brought to you by W CORE

УДК 616.57/58-001:616-008.9-092.4:616.592

ЭЛЕКТРОПРОВОДНОСТЬ ТКАНЕЙ В ЭКСПЕРИМЕНТЕ КАК СОВРЕМЕННЫЙ СПОСОБ ДИАГНОСТИКИ ЖИЗНЕСПОСОБНОСТИ СКАЛЬПИРОВАННЫХ ПОВРЕЖДЕНИЙ КОНЕЧНОСТЕЙ

А. С. Супрун, Г. А. Олейник, Т. Г. Григорьева, А. А. Цогоев Харьковская медицинская академия последипломного образования

THE ELECTRICAL CONDUCTIVITY OF THE TISSUE IN THE EXPERIMENT AS A MODERN METHOD OF VIABILITY SCALPED LIMB INJURIES DIAGNOSTIC

A. S. Suprun, G. A. Oleynik, T. G. Grigoryeva, A. A. Tsogoyev Kharkov Medical Academy of Postgraduate Education

Реферат

В экспериментальном исследовании разработаны способ определения жизнеспособности тканей и устройство для его реализации, позволяющие улучшить результаты лечения скальпированных повреждений конечностей.

Ключевые слова: скальпированное повреждение конечности; диагностика жизнеспособности тканей; электропроводность тканей; эксперимент.

Abstract

In experimental research the method for determining of viability of tissue and device for its realization were developed to improve treatment results degloving injuries of limbs.

Keywords: degloving limbs injury; viability diagnostic; tissue electrical conductivity; experiment.

Важной проблемой неотложной хирургии является лечение пострадавших по поводу обширного повреждения покровных тканей. Одними из тяжелых повреждений являются скальпированные раны конечностей, в зависимости от мощности и направления повреждающего агента возникает закрытая или открытая отслойка лоскута кожи либо комплекса тканей вплоть до их полного отрыва с обнажением функционально важных глубжележащих структур [1 - 5]. При наличии раневого дефекта обнаженные плохо кровоснабжаемые анатомические образования, например, кости и сухожилия, подвергаются вторичным изменениям, высыхают, некротизируются, что поддерживает воспалительную реакцию, обусловливает невозможность самостоятельного закрытия дефекта, различные осложнения [6, 7]. Современные принципы лечения пострадавших с такими повреждениями требуют соблюдения правила полного первичного восстановления поврежден-

ных структур, что позволяет надеяться на лучшие функциональные и эстетические результаты при значительном уменьшении продолжительности лечения и вероятности инвалидизации. Одним из основных условий успешности первичной реконструкции поврежденных образований является возможность заживления раны первичным натяжением, что, в свою очередь, обеспечивает радикальность хирургической обработки с последующим завершающим этапом пластического замещения дефекта [2, 6 - 8]. Трудность решения вопроса об объеме иссечения тканей при хирургической обработке раны обусловлена полиморфизмом их изменений, отсутствием объективных методов оценки их жизнеспособности при скальпированных и комбинированных ранах конечностей в неотложных ситуациях [7, 9 - 11]. Существующие методы объективного определения жизнеспособности мягких тканей имеют многочисленные недостатки, требуют применения дорогостоящего оборудования, длительного проведения исследования и обработки его результатов, специально обученного персонала, что очень сложно в условиях оказания неотложной помощи [6, 11, 12]. Использование стандартного метода оценки жизнеспособности мягких тканей конечности не позволяет правильно устанавливать границы зоны необратимых изменений [13—15].

Таким образом, в настоящее времени нет ни одного самостоятельного, повсеместно доступного метода оценки жизнеспособности мягких тканей в неотложных ситуациях, который нашел бы широкое применение в практике и соответствовал бы всем требованиям современного врача.

Цель исследования: изучение динамических показателей электропроводности тканей в эксперименте в целях улучшения качества лечения пострадавших по поводу скальпированных повреждений конечностей.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

