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Abstract. This work focuses on side-channel resilient design strategies for symmetric-
key cryptographic primitives targeting lightweight applications. In light of NIST’s
lightweight cryptography project, design choices for block ciphers must consider not
only security against traditional cryptanalysis, but also side-channel security, while
adhering to low area and power requirements. In this paper, we explore design
strategies for substitution-permutation network (SPN)-based block ciphers that make
them amenable to low-cost threshold implementations (TI) - a provably secure
strategy against side-channel attacks. The core building blocks for our strategy are
cryptographically optimal 4×4 S-Boxes, implemented via repeated iterations of simple
cellular automata (CA) rules. We present highly optimized TI circuits for such S-Boxes,
that consume nearly 40% less area and power as compared to popular lightweight
S-Boxes such as PRESENT and GIFT. We validate our claims via implementation
results on ASIC using 180nm technology. We also present a comparison of TI circuits
for two popular lightweight linear diffusion layer choices - bit permutations and
MixColumns using almost-maximum-distance-separable (almost-MDS) matrices. We
finally illustrate design paradigms that combine the aforementioned TI circuits for
S-Boxes and diffusion layers to obtain fully side-channel secure SPN block cipher
implementations with low area and power requirements.
Keywords: Lightweight · Block Ciphers · Side-channels · Threshold Implementation ·
Cellular Automata · Optimal S-Box.

1 Introduction
Lightweight cryptography has received great momentum with the proposal of a number
of efficient symmetric-key cryptographic primitives in recent years. Design choices for
lightweight cryptography typically focus on optimizing one or more essential implementation-
based criteria, including (but not limited to) area, power, and throughput. At the same
time, these primitives must also satisfy the basic security requirements against well-
known cryptanalytic attacks such as linear [MY93] and differential [BS91] cryptanalysis.
Lightweight block ciphers follow various design principles, amongst which substitution-
permutation network (SPN) is highly popular. An SPN structure typically comprises
several rounds, where each round has three operational layers - (a) a layer of nonlinear
substitution-boxes (S-Boxes), (b) a linear permutation-layer, and (c) round-key-XOR.
The impetus on lightweight cryptography has been further enhanced by NIST’s recent
announcement of a lightweight cryptography project [MBTM17], seeking design choices
targeting a variety of devices and applications. In particular, the announcement lists
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resistance against side-channel attacks (SCAs) as a principal design criterion. This opens
up the need to explore new design strategies for lightweight block ciphers that focus not
only on security against traditional cryptanalysis but also side-channel security, while
adhering to low area and power requirements. The aim of this paper is to address this
issue with respect to the SPN block ciphers. In particular, our proposed strategies focus on
protecting the two main components of any SPN block cipher, namely the S-Box layer and
the permutation layer. A common protection strategy applied to both layers is the use of
threshold implementation (TI) [NRR06], a provably secure technique against side-channels
that has its roots in multi-party computation.

S-Boxes are essential components for any SPN block cipher, since they contribute to
the protection against traditional cryptanalytic techniques. In order to do so, S-Boxes
must fulfill certain cryptographic properties. The minimum set of criteria necessary to
consider when designing S-Boxes for SPN designs includes bijectivity, high nonlinearity,
and low differential uniformity. Naturally, in various ciphers, S-Boxes are of different
sizes, which results in different values of cryptographic properties and can even lead to
using S-Boxes with suboptimal properties (see e.g., the Keccak design where the S-Box (χ
transformation) is suboptimal with respect to the nonlinearity and differential uniformity
properties [BDPA11]).

When considering lightweight cryptography, the situation is simpler. The dominant
S-Box size there is 4 × 4, which does not allow much difference in cryptographic prop-
erties, and in fact ciphers commonly use S-Boxes that are optimal. Optimal S-Boxes
are those that are bijective, with nonlinearity equal to 4, and differential uniformity
equal to 4 [LP07]. Such optimal S-Boxes are found in numerous popular designs like
PRESENT [BKL+07], Noekeon [JDR00], Piccolo [SIH+11], Prince [BCG+12], Rectan-
gle [ZBL+15], Skinny [BJK+16], Midori [BBI+15], etc. Some recently proposed block
ciphers such as GIFT [BPP+17] use cryptographically non-optimal lightweight 4×4 S-Boxes
with special properties that allow combining them with bit permutations to achieve optimal
diffusion characteristics. The small size of 4× 4 S-Boxes has also enabled researchers to
classify all optimal S-Boxes up to the affine equivalence where they show there are 16
optimal non-equivalent classes (commonly denoted G0 to G15) [LP07]. Existing works
have also gone so far as to exhaustively enumerate all 4× 4 bijective S-Boxes [Saa12].

