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Abstract. This work is focused on determining the response of a multi-cracked structure in the 
presence of different types of cracks vibrated due to a transit mass. The open transverse and 
inclined edge cracks of random crack depth are present at various locations of the cracked 
structure. The mass is moving on the beam at the different critical speeds of the structure. 
Runge-Kutta fourth order method is employed to evaluate the response of the structure 
numerically. The significance of different factors like the magnitude of the moving mass, moving 
speed, crack depth, crack inclination angle and their effects on the response of the deteriorated 
structure are investigated. Numerical analyses with numerous examples are carried out and 
validated the results with finite element analysis (FEA) and experimental investigations. 
Keywords: transit mass, open transverse crack, inclined edge crack, Runge-Kutta. 

1. Introduction  

The moving load dynamics problem is an important research topic both in the field of structural 
dynamics and transportation engineering. The stability and properties of the structure may change 
due to the presence of cracks. Numerous studies have been conducted on cracked structures with 
moving load to examine the stability and response of structures. Lee and Ng [1] have studied the 
dynamic behaviour of a cracked beam subjected to traversing mass using Euler-Bernoulli’s theory 
and assume mode technique. The transverse vibration of a slender beam with inclined edge cracks 
has been explained by Nandwana and Maiti [2] using the rotational spring method. Chaudhari and 
Maiti [3] proposed an analytical technique to study the transverse vibration of cracked cantilever 
beam with edge crack of linearly variable crack depth. Ichikawa et al. [4] investigated the response 
of a multi-span Euler-Bernoulli beam subjected to traversing load by employing both the modal 
analysis and the direct integration method. Wu et al. [5] have applied both the analytical and finite 
element methods to obtain the dynamic response of mobile gantry crane structures. An iterative 
modal analysis method has been developed to examine the consequence of transverse crack on the 
response of an undamped Bernoulli-Euler beam with traversing mass by Mahmoud and Abouzaid 
[6]. Karuppaiah et al. [7] studied the dynamic behaviour of a light passenger vehicle by 
experimentation and finite element analysis. Bilello and Bergman [8] have conducted an analytical 
and experimental study to determine the response of a damaged Euler-Bernoulli beam subjected 
to a traversing mass. Law and Zhu [9] have studied the dynamic response of damaged concrete 
bridge subjected to traversing vehicle. Employing the differential quadrature method (DQM), Hsu 
[10] studied the eigenvalues problems of cracked structure on the elastic foundation subjected to 
axial loading, excitation force and single edge crack. A finite element analysis of vehicle-bridge 
interaction using commercial programme LS-DYNA was carried out by Kwasniewski et al. [11]. 
Nikkhoo et al. [12] have investigated the dynamic behaviour and modal control of structures under 
the excitation of traversing mass. Aydin [13] has developed a theoretical method for the evaluation 
of vibrational frequencies and mode shape functions of axially loaded cracked structure in the 
presence of non-breathing cracks. Ariaei et al. [14] have employed the discrete element technique 
and the finite element method to evaluate the dynamic response of cracked beam with open and 
breathing cracks under the excitation of traversing mass. They have also discussed various 
parameters that affecting the response of the structure. Behzad et al. [15] have developed a 
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continuous model to analyse flexural vibration of a beam with vertical edge crack.  
Shafiei and Khaji [16] have developed an analytical solution method to examine the free and 

forced vibration of a cracked Timoshenko beam with multiple cracks under the excitation of an 
intense traversing load. Dyniewicz [17] has explained the response of structure subjected to a 
traversing inertial load using the space-time finite element method. Zarfam and Khaloo [18] have 
studied the vibration control of structures on the elastic foundation under traversing mass and 
random lateral excitations using modal analysis method. Behzada et al. [19] proposed a crack 
detection algorithm for a cantilever beam structure with two different types of cracks. Azam et al. 
[20] have studied the dynamic behaviour of Timoshenko beam under the action of both traversing 
mass and traversing sprung structures. Cicirello and Palmeri [21] have presented a method for the 
static analysis of an Euler-Bernoulli beam with random no of unilateral cracks under the action of 
both axial and transverse load. Nezad et al. [22] have determined the natural frequencies and mode 
shapes of a double cracked simply supported structure by extending the Rayleigh's method. Zhong 
et al. [23] have explored the vehicle- bridge interaction dynamics by considering the prestress 
effect of a bridge. Nguyen [24] discussed the importance of crack on the dynamic behaviour of 
bridge type structure excited due to moving vehicle and earthquake. He has modelled the bridge 
structure as a 3-D beam using FEM.  

