitatory population are
in the range 1–5 spikes/s (Figure 6A). For parameter sets
corresponding to more active networks, pairwise correlations
and fluctuations of membrane potentials and excitatory input
currents far exceed the values given in criteria 4–6 (Figure 6B,D).
The spiking irregularity measures (Figure 6E,F) conform well
to criterion 2. Similarly to the case PSPe←e = 0.1 mV, in
some trials the model shows transitions between asynchronous
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FIGURE 5 | Scan of synaptic weight values in the balanced random network model with exponentially-shaped synaptic currents with PSPe←e = 0.1mV and modified

connection probabilities and neuronal properties (see Table 3). The original synaptic weights are multiplied by factors ke←i, ki←e, and ki←i. (A) Mean firing rate.

(B) Pairwise correlation. (C) Membrane potential variability. (D) Variability of excitatory input current. (E) Coefficient of variation of ISI. (F) Local variation of ISI. (G)

Example raster plot of network activity demonstrating transitions between synchronous and asynchronous states. (H) Excitatory vs. inhibitory currents averaged over

10 ms bins in the asynchronous regime (black dots) and in a regime of reduced network activity achieved through the gradual reduction of the external input (θ

reduced from 1.5 to 0.9 in steps of 0.1, gray dots). The dashed line indicates a linear least-squares regression. (I) ISI distribution of a representative excitatory neuron

from the same simulation as in (H). Top and bottom plots in (A–F) correspond to ki←i = 1 and ki←i = 1.1, respectively.

TABLE 4 | Parameters of the BRN model with strong synapses.

Vth 20 mV threshold potential

Vr 10 mV reset potential

τm 20 ms membrane time constant

Cm 100 pF membrane capacitance

τref 0.5 ms absolute refractory time

θ 1.5 intensity of Poisson input relative to threshold

Ne 8,000 number of excitatory neurons

Ni 2,000 number of inhibitory neurons

g 5 ratio of inhibitory vs excitatory PSPs

p 0.1 connection probability

d 0.55 ms synaptic delay

τsyn 5 ms synaptic time constant

J 25.4 mV amplitude of excitatory PSCs , leading to PSPe←e = 0.8 mV

and synchronous regimes (Figure 6G) and excitatory-inhibitory
coupling is revealed by decreasing the network activity level
through gradual reduction of the external drive (Figure 6H).
The ISI distributions indicate activity with moderate burstiness
(Figure 6I). When the external drive is switched off, in contrast
to the original parameter setting, network activity rapidly
dies out.

In summary, the activity in balanced random network models
with large synaptic weights (Ostojic, 2014) is characterized
by spiking with excess pairwise spike count correlations and
burstiness. The latter causes the CV(ISI) to indicate greater
irregularity than measured experimentally. Membrane potential
and input current fluctuations are large, but excitatory-inhibitory
balance is present and the network is self-excitable. However,
making network parameters more realistic according to criterion
9 drastically reduces burstiness and brings the spiking activity
closer to the case of low synaptic weights, thereby also abolishing
self-sustained activity and increasing susceptibility to network-
wide synchronization.

3.2.3. Model of Up-Down Oscillations
As an example of a biologically more detailed model capturing
aspects of excitability and balance, we here consider the model
of Up-Down oscillations by Compte et al. (2003b). As a first
step we implemented the model using the simulation software
NEST and confirmed that the model behaves as reported by the
original authors in the conditions relevant to the present study.
For a detailed description of the model reimplementation see
Maksimov et al. (2016). The model constitutes a downscaled
representation of a cortical volume, with 1, 024 excitatory and
256 inhibitory neurons positioned in a chain corresponding to
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FIGURE 6 | Scan of synaptic weight values in the balanced random network model with PSPe←e = 0.6 mV and modified connection probabilities and neuronal

properties (see Table 3). The original synaptic weights are multiplied by factors ke←i, ki←e, and ki←i. For panel descriptions, see Figure 5. Measurements for the

parameter sets ke←i = 0.7; ki←e = 0.7 and 0.75; ki←i = 1.1 are not shown, as all simulation trials result in fully synchronous activity.