Despite the existence of such classifications, it is largely an open problem to pro-
pose design strategies for S-Boxes that are low-area, low-power, and at the same-time,
amenable to side-channel secure implementations (that is, the corresponding SCA-resistant
implementations also optimize area and power as much as possible). One of the fore-
most techniques for securing S-Box implementations is the use of masking countermea-
sures [RP10, GPQ11, RBN+15] that are provably secure up to a pre-determined attack
order. In more recent times, TI seem to be the preferred choice owing to their enhanced
security coverage, particularly against glitch-based SCAs. Thus, our aim is to design
cryptographically optimal 4× 4 nonlinear functions that support low-area and low-power
implementations, while having low-cost side-channel protections in the form of TI circuits.

1.1 Overview of Our Contributions and Techniques
The main contributions of this paper are briefly summarized below:

• Lightweight and Side-channel Secure Design Strategies for S-Boxes.
In this paper, we use cellular automata in order to design such nonlinear functions
with inherently lightweight implementations. A cellular automaton is a finite state
machine whose state transitions are based on simple local rules. Prior studies
have extensively analyzed the scope of realizing complex functions via repeated
iterations of this simple rules [Wol83, Wol84b, Wol84a]. A recent work by Picek et
al. [PMY+17] explores the possibility of designing cryptographically optimal 4× 4
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S-Boxes from such simple 4× 1 CA-based rules. The idea is to iterate over a single
instance of the CA rule, while cyclically shifting the input bits, to obtain one output
bit of an S-Box at a time. In this work, we take a step further and explore the
possibility of designing cryptographically optimal 4× 4 S-Boxes from CA rules, while
also ensuring that such S-Boxes give rise to side-channel secure TI circuits with
low area footprint and power consumption. The main design principle for the TI
circuit remains the same - we protect the core CA rule by decomposing the input
and output bits into as few shares as possible, and then iterate over this core unit by
cyclically permuting the input bits. We demonstrate that a significant proportion
of the resulting S-Boxes achieve cryptographically optimal properties, and give rise
to distinct classes based on their implementation overheads and amenability to TI
designs. We also demonstrate additional optimizations on the most lightweight of
these S-Box classes by exploiting the decomposability of its CA rule into smaller
Boolean functions. Our implementation results on ASIC (180nm technology) show
that the most lightweight TI circuit among all CA-based S-boxes has a 49.42% smaller
area-footprint and consumes 52.3% less power as compared to the best-known TI of
the PRESENT S-Box [PMK+11]. The same TI circuit also leads to a 35.36% smaller
area-footprint and consumes 44.46% less power as compared to a highly optimized
TI of the GIFT S-Box.

• Lightweight and Side-channel Secure Design Strategies for Permutation
Layers. Permutation layers provide the much needed diffusion in any block cipher
construction, and are hence important for side-channel security. Two main classes
of permutation layers dominate nearly all lightweight SPN constructions - bit per-
mutations and almost-maximum-distance-separable (almost-MDS) permutations.
Examples of the former include PRESENT [BKL+07] and GIFT [BPP+17], while
an example of the latter strategy is Midori [BBI+15]. In this paper, we present a
comparative analysis of the area and power overheads corresponding to TI designs
for both choices of permutations. Such a comparative analysis allows a designer to
analyze the pros and cons of choosing either of these strategies with respect to a
given application.