Numerous studies have been conducted for the investigation of stability and dynamic 
behaviour of damaged structures subjected to moving load using theoretical, computational, 
experimental and finite element methods. But little attention has been focused on the cracked 
structure with the presence of different types of crack in static analysis of structure. But, this work 
investigates the response of the cracked structure under the excitation of traversing mass with the 
presence of open transverse and inclined edge cracks. Numerical analyses followed by 
experimental and finite element analyses have been exemplified to validate the employed 
numerical method. 

2. Problem formulation 

The dynamic response of a damaged cantilever beam (multiple cracks) with different types of 
cracks of random crack depth, length ܮ, width ܾ , thickness ܪ , subjected to a transit mass is 
analysed. The cracked beam contains open transverse cracks and inclined edge crack.  

 
Fig. 1. Schematic view of cracked beam subjected to transit mass different types of cracks 

A mass of ܯ is traversing across the beam with speed ݒ from the fixed end to the tip end as in 
Fig. 1. An undamped uniform Euler-Bernoulli beam with no loading condition is considered in 
this study. Including inertial & shearing effects, ignoring the longitudinal vibration and damping 
effects of the beam, the equation of motion of the beam subjected to transit mass is given as: 
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ܫܧ ∂ସݔ∂ݕସ + ݉ᇱ ∂ଶݐ∂ݕଶ = ݔ)ߜ(ݐ)݂ − ߰), (1)

where ݂(ݐ) – transit mass-beam contact force ݃ܯ − ܯ ቀ பப௧ + ݒ பபటቁଶ ,߰)ݕ ߰ .(ݐ =  :ݐ position of the transit mass at time – ݐݒ

ܫܧ ∂ସݔ)ݕ, ସݔ∂(ݐ + ݉ᇱ ∂ଶݔ)ݕ, ଶݐ∂(ݐ = ቈ݃ܯ − ܯ ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶ ,߰)ݕ ቉(ݐ ݔ)ߜ − ߰), (2)

where, ݔ)ݕ,  is Dirac delta function, ݉′ is beam mass per unit ߜ ,beam transverse deflection – (ݐ
length, ݉ = ܮ′݉  – total beam mass, ݃  is acceleration due to gravity, ܫܧ  is Flexural rigidity 
(undamaged beam), ߩ is mass density (constant) of the beam. 

The solution of Eq. (2) can be written in series form i.e.: 

,ݔ)ݕ (ݐ = ෍ ௡ஶܨ
௡ୀଵ (3) ,(ݐ)௡ݍ(ݔ)

where ܨ௡(ݔ) is function of position or eigenfunctions of the beam without considering the transit 
mass, ݍ௡(ݐ) is time function to be calculated.  

To determine ܨ௡(ݔ), the Eq. (3) may be written as: ܨ௡௜௩(ݔ) − ௡ସߣ (ݔ)௡ܨ = 0, (4)

where ߣ௡ସ = ݉′ ߱௡ଶ ⁄ܫܧ , ݊ = 5 is no of modes of vibration, ߱௡ is natural frequency of the beam 
The magnified view of the inclined crack segment of the beam is explained in Fig. 2. The 

modelling of cracks is done in FEA using ANSYS WORKBENCH 2015. Due to the existence of 
inclined edge crack, the crack depth is changing throughout the crack segment. The dimensions 
of the inclined crack segment are as follows:  ܮଷᇱ − ଷܮ  is maximum crack length, ݈  is maximum crack length at the crack opening, ܽ′ is 
maximum depth at the crack intact position. 

 
Fig. 2. Inclined cracked zone in magnified view ߙ′ is relative depth at the intact positions ܽ′/ߙ ,ܪ =  is crack ߠ ,is relative crack depth ܪ/ܽ

inclination angle, ܮଵ, ܮଶ, ܮଷ are position of the 1st, 2nd and 3rd cracks from the fixed end. Now 
the entire crack length (ܮଷᇱ − ݎ .ଷ) may be subdivided into ܰ no of equal parts i.eܮ = 1, 2, 3,…, ܰ. 
From the geometry of Fig. 2, the dimensions for the inclined crack section are as follows  ܮଷᇱ − ଷܮ = ܽ′ tanߠ⁄ , length of each part in the crack segment ܽ′ ܰtanߠ⁄ , length of ݎth part of the 
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segment ܽݎ′ ܰtanߠ⁄ . 
The thickness of the first section below the inclined crack zone  ܪ − ʹܣܣ = ܪ − ଷᇱܮ) − ଷܮ ܰcotߠ⁄ ). 
The ݎth part of the thickness below the inclined zone ܪ − ଷᇱܮ)ݎ − ଷܮ ܰcotߠ⁄ ). 
Similarly, the thicknesses above the inclined zone are calculated. From the geometry of the 

