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In vitro generation of antibodies often requires variable domain sequence evolution to 
adapt the protein in terms of affinity, specificity, or developability. Such antibodies, inclu
ding those that are of interest for clinical development, may have their origins in a diversity 
of immunoglobulin germline genes. Others and we have previously shown that antibodies 
of different origins tend to evolve along different, preferred trajectories. Apart from substi
tutions within the complementary determining regions, evolution may also, in a germline 
geneorigindefined manner, be focused to residues in the framework regions, and even 
to residues within the protein core, in many instances at a substantial distance from 
the antibody’s antigenbinding site. Examples of such germline origin defined patterns of 
evolution are described. We propose that germline genepreferred substitution patterns 
offer attractive alternatives that should be considered in efforts to evolve antibodies 
intended for therapeutic use with respect to appropriate affinity,  specificity, and product 
developability. We also hypothesize that such germline geneorigindefined in vitro evo
lution hold potential to result in products with limited immunogenicity, as similarly evolved 
antibodies will be parts of conventional, in vivogenerated antibody responses and thus 
are likely to have been seen by the immune system in the past.

Keywords: affinity maturation, antibody, antibody therapeutics, developability, evolution, humanization, 
immunoglobulin germline gene, somatic hypermutation

tHe NeeD FOr ANtiBODY evOLUtiON

Biopharmaceutical drugs, in particular monoclonal antibodies, have transformed treatment of disease 
in recent years. Currently (December 2017), more than 50 antibodies are approved for therapeutic 
use in the USA and/or the EU, 10 of which received their first approval in 2017 (1). Furthermore, 
nine antibodies are under regulatory review by the European Medicines Agency or the US Food 
and Drug Administration, and many more are undergoing evaluation in late stage clinical trials 
(1, 2). The large revenue associated with sales of many antibodies in clinical use, and the immense 
clinical benefit of antibodies in the treatment of a diversity of diseases, have stimulated enormous 
efforts and approaches that aim to develop antibodies for use in the clinic (2). These approaches 
include, e.g., utilization of well-behaving antibody scaffolds upon which antibodies are built by 
genetic engineering (3, 4), development of transgenic animals with human immunoglobulin genes 

Abbreviations: CDR, complementarity determining region; FR, framework region; H, heavy; NGS, next-generation sequenc-
ing; V, variable.
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that allow development of human antibodies in an in vivo setting 
(5, 6), humanization of highly effective antibodies of non-human 
(typically murine) origin (7), and exploitation of human in vivo 
immune responses for identification of high quality antibodies 
with unique properties (8–10). Antibodies with multiple spe-
cificities [generated either through development of dual-specific 
binding sites (11) or by design of bispecific (or higher order) 
constructs (12)] may engage appropriate effector cells to target 
cells carrying particular antigens, or facilitate antibody bind-
ing specifically to cells that carry both antigens engaged by the 
antibody’s specificities. Antibodies can also be further developed 
by selection of appropriate constant domains (natural or those 
designed for function) and glycosylation patterns so as to assure 
that they display appropriate effector functions [e.g., mediated 
through FcR binding (including antibody-dependent cellular 
cytotoxicity) or complement activation] and biological half-life 
(mainly an effect of FcRn binding) suitable for the intended appli-
cation. Importantly, processes for identification and development 
of antibodies with appropriate properties in terms of “Chemistry, 
Manufacturing, and Control” have also been developed (13, 14) 
to ensure that a potential drug candidate can actually be turned 
into a viable commercial product.

The biophysical properties of antibodies as well as the affinity 
and specificity of the binding site can be affected by diversification 
of the variable (V) domains and subsequent selection of variants 
that display appropriate properties. Such modulation of antibody 
properties is often achieved by random mutagenesis, directed 
mutagenesis primarily of residues in complementarity determin-
ing regions (CDRs) (based on the assumption that CDRs carry 
much of the specificity-determining diversity of human antibod-
ies), DNA shuffling, or chain shuffling, and subsequent selection 
of variants with improved properties. Selection can be achieved 
using a diversity of technologies like those relying on display on 
phage, yeast, or bacteria and the processes can achieve substantial 
maturation of e.g. the affinity, which may translate into improved 
performance in a given therapeutic setting. Ribosomal display 
even carries an inherent ability to evolve genes during the selection 
procedure (15) thereby advancing a maturation process, as selec-
tion from an original library proceeds. Given the potential size of 
molecular diversity space, it is only possible to assess a very limited 
fraction of that space in any given experiment. It is thus important 
to limit diversity to that acceptable for appropriate protein fold-
ing, as only such diversity is likely to deliver a functional product 
and thereby an appropriate outcome of the evolution process. 
Furthermore, it is envisaged that minimal diversification away 
from human antibody sequences that commonly occur in  vivo 
is preferred in order to minimize the likelihood that the protein 
will be immunogenic and able to induce an anti-drug immune 
response during clinical use.