• Combining it All Together. Finally, we present a trade-off analysis between
the design choices for the S-Box and permutation layers as components in an SPN
structure. We first observe that our CA-based S-Boxes have a branch number of
2 (as opposed to 3 for the PRESENT S-Box), and also lack the bad-output-good-
input (BOGI) property exhibited by the GIFT S-Box [BPP+17]. This makes it
practically infeasible to combine these S-Boxes with bit-permutation layers in a full
SPN structure and necessitates almost-MDS permutation layers. Interestingly, it
turns out that the area and power savings from our CA-based S-Boxes outweigh the
additional area and power requirements for an almost-MDS permutation layer over a
bit permutation layer, particularly when implemented for side-channel security via
TI. With these observations, we propose using CA-based S-Boxes in conjunction with
almost-MDS mappings as a new design-for-security strategy for designing lightweight
block ciphers that are amenable to low-area and low-power TI designs.

1.2 Paper Organization
The rest of this paper is organized as follows. In Section 2, we introduce the notation
and present background material on cryptographic properties of S-Boxes, threshold imple-
mentations (TI), cellular automata (CA) and their properties, and relevant measurement
units for area footprint and power consumption of CMOS devices. Section 3 presents
direct-shared TI circuits for cryptographically optimal 4× 4 S-Boxes obtained via repeated
iterations of local CA rules, along with the area and power overheads for the same on ASIC
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platforms (180nm technology). Section 4 further refines these TI circuits by reducing the
number of shares to achieve even lower area footprint and power consumption. Section 5
compares bit permutations and MixColumns using almost-MDS matrices in terms of
their amenability to low-cost TI designs. This section also presents design paradigms for
combining TI for S-Boxes and diffusion layers to achieve lightweight and fully side-channel
secure block cipher implementations. Finally, Section 6 summarizes the major findings of
the paper and discusses possible future research directions.

2 Preliminaries
2.1 Cryptographic Optimality and Representation of S-Boxes
In the standard cryptographic nomenclature, a substitution box (abbreviated as S-Box), is
a nonlinear n×m Boolean function. In the rest of the paper, we consider only S-boxes
that have the same number of inputs and outputs, i.e., n× n S-boxes. Here, we briefly
describe some important cryptographic properties of S-boxes.
• Algebraic Degree. To define the algebraic degree of an S-Box, we use the

algebraic normal form (ANF) representation of a Boolean function f represented by a
polynomial in F2 [x0, . . . , xn−1] /(x2

0 − x0, . . . , x
2
n−1 − xn−1) [Car10a]. The algebraic

degree degf of a Boolean function f is defined as the number of variables in the
largest product term of the function’s ANF having a non-zero coefficient [Car10a].
The algebraic degree degF of an S-Box F is the maximum algebraic degree of all
non-zero linear combinations of the coordinate functions (i.e., component functions)
of F [Car10b]. Ideally, a cryptographically useful S-Box should have high algebraic
degree to resist algebraic attacks [MPC04].

• Balancedness. Let F be a function from Fn
2 into Fn

2 . Then, F is balanced if it
takes every value of Fn

2 exactly once.

• Nonlinearity. Nonlinearity of an n× n S-Box F equals the minimum nonlinearity
of all its component functions v · F , where v ∈ Fn∗

2 [Nyb93, Car10b]:

NLF = 2n−1 − 1
2 max

a ∈ Fn
2

v ∈ Fn∗
2

|WF (a, v)|,

where
WF (a, v) =

∑
x∈Fn

2

(−1)v·F (x)+a·x, a, v ∈ Fn
2 ,

is the Walsh-Hadamard transform [Car10b] of the function F and a · b is the usual
inner product of a, b ∈ Fn

2 that equals a · b =
⊕n

i=1 aibi. We use the notation Fn∗
2 to

denote the non-zero elements of the vector space Fn
2 . The nonlinearity of any (n, n)

function F is bounded above by the covering radius bound:

NLF ≤ 2n−1 − 2 n
2−1.

• Differential Uniformity. Let F be an S-Box from Fn
2 into Fn

2 with a ∈ Fn
2 and

b ∈ Fn
2 . We define the difference distribution table of F with respect to a and b as:

DF (a, b) = {x ∈ Fn
2 : F (x)⊕ F (x⊕ a) = b} .