inclined crack zone, the crack depth and relative crack depth for the inclined crack segments are 
calculated. Due to the existence of different types of cracks, the entire beam can be simulated into 
different beam segments. From the assumptions of Euler-Bernoulli’s beam theory, the solution of 
Eq. (4) for the transverse deflection of each segment of the beam can be stated as: ܨ௡ଵ(ݔ) = ଵܣ sin(ߣ௡ݔ) + ଵܤ cos(ߣ௡ݔ) + ଵܥ sinh(ߣ௡ݔ) + ଵܦ cosh(ߣ௡ݔ) ,    0 ≤ ݔ < (ݔ)௡ଶܨ ,ଵܮ = ଶܣ sin(ߣ௡ݔ) + ଶܤ cos(ߣ௡ݔ) + ଶܥ sinh(ߣ௡ݔ) + ଶܦ cosh(ߣ௡ݔ),    ܮଵ ≤ ݔ < (ݔ)௡ଷܨ ,ଶܮ = ଷܣ sin(ߣ௡ݔ) + ଷܤ cos(ߣ௡ݔ) + ଷܥ sinh(ߣ௡ݔ) + ଷܦ cosh(ߣ௡ݔ),    ܮଶ ≤ ݔ < (ݔ)௡ସܨ ,ଷܮ = ସܣ sin(ߣ௡ݔ) + ସܤ cos(ߣ௡ݔ) + ସܥ sinh(ߣ௡ݔ) + ସܦ cosh(ߣ௡ݔ),    ܮଷ ≤ ݔ < ଷܮ + ݎ ቆܮଷᇱ − ଷܰܮ ቇ, ܨ௡ହ(ݔ) = ହܣ sin(ߣ௡ݔ) + ହܤ cos(ߣ௡ݔ) + ହܥ sinh(ߣ௡ݔ) + ହܦ cosh(ߣ௡ݔ),    ܮଷᇱ ≤ ݔ ≤   .ܮ
where ܣ ܤ , ܥ ,  and ܦ  are different integrating constants, evaluated from various end  
conditions [25]. 

Using Eq. (3) on the right part of the Eq. (2) and arranging it, we get: 

൥݃ܯ − ܯ ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶ ෍ ஶ(ݐ)௡ݍ(߰)௡ܨ
௡ୀଵ ൩ ݔ)ߜ − ߰) = ෍ ஶ(ݐ)௡ݏ(ݔ)௡ܨ

௡ୀଵ . (5)

Multiplying ܨ௣(ݔ) in Eq. (5) and integrating it over ܮ, the Eq. (6) thus developed can be 
expressed as: 

݃ܯ න ௣௅ܨ
଴ ݔ)ߜ(ݔ) − ݔ݀(߰ − ܯ ෍ න ௣௅ܨ

଴ ஶ(ݔ)
௡ୀଵ ቊ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶ ቋ(ݐ)௡ݍ(߰)௡ܨ ݔ)ߜ −  ݔ݀(߰

      = න ෍ ஶ(ݔ)௣ܨ
௡ୀଵ ௡௅ܨ

଴ (6) .ݔ݀(ݐ)௡ݏ(ݔ)

The expression on the right of Eq. (6) can be expressed as: ∑ (ݐ)௡ݏ ׬ ௅଴ஶ௡ୀଵ(ݔ)௡ܨ(ݔ)௣ܨ  .ݔ݀
From orthogonality principle and Dirac delta function properties, the Eq. (6) can be written as: 

(߰)௣ܨ݃ܯ − ܯ ෍ ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶஶ
௡ୀଵ (߰)௣ܨ(ݐ)௡ݍ(߰)௡ܨ = ܵ௣(ݐ) ௣ܸ. (7)

From the orthogonality principle ݏ௣(ݐ) ௣ܸ = ௣ܸݏ௣(ݐ) as: 

න ௅ݔ݀(ݔ)௡ܨ(ݔ)௣ܨ
଴ = ൜0,    ݊ ≠ ݊   ,௣ܸ݌ =  ,ൠ݌
(ݐ)௣ݏ = ௣ܯܸ ൦൮݃ − ෍ ൬ ݐ∂∂ + ݒ ∂∂߰൰ஶ