На базе Харьковской городской клинической больницы им. проф. А. И. Мещанинова проведено стендовое экспериментальное исследование неповрежденной кожи у 12 здоровых людей в возрасте от 18 до 60 лет и 12 участков тканей кожномышечных лоскутов, выкроенных в средней трети бедра ампутированной под спинальной анестезией нижней конечности в пределах непораженных тканей по поводу дистального атеросклеротического поражения артерий. Экспериментальное исследование разделено на две части. В первой части изучали электрофизиологические показатели неповрежденной кожи здорового человека на разных участках тела путем регистрации электрической переменной — изменения амплитуды напряжения между электродами специального устройства. Во второй части проведено динамическое исследование в течение 51 ч изменений электрофизиологических показателей кожи, подкожной основы, мышечной ткани кожно-мышечных лоскутов конечности в зависимости от сроков после их полного отделения от конечности. Изменения электропроводности тканей, как и в первой части исследования, регистрировали в виде электрической переменной — изменения амплитуды напряжения между электродами специального устройства (пат. Украины 109183 от 10.08.16). Электропроводность тканей изучали при частоте 20 и 200 кГц переменного тока, амплитуда напряжения 3 В с использованием цифрового низкочастотного двухканального генератора переменного тока фирмы Siglent SDG1020 с повышенной точностью, дискретность частоты 1 мкГц, диапазон частот выходного сигнала до 20 МГц, погрешность амплитуды ±1% заданного значения ±2 мВ. Низкочастотный сигнал подавали на электроды разработанного нами биполярного пинцета особой формы, закрепленного шарнирным методом на неподвижном основании, с диэлектрическим разделителем бранш пинцета. При

этом масса соприкосновения дистальных концов с тканями составляла 30 г, расстояние между дистальными концами 1 см, с постоянной площадью соприкосновения электродов с поверхностью исследуемой ткани. Дистальные концы браншей электрода изолированы по окружности в целях предотвращения соприкосновения с окружающими тканями. По электродам на концевые бранши пинцета через последовательно включенное активное сопротивление 1,8 кОм подавали переменный электрический ток синусоидальной формы с частотой 20 и 200 кГц и амплитудой напряжения 3 В, при этом фиксировали неподвижное основание на неповрежденном участке тканей или поверхности, добиваясь стандартизированных параметров для исследования. По токосъемным проводам, постоянно прикрепленным к проксимальным браншам пинцета, информацию передавали на цифровой двухканальный осциллограф фирмы Siglent SDS 1000 с возможностью визуализации одновременно двух осциллограмм. При этом фиксировали амплитуду напряжения на осциллограмме (одновременно) с подтверждением в цифровом варианте, минимизируя погрешность и человеческий фактор.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При анализе полученных осциллограмм кожи у 12 здоровых людей во всех сегментах конечностей при частоте 20 кГц не наблюдали достоверного снижения амплитуды напряжения $-(2,957 \pm 0,01)$ В, что свидетельствовало об отсутствии повреждения мембраны клетки и работе интактной клетки как конденсатора — диэлектрика с наличием высокого емкостного сопротивления (при низкой частоте). В свою очередь, на высокой частоте жизнеспособная ткань теряет свойства, присущие конденсатору (диэлектрику) [13, 15]. При этом емкостная составляющая импеданса стремится к нулю, увеличивается диэлектрическая проницаемость, импеданс равняется реактивному сопротивлению, следовательно, по закону Ома, напряжение снижается, что мы и наблюдали при частоте 200 кГц — достоверное снижение амплитуды напряжения до $(1,948\pm0,01)$ В. В свою очередь, при сравнении амплитуды напряжения на частоте 20 и 200 кГц различия были достоверными — $(51,8\pm1,5)\%$, что согласуется с данными других авторов для жизнеспособных тканей [12, 14].

При анализе осциллограмм во второй части эксперимента наблюдали линейную зависимость изменения электрической переменной мышечной ткани выделенного лоскута от сроков после его удаления. При этом выделены 4 отрезка, в которых отмечены качественные изменения морфофункционального состояния мышцы. Первый отрезок — в течение 3 ч после удаления лоскута, уменьшение электрической переменной от (1.26 ± 0.04) до (0.99)± 0,02) В, что расценивали как обратимые морфофункциональные изменения мышечной ткани (различия амплитуды напряжения на частоте 20 и 200 кГц от 66 до 31%); второй отрезок с 3-го по 4-й час после удаление лоскута — резкое прогрессивное достоверное снижение амплитуды напряжения мышечной ткани с (0.99 ± 0.02) до (0.86 ± 0.015) В, что связывали с возникновением в ткани морфофункциональных изменений с возможным частичным восстановлением функции (различия амплитуды напряжения на частоте 20 и 200 кГц от 31 до 14%); третий отрезок — с 4—го по 5—й час также наблюдали резкое прогрессивное достоверное снижение амплитуды напряжения мышечной ткани с (0.86 ± 0.015) до (0.77 ± 0.02) В, что обусловлено окончанием процессов некробиоза тканей (различия амплитуды напряжения на частоте 20 и 200 кГц от 14 до 2%); четвертый отрезок - после 5 ч, представлен практически изоэлектрической линией, снижение амплитуды напряжения от (0.77 ± 0.02) до (0.75)± 0,01) В, что обусловлено возникновением некроза мышечной ткани (различия амплитуды напряжения на частоте 20 и 200 кГц от 2 до 0%). При этом динамика амплитуды напряжения на частоте 200 кГц достоверно не менялась, составляя (0,76 ± 0,01) В и имела вид изолинии, как при сформированном некрозе мышечной ткани. Обращало внимание отсутствие достоверных различий уменьшения амплитуды напряжения на частоте 200 кГц в период динамического наблюдения и на частоте 20 кГц — после 5—го часа, что соответствовало некрозу тканей.