The entry at position (a, b) corresponds to the cardinality of the difference distribution
table DF (a, b) and is denoted as δF (a, b). The differential uniformity δF is then
defined as [Nyb94]:

δF = max
a ∈ Fn∗

2
b ∈ Fn

2

δf (a, b).
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• Differential Branch Number. Let F be an S-Box from Fn
2 into Fn

2 . We define
the differential branch number of F as:

BNF = min
x 6= y

wt(x⊕ y) + wt(F (x)⊕ F (y)),

where wt(a) denotes the Hamming weight of a. Throughout this paper we use the
term branch number to denote the differential branch number.

In order to resist linear and differential cryptanalysis attacks, a balanced S-Box should
ideally have high nonlinearity and low differential uniformity. In particular, a 4× 4 S-Box
is said to be cryptographically optimal if it is bijective, has nonlinearity equal to 4, and
differential uniformity equal to 4 [LP07].

2.2 Threshold Implementation: A Countermeasure to SCA
Here, we provide a brief overview of Threshold Implementation along with a simple example
and a brief discussion on the importance of this countermeasure to resist side-channel
attacks.

2.2.1 Countermeasures against SCA

There exist various countermeasures against side-channel power attacks which have been
proposed over the years. A general approach focuses on decreasing the information gathered
from traces.

• Noise Addition. Introducing external noise in the side-channel, shuffling the
operations or inserting dummy operations in cryptographic implementations are
often used as a countermeasure against side-channel attacks. The basic objective
is to reduce the signal-to-noise ratio (SNR), and thereby decrease the information
gathered from traces. Many works on this topic explicitly focus on improving the
statistical distribution of these delays. Still, as shown by Durvaux et al. [DRS+12],
these countermeasures become insecure with increasing attack time.

• Dynamic and Differential CMOS Logic. Tiri et al. [TV04a] proposed Sense
Amplifier Based Logic (SABL), a logic style that uses a fixed amount of charge for
every transition, including the degenerated events in which a gate does not change
state. In every cycle, a SABL gate charges a total capacitance with a constant value.
SABL is based on two principles: (i) it is a Dynamic and Differential Logic (DDL)
and therefore has exactly one switching event per cycle (independent of the input
value and sequence) and (ii) during a switching event, it discharges and charges the
sum of all the internal node capacitances together with one of the balanced output
capacitances. Some special constant power implementation like Wave Dynamic
Digital Logic (WDDL) [TV04b] are based on SABL and have a close to constant
power consumption. However, this comes at a huge overhead costs of area, time, and
power consumption.

• Leakage Resilience. Another countermeasure, typically applied at the system
level, focuses on restricting the number of usages of the same key for an algorithm.
However, generation and synchronization of new keys has a major practical issue.
Dziembowski et al. introduced a technique called leakage resilience [DP08], which
relocates this problem to the protocol level by introducing an algorithm to generate
these keys. This approach can be extended such that several different keys (chunks)
are used with the same input text. Nevertheless, both of these techniques drastically
decrease the performance of a system, and hence are not practical for real-world
implementations.



316 Lightweight and Side-channel Secure 4× 4 S-Boxes from Cellular Automata Rules

• Masking. One of the most efficient and powerful approaches to thwart DPA is
Masking [CJRR99, GP99], which targets to break the correlation between the power
traces and the intermediate values of the computations. This powerful method
achieves security by randomizing the intermediate values using secret sharing and
carrying out all the computations on the shared values.

2.2.2 Threshold Implementation: A Brief Overview

Threshold Implementation (TI) is a widely used masking technique proposed by Nikova
et al. [NRR06] as a countermeasure against Differential Power Attacks (DPA) [KJJ99].
What sets TI apart from most masking techniques is the security it guarantees even in
non-ideal circuits where glitches have shown to result in leakage in more conventional
masking schemes [MPO05]. Initially, the proposals on TI dealt solely with the first-order
DPA security, but it was later extended to protect against higher-order DPA attacks as
well [BGN+14, RBN+15]. More recently, the pitfalls in the multivariate setting of the
higher-order TI scheme were solved in [RBN+15]. TI works under extremely relaxed
assumptions on the underlying leakage which are more achievable in practical scenarios.
It offers provable security and allows to construct secure circuits which are practical in
size. Additionaly, designing TI does not require many design iterations in practice. TI is a
Boolean masking technique based on secret sharing and secure multi-party computation.
In order to achieve the mentioned security a TI design must satisfy the following properties:

• Uniformity. All intermediate shares are required to be uniformly distributed. This
ensures decoupling of intermediate states from the mean of the leakages, which is
essential requirement to counteract the first-order DPA. It suffices to check uniformity
at the inputs and the outputs of each of the functions [Bil15]. In case no direct
uniform sharing is found, uniformity can be either achieved through correction terms
by using more input shares, or by re-masking i.e., adding randomness after the
non-uniform computation.