௡ୀଵ
ଶ ൲(ݐ)௡ݍ(߰)௡ܨ ௣(߰)൪. (8)ܨ
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Combination of Eqs. (2) and (5) can be expressed as: 

ܫܧ ∂ସݔ)ݕ, ସݔ∂(ݐ + ݉ᇱ ∂ଶݔ)ݕ, ଶݐ∂(ݐ = ෍ ௡ஶܨ
௡ୀଵ (9) .(ݐ)௡ݏ(ݔ)

With ݍ no of steps, combination of Eqs. (8) and (9) can be expressed as: 

ܫܧ ∂ସݔ)ݕ, ସݔ∂(ݐ + ݉ᇱ ∂ଶݔ)ݕ, ଶݐ∂(ݐ = ෍ ௡ஶ௡ୀଵܨ (ݔ) ௡ܯܸ ቎݃ − ෍ ൬ ݐ∂∂ + ݒ ∂∂ψ൰ଶஶ
௤ୀଵ ቏(ݐ)௤ݍ(߰)௤ܨ ௡(߰). (10)ܨ

Employing the values of Eqs. (3) in Eq. (10), the equation now: 

ܫܧ ∂ସሼ∑ ௡ஶ௡ୀଵܨ ସݔ∂ሽ(ݐ)௡ݍ(ݔ) + ݉′ ∂ଶሼ∑ ௡ஶ௡ୀଵܨ ଶݐ∂ሽ(ݐ)௡ݍ(ݔ)  
      = ෍ ௡ஶܨ

௡ୀଵ (ݔ) ௡ܯܸ ቎݃ − ෍ ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶஶ
௤ୀଵ ቏(ݐ)௤ݍ(߰)௤ܨ ௡(߰). (11)ܨ

Obtaining values from Eq. (4) and applying in Eq. (11), and rearranging it: 

෍ (ݐ)௡ݍ௡ସߣܫܧ൛(ݔ)௡ܨ + ൟஶ(ݐ)௡,௧௧ݍ′݉
௡ୀଵ − ௡ܯܸ ቎݃ − ෍ ൬ ݐ∂∂ + ݒ ∂∂߰൰ଶஶ

௤ୀଵ ቏(ݐ)௤ݍ(߰)௤ܨ (߰)௡ܨ = 0. (12)

Now, the Eq. (12) must satisfy each value of ݔ i.e.: 

(ݐ)௡ݍ௡ସߣܫܧ + (ݐ)௡,௧௧ݍ′݉ − ൬ܸܯ௡൰ ቎݃ − ෍ ൬ ݐ∂∂ + ݒ ∂∂߰൰ஶ
௤ୀଵ

ଶ ቏(ݐ)௤ݍ(߰)௤ܨ (߰)௡ܨ = 0. (13)

For the solution of Eq. (13), a computational method of Runge-Kutta fourth order rule is 
adopted. 

3. Numerical formulation 

A structural steel beam specimen of size 1.5 m×0.05 m×0.0045 m with appropriate 
assumptions is made for the analysis. The cracks are located (ܮଵ,ଶ,ଷ = 0.4, 0.75, 1.1 m) from the 
fixed end of the beam. The critical speed (ݒ௖ = 1.8751ඥܫܧ ݉′⁄  of the cantilever beam is (ܮ/
calculated considering the first mode of the structure. The flexural rigidity (ܫܧ) of the undamaged 
beam is also calculated. The transit mass has been considered at the different beam to mass ratio 
( ܯ = 0.4 m, 0.6 mkg) and the transit speed regarding different critical speed ( ݒ = ௖ݒ0.6  ௖ km/h) of this structural systems. The response of the multi-cracked structure with differentݒ0.75  ,
types of cracks has been calculated at different crack depth ratio (ߙ = ܽଵ,ଶ,ଷ ⁄ܪ ), speeds, moving 
mass, crack inclination angles and crack locations. For the solution of the computational method, 
a MATLAB code has been developed. Parametric analyses have been conducted with different 
factors affecting the response of the structure. 

4. Finite element analysis  

The finite element analysis has been carried out using the standard commercial ANSYS 
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WORKBENCH 2015 package for the damaged structure. Primarily modal analysis is conducted 
to determine the natural frequencies and mode response of the structure (damaged and  
undamaged) considering the first five modes of vibration. The modelling of cracks is done in FEA. 
Transient dynamic analysis of mode superposition method is employed to determine the response 
of the structure with the transit mass and speed. The inertial effect is considered and the damping 
effect is ignored. The beam displacements at the tip end and the transit mass point (position of the 
mass on the beam during motion) are calculated. The transit mass in finite element model (Fig. 3) 
and modal behaviours of the cracked structural system at different modes are described in 
Fig. 4(a)-4(c). The modelling of cracks is done in FEA. The crack modelling for inclined edge 
crack (ߠ ᇱߙ ,30° = = 0.45) and transverse open crack (ߙ = 0.45) are shown in Fig. 5(a) and (b) 
respectively. The frequency analyses in the presence of different types of cracks on the structure 
are explained in Table 5.  