При анализе осциллограмм подкожной основы также наблюдали линейную зависимость изменения электрической переменной от времени, которая характеризовалась динамическим уменьшением амплитуды напряжения и увеличением диэлектрической проницаемости в течение каждого часа на частоте 20 кГц. При этом отмечена менее выраженная чувствительность подкожной основы к гипоксии по сравнению с таковой мышечной ткани, что согласуется с данными литературы [13 — 15]. Как и для мышечной ткани, выделены 4 отрезка. Первый — в течение 13 ч после удаления лоскута соответствующий достоверному изменению электрической переменной с (2.0 ± 0.04) до (1.35 ± 0.01) В, различия амплитуды напряжения на частоте 20 и 200 кГц от 95 до 31%, что расценивали как подкожную основу с обратимыми морфофункциональными изменениями; второй отрезок с 14-го по 17-й час - наблюдали резкое прогрессивное достоверное уменьшение амплитуды напряжения с (1.34 ± 0.02) до $(1.17 \pm$ 0,02) В, различия амплитуды напряжения на частоте 20 и 200 кГц от 30 до 14%, что мы связывали с возникновением в ткани морфофункциональных изменений и возможным частичным восстановлением функции; третий отрезок — с 17—го по 24-й час - также наблюдали резкое прогрессивное достоверное уменьшение амплитуды напряжения с $(1,17 \pm 0,02)$ до $(1,04 \pm 0,01)$ В, достоверные различия амплитуды напряжения на частоте 20 и 200 кГц от 14 до 1% — окончание процессов некробиоза тканей; четвертый отрезок с 24-го часа - представлялся изолинией, достоверное уменьшение амплитуды напряжения не наблюдали, что трактовали как сформировавшийся некроз подкожной основы. Таким образом, уменьшение амплитуды напряжения до (1,03 ± 0,02) В на частоте 200 кГц, обусловленное отсутствием емкостной составляющей импеданса тканей, подтверждено уменьшением амплитуды напряжения с 24—го часа при частоте 20 кГц — некроз тканей и может трактоваться как постоянная величина при оценке жизнеспособности ткани.

При анализе осциллограмм кожи лоскута наблюдали динамическое уменьшение амплитуды напряжения и увеличение диэлектрической проницаемости в течение 48 ч на частоте 20 кГц. При этом отмечена наименьшая чувствительность кожи к гипоксии по сравнению с таковой мышечной ткани, сроки формирования некроза составляли 48 ч, что согласовывалось с данными литературы [9, 11, 12]. При этом, как и для мышечной ткани, выделяли четыре отрезка. Первый отрезок — в течение 13 ч после удаления лоскута, соответствовал достоверному изменению электрической переменной с $(2,96 \pm 0,02)$ до $(2,53 \pm 0,01)$ В, различия амплитуды напряжения на частоте 20 и 200 кГц от 52,6 до 31%, что расценивали как кожу с обратимыми морфофункциональными изменениями; второй отрезок с 31-го по 40-й час после удаление лоскута - наблюдали прогрессивное достоверное уменьшение амплитуды напряжения с $(2,52 \pm 0,01)$ до $(2,21 \pm$ 0,01) В, различия амплитуды напряжения на частоте 20 и 200 кГц от 30 до 14%, что связывали с возникновением в ткани морфофункциональных изменений с возможным частичным восстановлением функции; третий отрезок — с 41—го по 48—й час — также наблюдали прогрессивное достоверное уменьшение амплитуды напряжения кожи с (2,18 ± 0,02) до $(1,95 \pm 0,03)$ В, достоверные различия амплитуды напряжения на частоте 20 и 200 кГц от 14 до 1% окончание процессов некробиоза тканей; четвертый отрезок с 49-го часа, представленный изолинией, при котором достоверное уменьшение амплитуды напряжения — (1,94

 \pm 0,03) В не наблюдали — сформированный некроз кожи, достоверно не отличался от среднего значения — (1,948 \pm 0,01) В в первой части эксперимента на частоте 200 кГц.