BiG DAtA As A sOUrce OF iNsPirAtiON 
FOr DeveLOPMeNt OF MOLecULAr 
evOLUtiON strAteGies

Big datasets, in particular those that are the results of next-gen-
eration sequencing (NGS), now offer extensive, unprecedented 

insight into immune antibody diversity as it is represented in 
human subjects (16). High-throughput single cell approaches 
to identify paired antibody heavy (H) and light chain sequences 
used in combination with NGS, and occasionally in combination 
with mass spectrometry-based proteomics, offer an additional 
dimension to antibody investigation and discovery that aid our 
understanding of immune repertoires also at a global level (17, 
18). We are confident that this kind of large-scale insight can be 
translated into a multitude of actionable strategies in the field of 
improved antibody engineering and evolution. Exploitation of 
such technologies have indeed already defined routes through 
which immune responses develop and evolve in response to 
natural infection and vaccination (19, 20). Such studies have now 
provided a driving force for novel vaccine development in the 
field of infectious diseases (21–23).

ANtiBODY evOLUtiON BeYOND 
cONveNtiONAL cDr—GeNerAL 
cONsiDerAtiONs

Importantly, large collections of diversified antibody sequences 
can also be used to inspire new thinking in the field of anti-
body evolution, in order to develop processes that efficiently 
evolve antibodies into variants that display appropriate bind-
ing properties and high developability. It was early on realized 
that antibody diversity at a global scale is focused into regions, 
the so-called CDRs, while intervening framework regions are 
more similar in sequence between different antibodies (24), 
in particular among sequences that belong to one and the 
same immunoglobulin clan (25). Such diversity is generated 
through variability in immunoglobulin germline-encoded 
genes, by the gene rearrangement process (focusing additional 
diversity into the third CDR), and by somatic hypermutation 
that may target mutational hotspots and substitution-prone 
codons that are focused to the parts of the genes that encode 
CDRs (26–29). These CDRs are well recognized to establish 
multiple direct interactions with antigen, although some 
interactions may certainly occur outside of these regions as 
well (25, 30, 31). Indeed, other parts of the immunoglobulin 
V domains have also been associated with functional antibody 
evolution. Studies of antibody in  vitro evolution have sug-
gested that “mutations leading to higher affinity correspond to 
residues distant from the binding site” (32) and that “affinity 
maturation of antibodies with affinity in the low nanomolar 
range occurs most effectively via changes in “vernier” or second-
sphere residues rather than contact residues” (33). Furthermore, 
studies of antibody evolution in vivo suggested that “There is a 
clear preference for mutations at the Ag-binding site. However, 
positions outside this region that also affect binding are often 
preferred targets for somatic hypermutations” (34), but also 
that “mutations in the contacting residues have an adverse 
effect on the antigen–antibody interaction” (35), and that “FWR 
mutations in noncontact residues are essential for the binding, 
breadth, and potency of most broadly neutralizing anti-HIV-1 
antibodies” (36). Although diversity in antibodies, generated at 
the level of diversity of germline genes themselves and through 
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FiGUre 1 | Substitution frequencies from the beginning of complementarity determining region (CDR)1 up to and including FR3 of the heavy chain of IgG encoded 
in bone marrow (39) by genes originally derived from 11 different germline genes with an origin in six different germline gene subgroups (gray) and the average 
substitution frequency (orange) seen in IgG derived from these germline genes [adjusted for the germline genes’ respective contribution to the overall antibody 
repertoire (40)]. [The illustration is a modified version of a figure published by us (38).] Residue numbering is according to the IMGT numbering system (41). This 
nomenclature defines CDR1 and CDR2 as residues 27–38 and 56–65, respectively.
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the hypermutation process, at a global scale focus onto the 
CDRs (Figure 1), others (37) and we (38) have demonstrated 
that diversity-generating hypermutation extends far beyond 
traditional CDRs in a manner that is defined by the germline 
gene origin of the antibody-encoding gene. Multiple sites, 
targeted by diversification in products of individual germline 
genes, can be identified in antibody H chains (Figures 2A–C; 
Figure S1 in Supplementary Material) (37, 38) and light chains 
(37). It thus appears that antibodies in  vivo evolve through 
unique paths. These paths may be regulated by features built 
into the gene sequence itself (mutational hot- and cold-spots) 
or into features of their encoded proteins that favors evolution 
along particular trajectories. Irrespective of the specific rea-
sons for the preferred paths of evolution, it is obvious that the 
immune system as such will have experienced and tolerated 
a substantial level of sequence diversity in antibodies, both 
within the CDRs and well beyond. This opens a window of 
opportunity for antibody in vitro optimization, the products of 
which, we hypothesize, may be well tolerated from an immu-
nogenicity perspective in a therapeutic setting as it is already 
exploited by humoral immunity.