 
Fig. 3. Transit mass in finite element model 

 
a) 

 
b) 

 
c) 

Fig. 4. Modal behaviour of the structure at different modes for ߠଵ,ଶ ଵ,ଶᇱߙ ,30° = ߙ ,0.6 ,0.45 = = 0.45 

 
a) Inclined edge crack at ߠ ᇱߙ ,30° = =0.45 

 
b) Transverse open crack at ߙ = 0.45 

Fig. 5. Enhanced view of crack zone  
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5. Experimental analysis 

For the experimental arrangements, the types of equipment are incorporated as in Fig. 6. The 
different types of equipment used in the experiment are explained in Table 1. A structural steel 
beam specimen of size 1.5 m×0.05 m×0.0045 m, linear mass density 7850 kg/m3, flexural rigidity 
(undamaged) 75.938 Nm2 are considered for the experimental investigation. The cracks are made 
using the wire EDM machine at the appropriate position of the beam. Several precautions are 
taken during the experiments. The position of the variac is regulated precisely to attain the required 
constant speed of the transit mass and the best possible accuracy in measurements. 

The transit mass is sliding (no slipping) across the beam by a rope attached to the motor. 
During the movement of the transit mass across the cracked beam, the beam deflections at different 
locations of the mass are recorded through the sensors and displayed on the monitor through the 
data acquisition unit. The average readings of the deflections at the different location of the mass 
determined through the sensors are considered the beam deflection at that location. Several tests 
are carried out at different speeds and weight of the transit mass to calculate the beam deflections. 

Table 1. Equipments used in the experiments 
Serial No. Equipment Serial No. Equipment 

1 Motor (AC) 5 Breadboard 
2 Variac 6 Transit mass 
3 Data acquisition unit 7 Sensors(ultrasonic) 
4 Microcontroller 8 Monitor 

 
Fig. 6. Experimental setup 

6. Results and discussion 

The response of a damaged cantilever beam with multiple different types of cracks subjected 
to transit mass is explained at different moving speed and mass. Numerical analysis along with 
finite element analysis and experimental verification are carried out to validate the applied 
computational method. The analysis has been carried out at constant crack locations (ܮଵ,ଶ,ଷ = 0.4, 
0.75, 1.1 m). The dynamic deflection (Numerical and FEA) of the cracked beam with the existence 
of inclined edge crack and transverse open cracks at different locations of the transit mass at 
different speeds are determined and explained from Figs. 7-10 and that of transverse open cracks 
and inclined edge crack in Table 2. From the computational analysis, the dynamic behaviour of 
the cracked beam at various positions of the transit mass with transit time is explained in 3-D 
graph in Fig. 11 (inclined edge cracks and transverse open crack) and from Figs. 12-13 (transverse 
open cracks and inclined edge crack) at constant crack locations (ܮଵ,ଶ,ଷ = 0.4, 0.75, 1.1 m). It has 
been observed that at the lower speed of the transit mass, the deflection produced is more than that 
of higher speed. It’s because, at the lower speed, the lower modes of the structure are greatly 
excited than that of higher speed. With the increase of the magnitude of the transit mass and crack 
depth, the beam deflection also increases. If the angle of crack inclination increases, then the 
length of crack decreases, which leads to the reduction in dynamic beam deflection. 
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Fig. 7. For ݒ ଵ,ଶ,ଷܮ ,௖ km/hݒ0.6 = = 0.4, 0.75, 1.1 m, ߙଵ,ଶ ଷᇱߙ ,0.45 ,0.6 = ଷߠ ,0.6 = = 30° 

 
Fig. 8. For ݒ ଵ,ଶ,ଷܮ ,௖ km/hݒ0.75 = = 0.4, 0.75, 1.1 m, ߙଵ,ଶ ଷᇱߙ ,0.45 ,0.6 = ଷߠ ,0.6 = = 30° 

 
Fig. 9. For ݒ ଵ,ଶ,ଷܮ ,௖ km/hݒ0.6 = = 0.4, 0.75, 1.1 m, ߙଵᇱ ଵߠ ,0.6 = ଶ,ଷߙ ,30° = =0.45, 0.6 

