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Background: Breast cancer (BC) ranks among the most common cancers in Sudan

and worldwide with hefty toll on female health and human resources. Recent studies

have uncovered a common BC signature characterized by low frequency of oncogenic

mutations and high frequency of epigenetic silencing of major BC tumor suppressor

genes. Therefore, we conducted a pilot genome-wide methylome study to characterize

aberrant DNA methylation in breast cancer.

Results: Differential methylation analysis between primary tumor samples and normal

samples from healthy adjacent tissues yielded 20,188 differentially methylated positions

(DMPs), which is further divided into 13,633 hypermethylated sites corresponding to

5339 genes and 6,555 hypomethylated sites corresponding to 2811 genes. Moreover,

bioinformatics analysis revealed epigenetic dysregulation of major developmental

pathways including hippo signaling pathway.We also uncoveredmany clues to a possible

role for EBV infection in BC.

Conclusion: Our results clearly show the utility of epigenetic assays in interrogating

breast cancer tumorigenesis, and pinpointing specific developmental and viral pathways

dysregulation that might serve as potential biomarkers or targets for therapeutic

interventions.

Keywords: methylome, breast cancer, epigenetics, DNA methylation, HM450, epigenome reference, EBV

BACKGROUND

Breast cancer (BC) is the most common cancer among females in Sudan (1–3), and is still a leading
cause of high morbidity and mortality across the world. According to a recent report from the
national cancer registry (2), BC had an incidence rate of 25.1 per 100.000, more than twice the
incidence rate of the second commonest cancer. Furthermore, Sudanese BC patients tend to present
at young age, at late stage, and with advanced disease compared to their counterparts in other
countries (4). Another study (5) reported a young age of presentation for locally advanced BC.
Therefore, there is an urgent need for serious epidemiologic and molecular studies in order to trace
the underlying mechanisms behind BC, and for developing better early detection methods as well
as a nationwide educational effort to tackle this ravaging disease.
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Epigenetics has emerged as a new, rapidly growing field
in biology, with significant implications for cancer research.
Epigenetic modifications include DNA methylation, and histone
modifications, although they both do not alter DNA sequence per
se, they influence chromatin remodeling and thus offer a dynamic
and flexible way of controlling gene expression.

DNA methylation of cytosine residues occurs predominantly
at CpG sites, and is mediated by three DNA methyltransferases
(DNMTs). DNMT1, which maintains DNA methylation
during cell replication, and a pair of DNMT3s–DNMT3a and
DNMT3b–which is responsible for de novo DNA methylation.
Epigenetic reprogramming through genome-wide alteration
of DNA methylation (methylome) is critical for control of
development and differentiation in normal cells and tissues,
however, faulty epigenetic reprogramming, as in aberrant DNA
methylation, can be a major driver of multiple types of cancer
including BC (6, 7).

Methylome analysis has proved to be very pertinent to the
study of the different aspects of cancer tumorigenesis. The vast
majority ofmethylation changes occur in a tissue-specificmanner
(8), which makes methylome profiling a very sensitive and
specific method for delineating dysregulated epigenetic pathways
at the tissue level, as in cancer, which usually arises from a
single tissue. Moreover, DNA methylation is a stable epigenetic
mark that is ideal for development of biomarker assays,
which can offer a rapid, cost effective, and minimally invasive
diagnostic/prognostic tests (9, 10). Additionally, methylome
analysis has been effectively used in tumor subtype classification
(11–15). Furthermore, genome-wide methylome assays have also
proved to be very useful in detecting and profiling viral epigenetic
signature in cancer (16–18).

The aim of the present study is to investigate genome-wide
DNA methylation profile of breast cancer in Sudanese patients
utilizing Illumina Infinium HumanMethylation450 BeadChips
(HM450) methylation assay. This array-based assay is widely
used in epigenetics studies, and is a reliable, cost effective,
high throughput method. We conducted methylome analysis
comparing primary BC tissue samples against normal samples
from adjacent healthy tissues. The results of this study provide
a valuable insight into the epigenetics of BC in Sudanese
patients.