• Non-completeness. Any combination of d or fewer component functions fi of f
must be independent of at least one input share xi in order to achieve dth-order non-
completeness. For protection against the first-order DPA, 1st-order non-completeness
is required, i.e., every function must be independent of at least one input share.
Non-completeness ensures that the side-channel security of the final circuit is not
affected by glitches. Since glitches can only occur in component functions and each
individual component function fi lacks knowledge of at least one share xi, glitches
cannot reveal any additional information.

• Correctness. Applying the component functions to a valid shared input must
always yield a valid sharing of the correct output.

2.2.3 A Simple Example of a Threshold Implementation

We illustrate the concept of TI using a simple example of a two-bit multiplier circuit
computing a = xy. The following is a uniform sharing of the circuit [GDC17] with 1st-order
non-completeness using four input and output shares.

x = (x1 ⊕ x2 ⊕ x3 ⊕ x4)
y = (y1 ⊕ y2 ⊕ y3 ⊕ y4)
a = (a1 ⊕ a2 ⊕ a3 ⊕ a4)
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where the output shares a1, a2, a3, a4 are computed as:

a1 = (x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y3⊕y4

a2 = (x1 ⊕ x3)(y1 ⊕ y4)⊕ x1y3 ⊕ x4

a3 = (x2 ⊕ x4)(y1 ⊕ y4)⊕ x4 ⊕ y4

a4 = x1y2 ⊕ y3

The number of input and output shares can be further reduced using random bits (see [Bil15]
for details).

2.3 Cellular Automata
Cellular Automata (CA) are parallel computational models used in order to simulate and
analyze various discrete complex systems. A cellular automaton consists of a regular grid
(lattice) of cells. The grid may be in any finite number of dimensions. For each cell, a
set of cells called its neighborhood is defined relative to the specified cell. Each cell is in
one of a finite number of states. Typically, at every time step all the cells update their
states synchronously. The state update is governed by a local rule which is applied to the
neighborhood of every cell.
CA as Vectorial Boolean Function. In this paper, we restrict ourselves to periodic
boundary one-dimensional Boolean cellular automata i.e., the case where every cell is in
state 0 or 1 and the lattice is a linear array. A Periodic Boundary CA (PBCA) with n
input cells F : F2

n → F2
n is defined for all x ∈ F2

n as:

F (x1, x2, · · · , xn) = (f(x1, · · · , xd), · · · , f(xn−d+2, · · · , x1), · · · , f(xn, · · · , xd−1))

where f is a Boolean function on d variables(d ≤ n) is called a local rule. Thus, a CA
can be seen as a vectorial Boolean function (S-box) where each coordinate function fi

corresponds to the local rule f applied to the neighborhood (xi, · · · , xi+d−1). The vectorial
Boolean function F of a CA is also called the CA global rule.

We note that cellular automata based S-Boxes are actually widely used today, since
the nonlinear transformation χ in Keccak is actually a PBCA with n = 5 cells and local
rule f defined as:

f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 . (1)

Besides being used in Keccak, the same rule is also used in Panama [DC98], Radio-
Gatún [BDPA06], Subterranean [CDGP93], and 3Way [DGV94] ciphers. Unfortunately,
despite being very small rule that can be efficiently implemented, it results in optimal
S-Boxes only for dimension 3× 3 and is bijective only for odd dimensions. Finally, Picek
et al. recently showed that CA-based S-boxes can be very efficient when considering power
and area [PMY+17].