a 5 mm band of cortex. The neuron models include various
ion channels in two compartments for excitatory and one for
inhibitory neurons. The model spontaneously generates Up
states propagating along the network in a wave-like fashion
(Figure 7A) with the average firing rate of excitatory neurons
reaching 7 spikes/s. This wave propagation is associated with
clearly distinguishable Up andDown states in neuronal input and
output (Figure 7A–C), non-bursty spiking activity (Figure 7D),
and moderate proportionality between excitatory and inhibitory
currents (Figure 7E). Network-wide propagation of sustained
activity without external input indicates the local excitability of
the network. The average spike count correlation and irregularity
of 140 adjacent neurons, calculated during Up states (see
section 2.3, Figure 7A rectangular window), equal CC = 0.029,
CV(ISI) = 0.7 and LV(ISI) = 0.27, indicating excess correlations
and spiking regularity (criteria 4 and 2). Membrane potential
fluctuations are relatively large with average CV (Vm) = 0.36.
Fluctuations in excitatory currents during Up states (mean
CV (Ie) = 1.46) far exceed the value given in criterion 5.

The model of Compte et al. (2003b) is a downscaled model
of the network found in nature with each neuron receiving
on average only 20 inputs from other neurons. Therefore,
the synaptic strengths and connection probabilities do not
correspond to their biological equivalents, and criterion 9 is not
fully applicable here. The membrane conductance of an average

excitatory neuron in the model, however, decreases from 1–2 nS
at rest to zero and even becomes negative (corresponding to
self-depolarization) after depolarization by only a few millivolts
(see Maksimov et al., 2016). This results in excessive membrane
time constants of hundreds of milliseconds and exaggerated
excitability. The distance from rest to the spiking threshold
Vth − Vrest is on the order of a few mV. At the same time, the
amplitude of a single ePSP is ∼ 2 mV at rest and is further
increased by the decrease in membrane conductance evoked by
the depolarization (see Equation 13). This results in a violation of
the requirement Vth − Vrest≫ PSPe←e in criterion 9.

3.2.4. Results of Model Benchmarking
The evaluation of the three models is summarized in Table 5.
This overview shows that none of the tested models satisfies
all criteria simultaneously. The classic BRN model captures all
properties except a realistic level of excitability and smallness
of membrane potential fluctuations. The BRN with strong
synapses trades excitability for a loss ofmost other experimentally
observed properties. Finally, the Compte et al. (2003b) model
displays approximately half the tested properties. None of
the models combines a biological level of excitability with
realistic spike train irregularity, spike count correlations, and
variability of synaptic inputs andmembrane potential, suggesting
that these aspects of cortical activity are difficult to capture
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FIGURE 7 | Spontaneous Up-Down oscillations generated in the network reimplemented (see Maksimov et al., 2016) from Compte et al. (2003b). (A) Spiking activity

of excitatory (red) and inhibitory (blue) neurons propagates along the chain in a wave-like fashion. Black rectangular window: sample of excitatory population spiking

during the Up state, used to calculate spike synchrony and irregularity. (B) Membrane potential trace of a representative excitatory neuron. (C) Excitatory (red) and

inhibitory (blue) input currents to the same neuron as in (B). (D) Interspike interval (ISI) distribution of a representative neuron that participates actively in the Up-Down

oscillations. (E) Excitatory and inhibitory currents averaged over 10 ms bins show moderate coupling.

in a single model. Thus, the criteria identify limitations of
each model, indicating that each model misses one or more
mechanisms underlying the given dynamical characteristics, as
further discussed below.

4. DISCUSSION

We characterize the dynamics of local cortical circuits based
on experimental data and reports of neural activity during
persistently depolarized network states (PDNS). Our analysis
leads to a set of validation criteria on neuronal activity
for computational models of cortical networks, with a focus
on excitability, balance, and stability. Previous works have
highlighted most of these cortical features: excitability (Sanchez-
Vives and McCormick, 2000), balance (Shu et al., 2003), and
asynchronous (Smith et al., 2012), irregular (Shinomoto et al.,
2003), non-bursty (de Kock and Sakmann, 2008) spiking. To
our knowledge, the present study provides the first systematic
quantitative analysis of the persistently depolarized network
state of cortex combining all these features. To illustrate the
application of the criteria, we revisit several prominent cortical

models and test how well they incorporate these dynamical
features. This reveals weak spots in each model and shows that
our set of criteria forms a useful starting point for the systematic
validation of models of small cortical circuits, as an aid to
developing improved building blocks for larger models of cortex.