RESULTS

Genome-Wide DNA Differential
Methylation Analysis
Each of three approaches–listed in Materials and Methods-
produced a list of differentially methylated sites: Limma,
39,940; Wilcoxon, 34,099; Nimbl, 22,251 (0.2 median beta
value difference, Benjamini-Hochberg adjusted p-value ≤ 0.05).
Here we only report the results for final set obtained from
Nimbl-compare module, which represents the intersection of the
three methods. The final set consisted of 20,188 differentially

Abbreviations: BC, breast cancer; DMP, differentially methylated position; DMR,

differentially methylated region; CDMR, cancer differentially methylated site; TSS,

transcription start site; UTR, untranslated region; MSig, mutation signature.

methylated CpG sites, which is further divided into 13,633
hypermethylated sites corresponding to 5339 genes and 6555
hypomethylated sites corresponding to 2811 genes. Nimbl
unique approach ensured detection of differentially methylated
positions (DMPs) that have the largest effect size as illustrated
in Figure 1A, a volcano plot showing the demarcation of
differentially methylated sites by both statistical significance and
effect size is shown in Figure 1B. Hierarchical clustering of the
top 250 differentially methylated sites sorted by F value (low
intragroup variability and higher intergroup variability) is shown
in Figure 2. The resulting heatmap and dendogram showed clear
separation of tumor samples from normal samples.

Genomic Distribution of Differentially
Methylated CpG Sites
Differentially hypermethylated and hypomethylated sites
displayed similar distribution with regard to gene elements as
defined by HM45–TSS1500, TSS200, First Exon, gene body,
and 3UTR–Figure 3A. However, they showed an asymmetric
distribution with regard to CpG island relation with most of the
hypermethylated sites mapping to CpG islands, whereas most of
the hypomethylated sites mapped to open sea areas Figure 3B.

Of the 13,633 hypermethylated sites, 24.37% (N = 3,323)
mapped to Dnase hypersensitive sites compared with only
8.67% (N = 568) of hypomethylated sites. Interestingly,
while a greater percentage of hypermethylated compared to
hypomethylated sites overlapped differentially methylated
regions (DMR), [54.83% (N = 1,612), 11.47% (N = 46)],
respectively, hypomethylated sites were more concentrated in
cancer DMR (CDMR), with 49.63% compared with 14.66%
in hypermethylated sites, hypomethylated sites were more
concentrated in cancer DMR (CDMR), with 49.63% compared
with 14.66% in hypermethylated sites. The genomic distribution
of hypermethylation and hypomethylation sites at each
chromosome is shown in Figures S1, S2.

Comparison to Reference Epigenome
We utilized data from the recently released Human epigenome
reference data (19) to annotate the set of deferentially methylated
CpG sites. We mapped hyper and hypo DMPs in the promoter
region from our data against two reference epigenome breast
cell lines: HMEC (Human mammary primary epithelial cells),
and vHMEC (Human mammary primary epithelial cell variant)
(20, 21). We examined the change in chromatin states–from the
15-chromatin states model (19)–that accompany the acquisition
or loss of DNA methylation in the context of transitioning
from normal to tumor states. Our results revealed a noticeable
gain of repressive marks for the hypermethylated DMPs, which
increased from 55.5% in HMEC cells to 78.7% in vHMEC cells.
Interestingly, we also found a slight increase in the percentage of
repressive marks in the hypomethylated DMPs, which increased
from 54.3 to 61.6%. Notably, in both cases, most of the upsurge
in repressive regions were concentrated in Polycomb-repressed
regions Figures 3C,D.

In addition, we observed amarked drop of all active chromatin
states except for weak transcription and distal enhancer activity
between the HMEC and vHMEC cells for the hypermethylated
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FIGURE 1 | Genome-wide DNA Differential methylation Analysis of study samples. (A) Shows differentially methylated CpG sites (defined as median beta value

difference equal to or more than 0.2) identified using three methods: Limma (L; 34,099 sites), Wilcoxon (W; 39,940 sites), and Nimbl, (N; 22,251 sites). The color code

shows sites identified by each method alone and in combination. A final set which represents the intersection of three approaches (L + W + N; black dots) consisted

of 20,188 sites was obtained by Nimble-compare module and used for analysis in this study. (B) A volcano plot showing the demarcation of differentially methylated

sites by both statistical significance and effect size. The sites targeted in this study are those with high effect size (median beta value difference equal to or more than

0.2) and low p-value (equal to or more than 0.01, shown as –log10). The dotted lines show these cut-offs. Targeted sites for analysis are those in outer upper

rectangular area of the plot.

group. On the other hand, the hypomethylated group showed
multiple notable shifts: From quiescent to Polycomb repression,
from weak transcription to strong transcription, and from distal
enhancers to genic enhancer (intronic enhancers).