ANtiBODY evOLUtiON eveN BeYOND 
cONveNtiONAL cDr—sPeciFic 
eXAMPLes

The sites available for natural evolution reside throughout the V 
domain of the H chain. Some germline genes offer opportunities 
for amino acid substitution in core residues, in H and light chain 
V domain interphase residues and in surface residues situated 
close to or far away from the paratope itself (38). A fourth 
hypervariable loop (CDR4) (42) located within FR3, but in close 
proximity to CDR1 and CDR2 of the folded protein, a region that 
may directly contact antigen (30, 43), may be particularly attrac-
tive for this purpose in the case of antibodies derived from some 
germline genes, such as IGHV1–8, IGHV1–18, and IGHV5–51 
(38). We also recently demonstrated patterns of insertions and 
deletions of entire codons, implied in the diversification of 
antibodies 20  years ago (44–46), that specifically target CDRs 
(including CDR4) of antibodies encoded by some germline genes 
(38). As such, diversification may be an important contributor 
to the development of particularly effective immune responses 
in vivo (47) it should be considered for in vitro antibody evolution 
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FiGUre 2 | Diversification of heavy (H) chain variable (V) domain of IgG encoded in bone marrow (39) by genes originally derived from germline genes IGHV1–8 (A), 
IGHV3–11 (B), and IGHV5–51 (c), as previously described (38). Illustrations of such substitution patterns for an additional eight genes are available in Figure S1 in 
Supplementary Material. Structures of Fv of antibodies with H chain V domains with an origin in IGHV1–18 (PDB: 3SDY) (D), IGHV1–8 (PDB: 3 × 3G) (e), IGHV3–11 
(PDB: 4ZS6) (F), and IGHV5–51 (PDB: 4BUH) (G) illustrating examples of side chains of highly mutated positions [side chain atoms of which are shown in magenta 
(carbon), dark blue (nitrogen), and red (oxygen)]. The highlighted, highly mutated positions are position 71 of IGHV1–18 (D), position 80 of IGHV1–8 (e), position 96 
of IGHV3–11 (F), and position 101 of IGHV5–51 (G). Atoms of H chain complementarity determining regions (CDRs) are illustrated in light brown (CDR1), light green 
(CDR2), and light blue (CDR3). All residue numbers are in accordance with the IMGT numbering rules (41). This nomenclature defines CDR1 and CDR2 as residues 
27–38 and 56–65, respectively.
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purposes, possibly allowing us to reach parts of structure and 
antigen-interaction space not effectively reached by antibodies 
in other ways. Many other residues beyond CDRs have also been 
identified to carry diversity in a germline gene-defined manner. 
For instance, residue 80, a member of the V domain’s upper core 
(48), considered to be important for the position and conforma-
tion of H chain CDR2 (49) and stability of the V domain (50), is 
extensively targeted by substitution in products of some but not all 
germline genes (Figure 2) (38). Intriguingly, arginine 80 encoded 
by IGHV1–8 (Figures 2A,E), but not by IGHV3–7, IGHV3–11, 
IGHV3–21, or IGHV3–23 (38), is, based on diversification of 
H chains in  vivo, a suitable target for diversification. Indeed, 
multiple other residues within the upper core are targetable by 
substitution in a germline-defined manner (38), modifications 
that may fine-tune the paratope (48, 51) and thereby perfect the 
antigen-binding properties. Indeed, evolution that might affect 
the structure/flexibility of H chain V domain CDR3 (52), the 
loop created through the VDJ rearrangement process, provides 
interesting opportunities in terms of perfection of the paratope. 
For instance, we recently observed substantial germline-defined 
differences in the ability to incorporate the 3′-most nucleotide of 
the IGHV-encoding gene into the rearranged sequence (53, 54). 
Many IGHV genes’ 3′-end has a sequence that it, if fully incor-
porated into the final product, would encode an acidic residue in 
position 107 of the ascending strand of CDR3. These side chains 
display opportunities to establish polar interactions, for instance 
to the side chain of amino acid 40 (located immediately after 
CDR1), not available to residues (commonly glycine, alanine, or 
valine) that are incorporated in cases where the full length of 
the IGHV gene is not used (53, 54). Importantly, the germline-
encoded side chain of residue 40 is in many instances able to 
participate in polar interactions with a polar residue at position 
107 in the ascending strand of H chain CDR3, and it holds capac-
ity to be diversified (Figure S2 in Supplementary Material) (38). 
We postulate that diversification of residue 40 may be attempted 
as yet another way to modulate the structure of the binding site 
itself even beyond the nature of the residues in the paratope itself. 
Altogether, there are multiple germline origin-defined opportu-
nities for paratope evolution in antibodies that may be exploited 
to achieve products with sequence similarity to antibodies that 
typically occur in human subjects.