4.1. Main Findings
To characterize network activity during PDNS, we analyze
basic properties of intracellularly recorded somatic membrane
potential and excitatory and inhibitory input currents, and
extracellularly recorded spike times. We find that fluctuations in
membrane depolarization and excitatory input currents during
Up states are much smaller than the corresponding mean
levels. Thus, cortical networks tend to maintain stable levels of
membrane potential depolarization and neuronal input during
periods of sustained activation. Analysis of massively parallel
extracellular recordings of spiking activity from frontal cortex
of awake attentive rats and from primary visual cortex of
lightly anesthetized macaque reveals vanishingly low mean spike
count correlations and irregular non-bursty spiking. In addition
to the PDNS characteristics quantified here, we also consider
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TABLE 5 | Summary of model evaluation based on the validation criteria defined in section 3.1.

BRN BRN modified Ostojic Ostojic modified Compte

firing rate (criterion 1)

irregularity (criterion 2)

non-burstiness (criterion 3)

correlations (criterion 4)

Vm stability (criterion 5)

input stability (criterion 6)

balance (criterion 7)

excitability (criterion 8)

realistic parameters (criterion 9)

Green, model fully meets the criterion. Yellow, model approximately meets the criterion. Red, model does not qualitatively meet the criterion. The last row refers to the conformity of

PSPs, spike threshold, and connection probability to experimental values. For the model by Compte et al. (2003b), realistic values of these parameters are not applicable due to the

downscaled nature of the model.

characteristics obtained from a review of the experimental
literature. First, proportional changes in inhibitory input
accompany changes in mean excitatory input. Second, typical
mean firing rates of excitatory neurons in in-vivo and in-vitro
cortical circuits are below 10 spikes/s (de Kock and Sakmann,
2009; Fanselow and Connors, 2010; Hengen et al., 2013). Finally,
the phenomena discussed above occur not only in vivo, but
also in vitro with long-range connections removed (Sanchez-
Vives and McCormick, 2000; Shu et al., 2003). Experimental
reports (Sanchez-Vives and McCormick, 2000; Beierlein et al.,
2002; MacLean et al., 2005; Wester and Contreras, 2012) suggest
that already networks of several thousand neurons can sustain
Up-state-like activity for hundreds of milliseconds after brief
stimulation. This indicates high excitability of relatively small
cortical networks. As we argue, such excitability is achieved
predominantly by network interactions and not by high neuronal
excitability. It is worth noting that balance between excitation
and inhibition may be achieved in even smaller networks.
Experiments with intracortical stimulation suggest that evoked
excitation and inhibition are proportional already on the level
of a single layer of a cortical column in rat and mouse cortices
(Le Roux et al., 2006; Avermann et al., 2012). This would further
localize balance to networks of 1,000–2,000 neurons, as also
indicated by a recent study of layer 4 barrels (Argaman and
Golomb, 2018).

Cortical excitability and balance are robust to various
perturbations. Substantial blockade of GABA (Sanchez-Vives
and McCormick, 2000; Compte et al., 2003b; Shu et al., 2003;
Sanchez-Vives et al., 2010) or K+ channels, or enhancement
of NMDA channel conductance by removing extracellular
Mg2+ (Sanchez-Vives and McCormick, 2000) leads to a loss
of balance, and uncontrolled excitation. However, excitability
and balance are preserved under moderate blockade of GABA
channels (Sanchez-Vives et al., 2010), as well as under
variations in aCSF composition (Table S1) that influence
neuronal and synaptic properties. These considerations imply
that excitability and balance are maintained under moderate
perturbations in synaptic strengths and intrinsic neuronal
properties. Furthermore, local cortical circuits exhibit the same

characteristics with extensive input from the rest of brain (in
vivo) as without external input (in vitro). Therefore, healthy
cortical circuits maintain their operational regime under a wide
range of external input intensities. This robustness is likely
essential for brain function.