Candidate Biomarkers Discovery
Nimbl method was used for detection and prioritization of
candidate biomarkers with greatest inter-group variability, and
lowest intra-group variability (22). Using this approach, we were
able to identify a number of new as well as previously well-
known BC biomarkers. Among the genes that showed significant
promoter hypermethylation, we identified PAX6 (23, 24), WT1
(25), SOX1 (26), and TP73 (27, 28), all of them have been
previously associated with BC. We also identified a set of
previously uncharacterized biomarkers like PCDHGA1, HOXC4,
and TBX15. To validate our candidate genes we interrogated

our candidate gene list against BC methylome data from the
Cancer Genome Atlas Network: http://cancergenome.nih.gov/
as compiled by MethHC (29) web portal. All the genes from
our data were also significantly hypermethylated in the TCGA
dataset. Figure 4 shows promoter hypermethylation of the TP73
gene.

Pathway and Network Analysis
Results from the ReactomeFI for the EDG network uncovered
a massive network of 1310 nodes (genes) and 5097 edges
(interactions), while the EUG list produced a smaller network
of 763 nodes and 2265 edges. Furthermore, loading the NCI
(National Cancer Institute) cancer gene index identified 781, and
470, neoplasia related genes from the EDG, and EUG networks,
respectively, of which 332 EDG genes, and 222 EUG genes were
associated with breast cancer in the cancer gene index.
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FIGURE 2 | Hierarchical clustering of highly differentially methylated positions. Differentially methylated positions (DMPs) were sorted by F value (low intragroup

variability and higher intergroup variability) and the top 250 sites were tested for clustering between study samples. Hierarchical clustering heatmap and dendogram

are depicted in this figure, showing a clear separation of tumor samples from normal samples (top dendogram, control samples above green bar, tumor samples

above orange bar). DMS median p-value heatmap shows a contrasting state of differential methylation between tumor and control samples indicating both gain and

loss of differential methylation states in tumor tissues.

Pathway enrichment analysis on the EUG network. Identified
hippo signaling, Wnt signaling, and many extracellular
matrix and metastasis promoting pathways as summarized
in Table 1. Performing the pathway enrichment analysis on
the breast cancer EUG subnetwork also identified hippo
signaling and pathways of extracellular matrix in addition
to pathways involved in immune response against viruses
Table 2. Interestingly, breast cancer subnetwork showed
significant enrichment for Epstein-Barr virus infection
(FDR < 0.001).

Pathway analysis on the EDG network identified Neuroactive
ligand-receptor interactions, G-protein signaling, RAP1
signaling, RAS signaling, Potassium channel signaling, and
many other pathways as summarized in Table 3. While the
smaller EDG breast cancer subnetwork showed significant
enrichment for a multitude of pathways including all the
pathways that were enriched in the EDG network in addition
to many cancer related and immune response pathways.
Interestingly, the EDG sub network was also significant
for direct p53 effectors. The complete list of enriched
pathways for the EDG breast cancer subnetwork is shown
in Table S1.

DISCUSSION

Leveraging the Reference Human
Epigenome
The recent release of the human reference epigenome data by
the Roadmap project ushered in a new era of epigenomics.
The current study utilized this new wealth of information to
interpret methylome data in the context of the human reference
epigenome. We successfully mapped hyper and hypo DMPs to
chromatin states from normal and premalignant reference breast
cells (HMEC and vHMEC, respectively). Chromatin states reflect
a concise and condensed representation of the epigenetic context,
and are increasingly utilized to decipher genetic and epigenetic
variability. Despite the fact that vHMEC is a premalignant
and not a primary tumor cell, we argue that vHMEC is a
suitable model for the epigenetic changes that accompany BC
tumorigenesis because the vast majority of epigenetic changes
tend to occur early during BC tumorigenesis (30–33).