From Figs. 7-10 and Tables 2-4, it has been found that the beam deflection at different 
positions of the transit mass is more with the existence of open transverse cracks rather than 
inclined edge cracks. The response of the structure at the different time of the transit mass is also 
calculated and shown in Table 2 (Numerical and FEA) and Tables 3-4 (Numerical and  
experiments) for the comparison analysis. The percentage variation between the employed 
computational method and FEA is of maximum 6 % (Table 2) whereas that of experimental 
investigation is 7.5 % (Tables 3-4) which results in good agreements. From the various 3-D 
surface plots, similar observations are also made like 2-D graphs. It has been observed that the 
presence of open transverse cracks results in larger dynamic deflections of the structure than that 
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of inclined edge cracks when subjected to transit mass. 

 
Fig. 10. For ݒ ଵ,ଶ,ଷܮ ,௖ km/hݒ0.75 = = 0.4, 0.75, 1.1 m, ߙଵᇱ ଵߠ ,0.6 = ଶ,ଷߙ ,30° = = 0.45, 0.6 

Table 2. Comparison of results between Numerical and FEA works  
for Time (sec) ~Deflection (cm) at ݒ = ଵ,ଶߠ ௖ km/hݒ0.6 ଵ,ଶᇱߙ ,30° = ଷߙ ,0.45 ,0.6 = ܯ ,0.6 = = 0.6 m ߠଵ,ଶ ଵ,ଶᇱߙ ,30° = ଷߙ ,0.6 ,0.45 = ܯ ,0.45 = = 0.6 m 

ݔ  = ݔ ܮ = ݔ ܮ = ݔ ݐݒ = ݔ ݐݒ = ݔ ܮ = ݔ ܮ = ݔ ݐݒ =  ݐݒ
Time Num. FEA Num. FEA Num. FEA Num. FEA 

0.0813 –0.0703 –0.0727 0.1505 0.1549 –0.0689 –0.7069 0.1505 0.1546 
0.1423 0.9056 0.9429 0.6324 0.6559 0.8878 0.9163 0.6274 0.6495 
0.2134 4.7725 4.9916 2.5633 2.6765 4.6643 4.8769 2.5644 2.6779 
0.2947 9.7511 10.25 9.2658 9.7503 9.5556 10.035 9.0801 9.5409 

Table 3. Comparison of results between Numerical and Experimental works  
for Time (sec) ~Deflection (cm) at ݒ = ଵ,ଶߙ ௖ km/hݒ0.6 ଷߠ ,0.45 ,0.6 = ଷᇱߙ ,30° = ܯ ,0.6 = = 0.4 m ߠଵ ଵᇱߙ ,30° = ଶ,ଷߙ ,0.6 = ܯ ,0.6 ,0.45 = = 0.4 m 

Time ݔ = ݔ ܮ = ݔ ܮ = ݔ ݐݒ = ݔ ݐݒ = ݔ ܮ = ݔ ܮ = ݔ ݐݒ =  ݐݒ
Num. Expt. Num. Expt. Num. Expt. Num. Expt. 

0.1138 0.2854 0.297 0.5341 0.5593 0.2816 0.2924 0.4557 0.4725 
0.1545 2.28 2.4183 1.2383 1.3127 2.0129 2.137 1.048 1.0983 
0.1951 4.4695 4.772 3.139 3.3368 3.9987 4.2282 2.8387 3.0141 
0.2358 6.4058 6.8525 6.1272 6.5517 5.929 6.3506 5.6625 6.0834 

Table 4. Comparison of results between Numerical and Experimental works  
for Time (sec) ~Deflection (cm) at ݒ = ଵߠ ௖ km/hݒ0.6 ଵᇱߙ ,55°= = ଶ,ଷߙ0.6 ܯ ,0.45 ,0.6 = = 0.4 m ߠଵ ଵᇱߙ ,55° = = ଶ,ଷߙ0.6 ܯ ,0.45 ,0.6 = = 0.6 m 

Time ݔ = ݔ ܮ = ݔ ܮ = ݔ ݐݒ = ݔ ݐݒ = ݔ ܮ = ݔ ܮ = ݔ ݐݒ =  ݐݒ
Num. Expt. Num. Expt. Num. Expt. Num. Expt. 