Antibodies may need optimization for utilization in specific 
applications for reasons other than specificity and/or affinity. 
Developability of a candidate molecule is such an aspect that 
may require molecular optimization to provide a final candidate 
with properties like the absence of off-target binding, efficiency 
of manufacture, high stability, and ability to be incorporated 
in a suitable, formulated product. Indeed, antibodies, even 
those approved or in late stage clinical development, may differ 
widely in such respects (14). For instance, some side chains 
are sensitive to, e.g., oxidation, β-elimination, deamidation, 
or isomerization, and the protein may be poorly soluble, or 
sensitive to proteolysis and aggregation, processes that reduce 
the stability/homogeneity of the protein product. When such 
problems are identified in a lead antibody that is undergoing 
clinical development it may be necessary to optimize the protein 
sequence through molecular evolution (55), potentially through 

guidance by computational predictions (56), to keep these unde-
sired processes at an acceptable level. It has been suggested that 
antibodies developed by phage display technology may be more 
prone to developability issues in relation to product specificity 
or solubility than antibodies developed in mice (57, 58), sug-
gesting that such in vitro-generated antibodies more frequently 
may require optimization in this respect. We again hypothesize 
that a preferred solution to the problem may be sought through 
diversification of the protein in accordance with the mutational 
profile of antibodies of the same germline gene origin. This may 
be feasible even when sensitive residues are found far from the 
antibody’s paratope. For instance, methionine 101, situated far 
from the antibody’s binding site, as encoded by germline gene 
IGHV5–51, is surface exposed and might be prone to oxidation. 
This particular residue is, however, frequently diversified in IgG 
derived from germline gene IGHV5–51 (37, 38), in particular 
to isoleucine, threonine, or valine (Figures  2C,G). This fact 
provides reassurance that it is worthwhile to attempt a designed 
mutational strategy (incorporating commonly occurring 
residues in this particular position) to resolve stability problems 
associated with this particular residue. Other residues, far from 
the binding site, such as residue 71 of IGHV1–18 (Figure 2D) 
[in close proximity to the structure pattern-defining residue at 
position 76 (59)], and residue 96 of IGHV3–11 (Figures 2B,F) 
are prone to substitution in  vivo. A range of such sites have 
been defined by others, in the form of gene-specific substitu-
tion profiles (GSSP) (37), and us (38) (Figure 1; Figure S1 in 
Supplementary Material). Interestingly, a past study suggested 
that substitutions far from the binding site indeed stabilized 
antibodies that also carried destabilizing mutations in their 
paratope (60). However, although the authors were confident 
about that main conclusion of this study, it was retracted 
based on a lack of confidence in a subset of confirmatory data 
(61). Formal demonstration of the usefulness of targeting of 
paratope-distant residues in antibody stabilization is thus not 
fully in place. Nevertheless, these natural paths of evolution, in 
our opinion, forms a natural basis for antibody perfection with 
maximum chance of tolerability and minimal risk of induction 
of anti-drug antibody responses following treatment as such 
antibody sequences would have been commonly seen by the 
immune system in the past. This will be the case as long as the 
treated subject, given the substantial diversity of the immuno-
globulin loci (40, 62, 63), actually encodes antibodies derived 
from the germline gene/allele in question.

cONcLUsiON

In summary, others and we have demonstrated substantial 
 germline origin-unique substitution patterns in antibody V 
domains. Such patterns, even those beyond the classical CDRs, 
ought to be exploited in efforts aimed at affinity or specificity 
maturation, or optimization in terms of product developability. 
Future in-depth analysis of the outcome in terms of immuno-
genicity of antibodies perfected in this knowledge-driven manner 
will be required. However, we envisage that this procedure has 
true potential to establish antibodies with very limited immu-
nogenicity as subjects treated with them are likely to have seen 
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highly similarly, molecularly evolved, antibodies in the past as 
part of their own immune responses.
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