Notably, our data revealed a strong Polycomb repression in
both hypermethylated and hypomethylated CpG sites. These
findings are in accordance with the emerging evidence that
DMPs are enriched for Polycomb repression in primary breast
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FIGURE 3 | Genomic and epigenomic distribution of differentially methylated positions (DMPs). This figure details the number of DMPs in relation to gene elements,

CpG islands and chromatin states. (A) Distribution of hyper and hypo methylated CpG sites in relation to gene elements. TSS, transcription start site; UTR,

untranslated region. (B) Distribution of hyper and hypo methylated CpG sites in relation to CpG Islands. N_, north; S_, south. (C) Distribution of Hypomethylated CpG

sites in relation to chromatin states. (D) Distribution of Hypermethylated CpG sites in relation to chromatin states. Fourteen chromatin states are shown.

tumors (34) and triple negative BC (35). Moreover, various
elements of the Polycomb repressive complexes are well-known
to be overexpressed in BC (36, 37) and are required for stem
cell state in mammary tumors (38, 39). Interestingly, Reyngold
et al. found that unlike primary tumors, genes methylated in
metastatic lesions seem to lack Polycomb repressive marks (40).
Interestingly, an important mechanism for tumorigenesis such
as Polycomb repression was only revealed by context dependent
genome-wide comparison and not from any other method
that interrogates hyper or hypomethylated region in isolation,
without the paying attention to the broader epigenomic context.

Network-Based Pathway Enrichment
Analysis
Network-based pathway enrichment results for the EUG network
revealed many upregulated pathways that have been previously
associated with BC tumorigenesis. Hippo signaling, which
appeared as the top significantly enriched pathway in our results,
has recently emerged as an important regulator of BC growth,
migration, invasiveness, stemness, as well as drug resistance (41).
Wang et al. demonstrated that overexpression of YAP enhanced
BC formation and growth. Hiemer et al. found that both TAZ and
YAP-key effectors of the Hippo pathway are crucial to promote
and maintain TGFβ-induced tumorigenic phenotypes in breast
cancer cells (42). In addition, YAP was demonstrated to mediate
drug resistance to RAF andMEK targeted cancer therapy (43, 44).
Interestingly, we also reported an upregulated Wnt signaling
pathway, which has been linked to BC growth and malignant
behavior (45). Xu et al. found that Wnt signaling pathway
is required for triple-negative breast cancer development (46).
Recent studies have suggested long lasting reducedWnt signaling

as the mechanism by which early pregnancy protects against
BC (47).

Regarding the EDG network, Neuroactive ligand-receptor
interaction, in addition to GPCR, RAS and Rap1 signaling were
among the most significantly enriched pathways. Recent studies
have found Neuroactive ligand-receptor interaction related genes
to be hypermethylated in colorectal and EBV associated gastric
cancers (20, 21, 48). Elements of RAS signaling like RASSF
has been frequently found to be hypermethylated in BC (49),
moreover, Qin et al. has demonstrated that resveratrol is able to
demethylate RASSF1 promoter through decreased DNMT1 and
DNMT3b in mammary tumors (50, 51). Notably, we reported
the apparent silencing of multiple pro-tumor pathways in our
results like GPCR and RAP1 signaling, the precise significance
of this findings remains unclear. In addition, we also noticed
the bivalent enrichment of multiple pathways (where different
elements of the same pathway are both up and down regulated).
Interpreting such perturbations is tricky, and predicting the net
outcome of those perturbations might not be readily obvious
given the crosstalk between different pathways.

EBV Signature
We previously reported a strong association between EBV
and BC in Sudanese patients (52), we also reported frequent
epigenetic silencing of major tumor suppressor genes coupled
with low frequency of known tumor associated mutations in
the same population (53). In this study, we have demonstrated
genome-wide epigenetic alterations consistent with our original
proposition that epigenetic changes are the primary driver of BC
tumorigenesis in Sudanese patients.