2.4 Area Overhead and Power Consumption Results
The CMOS technology used for all ASIC implementation results reported in this paper
is 180nm. Each implemented circuit is taken through the RTL-to-GDS2 flow to estimate
the area overhead and power consumption. We used Synopsys Design Compiler version I-
2013.12-SP5-4 for synthesis and Synopsys IC-Compiler version J-2014.09-SP1 for placement
and routing of the design. For simulation we used Synopsys VCS version I-2014.03-SP1-1.
Standard cell library TSL18FS120 from Tower Semiconductor Ltd. is used for physical
design. The area overhead for all implemented circuits are measured in terms of gate
equivalents (GE), where a GE in our case is equal to the lowest area occupied by a 2-input
NAND gate of 1x drive of 180nm technology.
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The total power consumption of a CMOS device is given by:

Ptotal = Pstatic + Pdynamic,

where Pstatic and Pdynamic denote the static and dynamic power consumption of the device.
In this paper, we concentrate on the dynamic power consumption that originates from the
switching activity of the circuit:

Pdynamic = αCV 2f,

where α is the switching factor (the probability of a bit switching from 0 to 1), C is the
switched capacitance, V is the voltage, and f is the clock frequency. In our approach,
we aim to use a simple structure of CA-based elements, which reduces the area and
consequently the capacitance (since capacitance depends on the area). As the capacitance
reduces, Pdynamic also reduces since the other factors do not increase.

3 Lightweight S-Boxes from Cellular Automata Rules
In this section, we illustrate our cellular automata (CA)-based design strategies for obtaining
4× 4 S-Boxes that are area and power-efficient, and also amenable to low-cost TI. The idea
is to choose a local CA rule, which is essentially a 4× 1 Boolean function, such that it has
a low-cost equivalent implementation in hardware. The 4× 4 S-Box mapping is obtained
by applying the same CA rule to four different (cyclic) permutations of the input bits.
This allows for an iterative implementation in hardware, with the CA rule implemented
once in the data-path, and the control unit applying a cyclically shifted variant of the
input bits in each clock cycle to obtain the corresponding output bit. We first describe the
De Bruijn graph-based technique to choose the local CA rule, and subsequently enumerate
certain cryptographically optimal S-Boxes obtained with this procedure. We also classify
these S-Boxes in terms of their amenability to low-area and low-power TI, and present
optimized TI designs for representatives from each class.

3.1 Choosing the CA Rule
Given a 4× 1 CA rule f , the corresponding 4× 4 S-Box is given by:

S (X,Y, Z,W ) = (f (X,Y, Z,W ) , f (Y, Z,W,X) , f (Z,W,X, Y ) , f (W,X, Y, Z))

We focus on choosing such CA rules that ensure that the corresponding S-box is bijective.
The test for injectivity of the global map of a one-dimensional CA was shown to be
decidable in [AP72], while the test for surjectivity for the same was shown to have a
quadratic-time algorithm in [Sut91], using De Bruijn graphs. These graphs provide a
convenient way to describe configurations of linear CAs. We follow these principles to
identify local 4× 1 CA rules, which in turn guarantee that the resultant 4× 4 S-Box is
bijective. The detailed technique for choosing such a CA rule is as follows.

3.1.1 De Bruijn Graph Representation

For any CA with an n-variable local rule f : F2
n → F2, the associated De Bruijn graph is

a directed graph G = (V,E), where every vertex v ∈ V is labeled with an (n− 1)-bit string.
There exists an edge e from vertex v1 to vertex v2 if the first (n− 2) bits of the label of
v2 are the same as the last (n − 2) bits of the label of v1. For example, the De Bruijn
graph with n = 4 has an edge from v1 = 010 to v2 = 100 as the first two bits of v2 are 10,
which is same as the last 2 bits of v1. Quite evidently, |V | = 2n−1, and |E| = 2 · 2n−1 = 2n

(observe that each vertex has exactly two incoming and two outgoing edges).
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3.1.2 Generating Optimal 4 × 4 S-Boxes from De Bruijn Graphs

Given a De-Bruijn graph G = (V,E) with |V | = 2n−1, a CA local rule may be derived
by associating each edge of this graph with a bit b ∈ {0, 1}. Since there are 2n edges,
the total number of possible CA rules that can be associated with this graph is 22n . In
particular, for n = 4, the total number of such CA rules is 224 = 216. Each such rule
gives rise to a unique 4× 4 function. An exhaustive search of these functions yields 1 536
bijective functions, which are our candidate S-Boxes. Finally, we test these functions
for cryptographic optimality in terms of their nonlinearity and differential uniformity,
which narrows down our search space to 512 candidate S-Boxes, which may be further
sub-classified into four affine-equivalent classes - namely, G3, G4, G5, and G6. Details of
these S-Boxes have been reported previously in [MPLJ17].