Dynamical models of cortical circuits should ideally capture
all features described (summarized in Table 1). To illustrate
the application of the criteria, we revisit three prominent
computational models of cortical circuitry and test how well
they incorporate these features: the classic balanced random
network (BRN) (Brunel, 2000), the BRN with stronger synapses
(Ostojic, 2014), and the model of Up-Down oscillations by
Compte et al. (2003b). In addition to the models in their
original form, we consider versions with parameters adjusted
to biological values. In particular, we require three conspicuous
structural network properties to be realistic according to
our analysis of experimental reports: average connection
probabilities, excitatory synaptic strength, and the distance from
rest to spike threshold, which should generally far exceed
the amplitude of individual excitatory postsynaptic potentials.
None of the original or adjusted models show dynamics that
simultaneously reproduce all benchmarked features. The classic
BRN fails to demonstrate a realistic level of excitability, and
has elevated membrane potential fluctuations. While the BRN
with strong synapses addresses the problem of excitability,
it fails to reproduce membrane potential and input stability,
asynchrony, non-burstiness, irregularity, and low firing rates. We
find that conductance-based synapses slightly improve model
performance (Kumar et al., 2008), but do not combine excitability
with small fluctuations and realistic synaptic connectivity. The
model of Compte et al. (2003b) meets the criteria of excitability,
balance, non-burstiness, and firing rates, but has large input
fluctuations, regular firing, and relies on a small distance to
threshold and unrealistic neuronal dynamics for excitability. The
complexity and carefully constructed single-neuron dynamics of
the Compte et al. (2003b) model do not translate into overall
better fulfillment of the criteria we define here. This is partly
due to the selection of criteria, as the Compte et al. (2003b)
model captures slow waves and various conductance effects,
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not captured by the BRN; and partly due to shortcomings of
the model, illustrating that a more complex model does not
automatically translate into a better one. While the model of
Compte et al. (2003b) was validated both on the single-neuron
level and on collective phenomena, in general, the fact that
a well-constrained and detailed single-neuron model does not
ensure realistic network activity can be due to the lack of
dependence of collective phenomena on details of the single-
neuron dynamics (see, e.g., Sancristóbal et al., 2016). Another
issue is potential overfitting: a high-dimensional parameter space
limits the generalization of models beyond the regime in which
they were tested. Therefore, achieving a generalizable model
requires a balance between the number of parameters and the
goodness of fit to the available data (Burnham and Anderson,
2003).

4.2. Validity of Results
A caveat is that the exact pattern of cortical activity varies
from experiment to experiment and may depend on the
species, cortical area, layer, neuron type, arousal and attention,
and experimental techniques. Our analysis covers a range of
experimental conditions (awake attentive, anesthetized, and in
vitro), thereby capturing some of the corresponding variability,
such as higher firing rates during Up states than during ongoing
activity (Jercog, 2013, Ch. 4.4, but see Watson et al., 2016b).
However, the available experimental data are limited. Therefore,
the values derived from these data sets cover only a fraction of
possible PDNS instances. Nevertheless, in-vitro cortical circuits
preserve network operation (see Supplementary Material), and
the ongoing desynchronized activity during rapid eye movement
sleep and the awake state is in many senses close to in-
vivo and in-vitro Up states (Timofeev et al., 2001; Shu et al.,
2003; Haider et al., 2006; Destexhe et al., 2007). Therefore,
combined with the large tolerance in the model evaluation
(up to 60% difference between the model performance and
benchmarking criteria allowed), the criteria derived here are
likely to describe a significant portion of cortical PDNS instances,
which computational models should ideally capture. Despite
allowing for substantial variability, the criteria are sufficiently
precise to identify weak spots in the tested models.

The criteria we have derived can be further improved with
new experiments on PDNS across conditions, possibly also
highlighting differences between in-vivo and in-vitro activity. It
is of particular interest to experimentally verify the hypothesized
ability of isolated cortical circuits with as few as several thousand
neurons to sustain activity fulfilling the defined criteria. Also, the
set of measures considered may be expanded and refined.

4.3. Missing Mechanisms
The benchmarked models do not claim to include all aspects of
cortical dynamics we test for; for instance, the dependence of
BRN activity on external input is expressly built in. The aspects
of cortical dynamics not reproduced by the models provide hints
about missing mechanisms. In particular, the tested models all
exhibit difficulties in combining excitability with realistically low
levels of spiking regularity, pairwise spike count correlations,
and fluctuations in the subthreshold neuronal dynamics. In the