A myriad of recent studies point toward a common theme in
EBV associated cancers characterized by genome-wide epigenetic
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FIGURE 4 | Hypermethylation of the TP73 gene. Differential methylation Beta-values for eight tumor and eight control samples at methylation array sites of TP73 gene

are shown. The figure contains three tracks: the genomic location of the TP73 and its different RefSeq transcripts are shown in the “Chromosome” and “RefSeq

genes” tracks, respectively; the “Methylation” track shows the methylation level in each tumor sample (red dot) and control sample (blue dot). The overall discordance

in methylation Beta-values between tumor samples (red line in the methylation track) and control samples (blue line) is notable specially at TSS both for the long and

short RefSeq transcripts (genomic areas around 3.56 and 3.6mb, respectively). Tumor samples show relatively high beta-values compared to controls at these sites

indicating differential promoter hypermethylation. TSS, Transcription Start Site.

TABLE 1 | Pathway enrichment analysis results for epigenetically upregulated

genes (EUG) interaction network.

Pathway Number of

genes in the

geneset

Number of

genes in the

network

FDR

Hippo signaling pathway 154 31 <1.000e–03

Arrhythmogenic right ventricular

cardiomyopathy (ARVC)

74 20 <5.000e–04

L1CAM interactions 94 21 2.50E–04

Wnt signaling pathway 269 41 3.33E–04

This pathway enrichment analysis and the interaction network were prepared using

ReactomeFI Cytoscape app. The table shows the enriched pathways, the number of

genes in the pathway from the total query gene set, and the number of genes in the

pathway found in the interaction network. Results having p-values <0.01 and a False

Detection Rate <0.001 are shown.

changes coupled with a paucity of mutations. EBV infection
is now known to play significant role in epithelial cancers
like nasopharyngeal and gastric carcinomas mainly through
genome-wide epigenetic changes (54–56). Li et al. observed a
unique epiphenotype of EBV associated carcinomas suggesting

a predominant role for EBV infection in the ensuing epigenetic
dysregulation of those cancers (17). Another study attributed
the genome-wide promoter methylation in EBV driven gastric
cancer to the induced expression of DNA methyltransferase-3b
(DNMT3b) (57).

Our data mirrored the overall unique pattern of EBV infection
characterized by sweeping epigenetic changes accompanied by
low mutation frequency. Significantly, a major mechanism by
which tumorigenic EBV virus avoids the Immune system is
through manipulation of Polycomb proteins. Furthermore, we
also showed that the EUG network was significantly enriched for
EBV infection pathway Figure 5. In addition, results from MSig
perturbations obtained from GREAT web tool (which predicts
functions of cis regulatory elements) (58), showed significant
enrichment for a set of downregulated genes which had been
previously correlated with increased expression of EBV EBNA1
protein in NPC, in the hypermethylated CpG sites group, data
not shown. For the hypomethylated CpG group, we found genes
upregulated in B2264-19/3 cells (primary B lymphocytes) within
30–60min after activation of LMP1 to be significantly enriched in
MSig oncogenic signature. These findings taken together provide
the first bioinformatics evidence of a possible active role for EBV
infection in BC tumorigenesis in Sudanese patients.
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FIGURE 5 | Tumor Epigenetically Upregulated Genes (EUG) in Epstein-Barr Virus Infection pathway. Many genes bearing methylation marks that promote gene

expression (hypomethylation in the promoter area and first exon or hypermethylation in the gene body region)–referred to in this study Epigenetically Upregulated

Genes–were found to be integral parts of EBV Infection KEGG pathway (highlighted red and gray boxes). This group of genes showed significant enrichment for

Epstein-Barr Virus Infection Pathway (red boxes are highly enriched nodes). Epstein-Barr Virus Infection KEGG Pathway was obtained from KEGG pathways database

(http://www.kegg.jp/pathway/hsa05169).

MATERIALS AND METHODS

Ethical Considerations
Ethical approval for this study was obtained from the Institute of
Endemic Diseases, University of Khartoum Ethical Committee.
Written informed consent was obtained from all participants; all
clinical investigations were conducted according to the principles
expressed in the Declaration of Helsinki: https://www.wma.net/
policies-post/wma-declaration-of-helsinki-ethical-principles-
for-medical-research-involving-human-subjects/.

Samples
The mean age of patients included in this study was 47 years.
The histopathological data obtained for 16 samples were included

in this study were; invasive ductal carcinoma stage 3 (N = 6),
invasive ductal carcinoma stage 2 (N = 2), and adjacent Healthy
tissue (N = 8).