0.122 0.2742 0.2959 0.4018 0.4326 0.3364 0.3613 0.4935 0.5232 
0.1626 1.6502 1.7531 0.9246 0.9725 2.0289 2.1927 1.1265 1.2075 
0.2236 5.0404 5.392 3.0204 3.2194 5.9796 6.3451 3.5475 3.8264 
0.2846 8.7301 9.2637 7.887 8.3425 9.9396 10.721 8.9839 9.4957 

Table 5. Comparison of frequencies in the presence of different types of cracks ߙଵ,ଶ = 0.6, 0.45 and ߙଷᇱ ଷߠ ,0.45 = ଵ,ଶᇱߙ 30° = ଵ,ଶߠ ,0.45 ,0.6 = = 30° and ߙଷ = 0.45 
Mode no Frequency Mode no Frequency 

1 1.5977 1 1.6483 
2 9.9905 2 10.384 
3 28.3981 3 28.422 
4 55.1260 4 55.727 
5 95.152 5 95.828 
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Fig. 11. 3-D surface plot for ߠଵ,ଶ ଵ,ଶᇱߙ ,30° = ଷߙ ,0.45 ,0.6 = ܯ ,0.6 = = 0.4 m 

 
Fig. 12. 3-D surface plot for ߙଵ,ଶ ଷߠ ,0.45 ,0.6 = ଷᇱߙ ,30° = ܯ ,0.6 = = 0.6 m 

  
Fig. 13. 3-D surface plot for ߠଵ ଵᇱߙ ,30° = ଶ,ଷߙ ,0.6 = ܯ ,0.6 ,0.45 = = 0.6 m 

7. Conclusions 

The dynamic responses of cracked cantilever beam with multiple different types of cracks 
subjected to transit mass are studied. The modelling of the cracks is done in FEA using the 
commercial ANSYS WORKBENCH 2015. The responses of the cracked structure with transit 
mass and speed are calculated using Runge-Kutta fourth order method. For the validation of the 
computational method; Numerical analysis followed by FEA and experimental investigations are 
carried out with different examples. The influences of different parameters affecting the dynamic 
response of the structure are investigated with parametric analysis. It has been observed that 
presence of open transverse cracks results in larger dynamic deflection of the structure than those 
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of inclined edge cracks. 

References 

[1] Lee H. P., Ng T. Y. Dynamic response of a cracked beam subjected to a moving load. Acta Mechanica, 
Vol. 106, 1994, p. 221-230. 

[2] Nandwana B. P., Maiti S. K. Modelling of vibration of beam in presence of inclined edge or internal 
crack for its possible detection based on frequency measurements. Engineering Fracture Mechanics, 
Vol. 58, Issue 3, 1997, p. 193-205. 

[3] Chaudhari T. D., Maiti S. K. Modelling of transverse vibration of beam of linearly variable depth 
with edge crack. Engineering Fracture Mechanics, Vol. 63, 1999, p. 425-445. 

[4] Ichikawa M., Miyakawa Y., Matsuda A. Vibration analysis of the continuous beam subjected to a 
moving mass. Journal of Sound and Vibration, Vol. 230, Issue 3, 2000, p. 493-506. 

[5] Wu J. J., Whittaker A. R., Cartmell M. P. Dynamic responses of structures to moving bodies using 
combined finite element and analytical methods. International Journal of Mechanical Sciences, 
Vol. 43, 2001, p. 2555-2579. 

[6] Mahmoud M. A., Abouzaid M. A. Dynamic response of a beam with a crack subject to a moving 
mass. Journal of Sound and Vibration, Vol. 256, Issue 4, 2002, p. 591-603. 

[7] Karuppaiah N., Deshpande P. S., Sujatha C., Ramamurti V. Vibration analysis in a light passenger 
vehicle by rigid body/finite element modelling. Advances in Vibration Engineering, Vol. 2, 2003, 
p. 106-120. 

[8] Bilello C., Bergman L. A. Vibration of damaged beams under a moving mass: theory and 
experimental validation. Journal of Sound and Vibration, Vol. 274, 2004, p. 567-582. 

[9] Law S. S., Zhu X. Q. Dynamic behaviour of damaged concrete bridge structures under moving 
vehicular loads. Engineering Structures, Vol. 26, 2004, p. 1279-1293. 

[10] Hsu Ming Hung Vibration analysis of edge-cracked beam on elastic foundation with axial loading 
using the differential quadrature method, computer. Methods in Applied Mechanics and Engineering, 
Vol. 194, 2005, p. 1-17. 

[11] Kwasniewski L., Li H., Wekezer J., Malachowski J. Finite element analysis of vehicle-bridge 
interaction. Finite Elements in Analysis and Design, Vol. 42, 2006, p. 950-959. 