classic balanced random network model, self-sustained activity
requires strong synapses. The subthreshold fluctuation level
depends linearly on the synaptic strength and, due to the lack of
coordination between inputs, has square root dependence on the
number of active synaptic inputs per neuron (Brunel, 2000). This
means that excitability of these networks is inevitably associated
with large subthreshold fluctuations. The long time constants
of NMDA synapses provide one possibility for increasing
excitability while maintaining spiking irregularity and smallness
of fluctuations (Wong andWang, 2006; Lim and Goldman, 2013;
Tartaglia and Brunel, 2017), and this mechanism is consistent
with a key role of NMDA in Up state generation observed in slice
experiments (McCormick et al., 2003). However, the Compte
et al. (2003b) model includes NMDA and nevertheless does not
fulfill all criteria, showing that the inclusion of NMDA in itself
does not guarantee realistic activity. Another ingredient missing
from the classic BRN is a structural excitatory-inhibitory balance
at the single-neuron level (Xue et al., 2014), demonstrated even
at the level of individual dendritic branches in hippocampal
neurons (Liu, 2004). Such precise balance may allow inhibition to
suppress fluctuations caused by excitatory inputs and limit spike
count correlations without compromising excitability (Vogels
et al., 2011), and may moreover be key to efficient spike
coding (Denève and Machens, 2016). Further proposals for
combining excitability with excitatory-inhibitory balance and
stability include so-called balanced amplification due to near-
critical eigenvalues in the effective connectivity matrix (Murphy
and Miller, 2009), amplification of inputs due to non-normality
of the effective connectivity (Hennequin et al., 2012), structured
connectivity featuring interconnected hub neurons (Setareh
et al., 2017), differential firing rate response curves of excitatory
and inhibitory neurons (Pinto et al., 2003), and attractor
networks with sufficient coupling between the attractors and
an inhibition-dominated background (Latham and Nirenberg,
2004). Future work may investigate these and further models
incorporating mechanisms proposed for excitability and low-
rate balanced activity occurring spontaneously or in response
to transient stimulation in cortical networks, and test them
systematically on the defined criteria.

4.4. Generality of Findings
The presence of PDNS not only in healthy cortical circuits
with long-range projections, but also in slices with only local
connections intact, suggests that PDNS constitute a basic
operational mode inherent to cortical circuits. While PDNS in
vivo may reflect aspects of information processing in the brain,
the information processing in in-vitro preparations is curtailed by
the absence of the majority of long-range projections. Therefore,
aspects of PDNS common to in-vitro and in-vivo conditions
do not reflect high-level information processing and likely
represent default activity which can serve as a basis for supporting
higher-level processing. For example, excitability facilitates
propagation of activity between brain areas, thus subserving
cortical communication. Excitatory-inhibitory balance protects
the network from over-excitation (Sanchez-Vives et al., 2010)
and enhances spike-time precision (Wehr and Zador, 2003).
Furthermore, balanced networks with asynchronous activity
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display fast tracking of changes in external input andmay support
rapid processing (Treves, 1993; Brunel, 2000). An advantage of
membrane potential and input stability may be that this keeps
neurons close to the spiking threshold during ongoing activity,
facilitating their recruitment (McCormick et al., 2003).

Fidelity to biological observations and reliability of model
predictions are key objectives in the development of biologically
plausible computational models. To increase the likelihood of
attaining these objectives, the model constituents and dynamics
should be systematically constrained. Existing models are
typically designed to reproduce a narrow set of features, while
systematic validation of the model components and dynamics
is often omitted. This often results in partly unrealistic network
properties and dynamics as revealed by more thorough analysis.
For example, the model of Up-Down oscillations tested here
incorporates unrealistic neuronal dynamics, despite the high
biology-inspired complexity of the model neurons. Also, the
difficulties of the BRNmodel to combine excitability with realistic
network properties, as well as its predisposition to excessive
synchronization (see Figures 5, 6) and the drastic change in
the operational regime of the network upon enhancement of
synaptic weights within the biologically plausible range (Ostojic,
2014), suggest that this model misses an important mechanism,
as discussed above.

Inconsistencies with experimental data reduce model
reliability and make it hard to merge specialized models
into a unified model of the brain, one of the main goals of
computational neuroscience. The set of validation criteria we
derive for the persistently depolarized network state of cortex
can serve as an aid toward model verification and unification.

Simultaneously incorporating excitability, excitatory-inhibitory
balance, membrane potential and input stability, nonbursty
asynchronous-irregular spiking at low rates, and realistic
network structure is a challenge for future cortical models.
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