Genomic DNA was extracted from eight samples of primary
breast tumors and eight normal samples from adjacent healthy
tissues with a safety margin of at least one centimeter. All
samples were independently reviewed by histopathologists.
DNA was extracted from tissues using Promega genomic
DNA purification kit (59) following the standard protocol
as described by the manufacturer. DNA methylome profiling
was performed using Illumina Infinium HumanMethylation
450 (HM450) (60) BeadChip array by Beijing Genomics
Institute (BGI). HM450 provides coverage for 99% of RefSeq
genes including those in regions of low CpG island density.
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TABLE 2 | Pathway enrichment results for breast cancer related epigenetically

upregulated genes (EUG) subnetwork.

Pathway Number of

genes in the

geneset

Number of

genes in the

network

FDR

CXCR4-mediated signaling

events

79 10 2.50E–04

AP-1 transcription factor network 70 9 7.27E–04

HIF-1-alpha transcription factor

network

66 9 4.00E–04

Viral myocarditis 59 9 2.50E–04

Pathways in cancer 327 22 <1.000e–03

HTLV-I infection 260 18 3.33E–04

Proteoglycans in cancer 225 17 2.00E–04

Epstein-Barr virus infection 202 16 1.67E–04

Hippo signaling pathway 154 14 3.33E–04

Natural killer cell mediated

cytotoxicity

135 13 1.43E–04

Alzheimer disease-presenilin

pathway

111 12 5.00E–04

ReactomeFI cytoscape app was used to extract breast cancer related subnetworks from

EUG set by loading NCI cancer index and performing pathway enrichment analysis on

interaction networks. Nodes that corresponded to malignant breast cancer were selected.

The table shows the enriched pathways, the number of genes in the pathway from the

total query gene set, and the number of genes in the pathway found in the interaction

network. Results having p-values <0.01 and a False Detection Rate <0.001 are shown.

Coverage was targeted across gene regions with sites in
the promoter region, 5′UTR, first exon, gene body, and
3′UTR.

Data Preprocessing
For quality control, any array probes with p detection value
<0.05 or missing beta values were removed. In addition, array
sites corresponding to sex chromosomes or mapping to SNPs
were filtered out. Peak-based correction (61) (PBC) was used to
normalize the final dataset and to correct for probe type bias.
Density plots of beta values for individual samples are shown in
Figure S3.

Genome-Wide DNA Differential
Methylation Analysis
A trilateral approach consisting of two statistical methods
augmented by one numerical method was used for the
differential methylation analysis: Moderated t-test from R limma
(62) package; Wilcoxon test (Non-Parametric test) from R
stat package; and Nimbl (22) (Numerical Identification of
Methylation Biomarker Lists) which is a Matalab package
designed to identify and prioritize differentially methylated
sites.

Nimbl core module identify potential biomarkers by
calculating a score based on the inter-group and intra-group
variability:

Score = beta_valdist− (mediandiff− beta_valdist)

TABLE 3 | Pathway analysis on the epigenetically downregulated genes (EDG)

interaction network.