[12] Nikkhoo A., Rofooei F. R., Shadnam M. R. Dynamic behaviour and modal control of beams under 
moving mass. Journal of Sound and Vibration, Vol. 306, 2007, p. 712-724. 

[13] Aydin Kamil Vibratory Characteristics of Euler-Bernoulli Beams with an Arbitrary Number of Cracks 
Subjected to axial load. Journal of Vibration and Control, Vol. 14, Issue 4, 2008, p. 485-510. 

[14] Ariaei A., Ziaei Rad S., Ghayour M. Vibration analysis of beams with open and breathing cracks 
subjected to moving masses. Journal of Sound and Vibration, Vol. 326, 2009, p. 709-724. 

[15] Behzad M., Ebrahimi A., Meghdari A. A continuous vibration theory for beams with vertical edge 
crack. Transaction B. Mechanical Engineering: Scientia Iranica, Vol. 17, Issue 3, 2010, p. 194-204. 

[16] Shafiei M., Khaji N. Analytical solutions for free and forced vibrations of a multiple cracked 
Timoshenko beam subject to a concentrated moving load. Acta Mechanica, Vol. 221, 2011, p. 79-97. 

[17] Dyniewicz B. Space–time finite element approach to general description of a moving inertial load. 
Finite Elements in Analysis and Design, Vol. 62, 2012, p. 8-17. 

[18] Zarfam R., Khaloo A. R. Review: vibration control of beams on elastic foundation under a moving 
vehicle and random lateral excitations. Journal of Sound and Vibration, Vol. 331, 2012, p. 1217-1232. 

[19] Behzada M., Ghadami A., Maghsoodi A., Hale Jack M. Vibration based algorithm for crack 
detection in cantilever beam containing two different types of cracks. Journal of Sound and Vibration, 
Vol. 332, 2013, p. 6312-6320. 

[20] Azam S. E., Mofid M., Afghani R. A. Dynamic response of Timoshenko beam under moving mass. 
Scientia Iranica A, Vol. 20, Issue 1, 2013, p. 50-56. 

[21] Cicirello A., Palmeri A. Static analysis of Euler-Bernoulli beams with multiple unilateral cracks under 
combined axial and transverse loads. International Journal of Solids and Structures, Vol. 51, 2014, 
p. 1020-1029. 

[22] Bakhtiari Nejad F., Khorram A., Rezaeian M. Analytical estimation of natural frequencies and 
mode shapes of a beam having two cracks. International Journal of Mechanical Sciences, Vol. 78, 
2014, p. 193-202. 

[23] Zhong H., Yang M., Gao Z. Dynamic responses of prestressed bridge and vehicle through bridge–
vehicle interaction analysis. Engineering Structures, Vol. 87, 2015, p. 116-125. 



2530. RESPONSE ANALYSIS OF CRACKED STRUCTURE SUBJECTED TO TRANSIT MASS – A PARAMETRIC STUDY.  
SHAKTI P. JENA, DAYAL R. PARHI 

3254 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. AUG 2017, VOL. 19, ISSUE 5. ISSN 1392-8716  

[24] Nguyen Khoa Viet Dynamic analysis of cracked beam like bridge subjected to earthquake and moving 
vehicles. Advances in Structural Engineering, Vol. 18, Issue 1, 2015, p. 75-96. 

[25] Meirovitch L. Elements of Vibration Analysis. Second Edition, The McGraw-Hill Companies, New 
York, 2007. 

[26] Reddy J. N. An introduction to Finite Element Method. Third Edition, The McGraw-Hill Companies, 
New York, 2005. 

 

Shakti P. Jena has received his Ph.D. degree in mechanical engineering from National 
Institute of Technology, Rourkela, India in 2016. Current Dr. Jena is working as Associate 
Professor in the department of Mechanical Engineering at Vardhaman College of 
Engineering (Autonomous), Hyderabad, India. His present research interests include 
vibration, structural dynamics, control dynamics, soft computing and fault diagnosis. 

 

Dayal R. Parhi has received two degrees of Ph.D. One Ph.D. degree is from Cardiff 
University, UK in the field of robotics. Other Ph.D. degree in mechanical vibration from 
National Institute of Technology, Rourkela, India. Dr. Parhi is now working as Senior 
Professor at National Institute of Technology, Rourkela. His research area includes mobile 
robot, under water robot, control and navigation of mobile robot, moving load dynamics, 
rotor dynamics, vibration, fault diagnosis and various soft computing methods. 

 