Таким образом, на основании анализа результатов экспериментального исследования, при прохождении через ткани электрического тока с частотой 20 кГц, по мере увеличения периода от момента нарушения кровоснабжения, снижался биологический потенциал тканей, следовательно, и импеданс тканей уменьшался при возникновении в них некробиотических изменений, диэлектрическая проницаемость увеличивалась, что подтверждало теоретическое физико-математическое обоснование эксперимента. При этом на частоте 200 кГц, независимо от времени и жизнеспособности ткани, амплитуда напряжения цепи на выходе не изменялась, а диэлектрическая проницаемость максимальная, что обусловлено отсутствием емкостной составляющей импеданса тканей и работы клеток — в виде "живых конденсаторов", и может трактоваться как моделирование некроза ткани в условиях жизнеспособной ткани. Величину амплитуды напряжения на частоте 200 кГц можно считать постоянной, однако для разных тканей она различна: для кожи — $(1,94 \pm 0,03)$ В, подкожной основы — (1.03 ± 0.02) В, мышечной ткани — (0.76 ± 0.01) B; а величину амплитуды напряжения на частоте 20 кГц — переменной. При этом процентное отношение постоянной и переменной величин можно трактовать как качественную оценку жизнеспособности мышечной ткани, подкожной основы и кожи, выделяя три интервала: от 0 до 13% — нежизнеспособная ткань; 14 — 30% — ткань с морфофункциональными изменениями и возможным частичным восстановлением функции; 31% и более — жизнеспособная ткань с обратимыми морфофункциональными изменениями.

выводы

1. Уточнены динамические показатели электропроводности тканей в эксперименте.

- 2. Динамическое изменение электропроводности ткани, в частности, амплитуды напряжения, является объективным критерием ее морфофункциональных изменений.
- 3. Внедрение в практику доступного метода ранней диагностики жизнеспособности тканей дает возможность проведения качественной радикальной первичной хирур-

гической обработки ран при скальпированных повреждениях конечностей, улучшая результаты лечения пострадавших.

ЛИТЕРАТУРА

- 1. Абалмасов КГ, Гарелик ЕИ, Сухинин ТЮ, и др. Реконструктивно—пластические операции при лечении обширных дефектов покровных тканей кисти. Анналы хирургии. 2009; (1):53—8.
- Archier E, Grillo JC, Fourcade S, Gaudy C, Grob JJ, Richard MA. Morel—Lavallee syndrome of the lower leg. Ann. Dermatol. Venerol. 2012;139:216—20.
- Arnez ZM, Khan U, Tyler MP. Classification of soft—tissue degloving in limb trauma. J Plas. Reconstr Aesthet Surg. 2010;63: 1865—9.
- 4. Krishnamoorthy R, Karthikeyan G. Degloving injuries of the hand. Ind J Plast Surg. 2011;44(2): 227—36.
- Latifi R, El—Hennawy H, El—Menyar A, Peralta R, Asim M. The therapeutic challenges of degloving soft—tissue injuries. J Emerg Trauma Shock. 2014;7:228—32.
- 6. Белоусов А. Е. Пластическая, реконструктивная и эстетическая хирургия. СПб.: Гиппократ, 1998:744.
- 7. Котельникова ГП, Миронова СП. Травматология: нац. руководство. 2—е изд., перераб. и доп. Москва: ГЭОТАР—Медиа, 2011:1104.
- 8. Адамян АА, Ромашов ЮВ, Аджиева ЗА, и др. Хирургическая коррекция деформаций мягких тканей нижних конечностей. Анналы пласт., реконстр. и эстет. хирургии.2006;(1):30—9.
- 9. Бусоедов АВ, Сизоненко ВА. Определение жизнеспособности кожного лоскута при открытых переломах. Забайкал. мед. вестн.2006;(4):9—11.

- 10. Гусейнов АГ. Способы закрытия ран при лечении открытых и огнестрельных переломов нижних конечностей. Хирургия. Журн. им. Н. И. Пирогова. 2005;(6):51—4.
- 11. Кавалерский ГМ, Ченский АД, Уездовский АВ, и др. Оценка кислородного режима тканей кожных лоскутов при скальпированных ранах конечностей. Анналы хирургии.2012;(6):37—40.
- 12. Сапин MP, Милюков BE, Полунин CB. Проблема оценки жизнеспособности мягких тканей в профилактике послеоперационных осложнений при травматических повреждениях конечностей. Там же.2009;(1):16—9.
- 13. Баньков ВИ. Биоэлектромагнитная диагностика ишемии. Вопросы разработки и внедрения радиоэлектронных средств при диагностике сердечно—сосудистых заболеваний. Москва: Радио и связь, 1984:105.
- 14. Лежнев К. К. Сравнительная оценка методов определения жизнеспособности мягких тканей при огнестрельных повреждениях: автореф. дис. ... канд. мед. наук. Ленинград; 1990: 19 с.
- 15. Чехович ГГ, Чаплинский ВВ, Сюч МИ. Определение жизнеспособности механически поврежденной мышечной ткани. Клин. хирургия.1987;(1):41—2.