Pathway Number of

genes in the

geneset

Number of

genes in the

network

FDR

Neuroactive ligand-receptor

interaction

275 81 <1.000e–03

GPCR ligand binding 433 107 <5.000e–04

PI3K-Akt signaling pathway 346 81 <3.333e–04

Extracellular matrix organization 263 65 <2.500e–04

Pathways in cancer 327 74 <2.000e–04

Rap1 signaling pathway 213 54 <1.667e–04

Regulation of actin cytoskeleton 215 54 <1.429e–04

Neurotransmitter receptor

binding and downstream

transmission in the postsynaptic

cell

137 40 <1.250e–04

Potassium channels 86 30 <1.111e–04

Heterotrimeric G-protein

signaling pathway-Gi alpha and

Gs alpha mediated pathway

147 41 <1.000e–04

Proteoglycans in cancer 225 54 <9.091e–05

Ras signaling pathway 227 54 <8.333e–05

ECM-receptor interaction 86 28 1.54E–04

Calcium signaling pathway 181 45 2.14E–04

FGF signaling pathway 92 29 2.00E–04

Focal adhesion 206 48 2.50E–04

Gastrin-CREB signaling pathway

via PKC and MAPK

207 48 2.35E–04

Cell adhesion molecules (CAMs) 143 37 2.78E–04

Wnt signaling pathway 269 57 4.21E–04

MAPK signaling pathway 259 55 4.00E–04

Heterotrimeric G-protein

signaling pathway-Gq alpha and

Go alpha mediated pathway

108 30 5.24E–04

IL4-mediated signaling events 63 21 7.73E–04

HTLV-I infection 260 54 7.83E–04

GABAergic synapse 90 26 7.92E–04

Signaling by Type 1 insulin-like

growth factor 1 receptor (IGF1R)

86 25 8.40E–04

Retrograde endocannabinoid

signaling

103 28 8.85E–04

Melanoma 71 22 9.26E–04

The functional interaction network was constructed using ReactomeFI cytoscape app.

The table shows the enriched pathways, the number of genes in the pathway from the

total query gene set, and the number of genes in the pathway found in the interaction

network. Results having p-values <0.01 and a False Detection Rate <0.001 are shown.

Where beta_valdist is the distance in beta values between non-
overlapping groups and mediandiff is the absolute difference
of the medians of each group (22). It then assigns high
scores for CpG sites that achieve higher discrimination
between groups while maintaining low within-group
variability. Nimbl-compare module was also used to extract
the final set of CpG sites that were identified by all three
methods. Hierarchical clustering analysis was performed
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using the top 250 differentially methylated sites sorted by F
value.

Reference Epigenome Annotations
Bed files of chromatin states for both HMEC and vHMEC
cells were obtained from Roadmap web portal: http://egg2.wustl.
edu/roadmap/web_portal/, further analysis was performed in
GALAXY web-based platform (63–65) and R statistical software.

Network and Pathway Analysis
Differential methylation analysis produced two lists of
differentially methylated genes (hyper and hypo) and their
enrichment of differentially methylated sites in their gene
regions, i.e., promoter region, gene body, 3UTR, etc. The
aggregated gene list was sorted by the count of methylated
sites in the promoter area, first exon, and gene body regions.
Subsequently all epigenetically upregulated genes (EUG) were
combined in a single group, i.e., genes bearing methylation
marks that promote gene expression–hypomethylation in the
promoter area, and first exon or hypermethylation in the gene
body region in a single group. Then we compiled a second
group of epigenetically downregulated genes (EDG), i.e., genes
bearing methylation marks that inhibit gene expression, i.e.,
hypermethylation of the promoter area, and the first exon
or hypomethylation of the gene body region. We excluded
other gene-based regions that are not well-correlated with gene
expression from further analysis.

We utilized ReactomeFI (66), a Cytoscape (67) app to perform
network and pathways analysis. Projecting the lists of EDG
and EUG groups through the ReactomeFI functional network
produced two corresponding networks. To extract breast cancer
specific subnetworks from EUG and EDG groups we loaded NCI
cancer index from within the ReactomeFI app, and we selected
nodes that corresponded to malignant breast cancer.

CONCLUSIONS

Interpreting cancer methylome is a complex process, as it is not
easily correlated with cancer tumorigenesis as driver mutations
or altered gene expression profiles. Other studies on Breast
cancer, failed to correlate BC methylome with known and clear
tumor subtypes that correlated with gene expression profiles.
Gene lists of hyper and hypo methylated sites cannot be treated
the same way we treat over and under expressed genes, and
extreme caution should be exercised with such over simplistic
approach. In this paper, we augmented old approaches with new
enhanced analytic techniques that we think are more capable
of deciphering methylome data than traditional methods. We
are among the first studies to utilize chromatin states from the
RODAMAP epigenome project to make sense of methylome
data.

Utilizing the human reference epigenome, our study
uncovered interesting epigenetic patterns characterized by
increased acquisition of Polycomb repressive marks, as revealed

from comparison to human reference epigenome breast cells.
We identified many potential BC biomarkers like TP73, and
TBX15. Using pathway analysis over contextually aggregated
methylome networks, we uncovered many significantly enriched
developmental pathways including Hippo and Wnt signaling
pathways. Additionally, our bioinformatics analysis indicated a
possible role for EBV infection in BC tumorigenesis.
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