We would like to point out that the number of possible CA-based rules is 216 (as n = 4)
in our case. Hence, instead of De Bruijin graph representation, we could have also used a
simple brute-force approach. However, for higher values of n, where brute force search
may not be feasible, a systematic approach with De Bruijin graph is a good choice.

3.2 Classification of Cryptographically Optimal CA-based 4 × 4 S-
Boxes

Our next step is to classify the 512 cryptographically optimal CA-based 4× 4 S-Boxes into
certain classes, such that each category comprises S-Boxes that are expected to have similar
area and power overhead in hardware, as well as similar TI circuit representations. As it
turns out, each of these quantities are closely related to the nature of the algebraic normal
form (ANF) representation of the S-Boxes. Given that each S-Box under consideration
has optimal algebraic degree 3, we use the following facts from [BGN+14]:

• CA-based S-Boxes with the same number of cubic, quadratic, and linear terms in
their ANF form have similar area footprint and expected power consumption in
hardware.

• CA-based S-Boxes with the same number of cubic, quadratic, and linear terms in
their ANF form have nearly identical TI circuits owing to their nearly identical
algebraic structure.

Based on this rationale, we classify the S-Boxes depending on the number of linear,
quadratic, and cubic terms present in the ANF of the S-Box. According to this classification,
we have obtained 12 S-Box classes as shown in Table 1.

We also list the CA rules corresponding to representative optimal S-Boxes for each
class. Note that class (a, b, c) comprises optimal S-Boxes with a cubic terms, b quadratic
terms, and c linear terms, respectively. We also summarize the cryptographic properties
of these representative S-Boxes in Table 2, and compare them with the cryptographic
properties of popular 4× 4 S-Boxes that include the S-Boxes of PRESENT, GIFT, Skinny,
Piccolo, Noekeon, Midori and Prince.

3.3 Threshold Implementations of CA-based S-Boxes
We now describe direct sharing-based TI circuits for the aforementioned classes of CA-based
S-boxes, and compare their relative area overheads and power consumption results.

3.3.1 TI of CA-based S-Boxes with Examples

Since each of the representative S-Boxes listed above has algebraic degree equal to 3,
we adopt the direct 4-to-4 non-complete sharing method for cubic functions originally
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Table 1: Grouping S-Boxes into classes by ANF properties
S-Box Class Representative CA Rule
(1,2,2) f(X, Y, Z, W ) = XZW ⊕XY ⊕ Y W ⊕ Y ⊕ Z
(1,3,1) f(X, Y, Z, W ) = Y ZW ⊕XZ ⊕ Y Z ⊕ Y W ⊕X
(1,3,3) f(X, Y, Z, W ) = Y ZW ⊕XY ⊕XZ ⊕ Y W ⊕ Y ⊕ Z ⊕W
(1,4,2) f(X, Y, Z, W ) = Y ZW ⊕XY ⊕XZ ⊕XW ⊕ ZW ⊕X ⊕W
(1,5,1) f(X, Y, Z, W ) = XY W ⊕XY ⊕XZ ⊕XW ⊕ Y W ⊕ ZW ⊕ Z
(1,5,3) f(X, Y, Z, W ) = XY W ⊕XY ⊕XZ ⊕XW ⊕ Y Z ⊕ Y W ⊕ Y ⊕ Z ⊕W
(3,2,2) f(X, Y, Z, W ) = XY Z ⊕XZW ⊕ Y ZW ⊕XZ ⊕ Y Z ⊕X ⊕ Y
(3,3,1) f(X, Y, Z, W ) = XY Z ⊕XZW ⊕ Y ZW ⊕XZ ⊕XW ⊕ Y W ⊕ Z
(3,3,3) f(X, Y, Z, W ) = XY W ⊕XZW ⊕ Y ZW ⊕XY ⊕XZ ⊕ Y W ⊕X ⊕ Z ⊕W
(3,4,2) f(X, Y, Z, W ) = XY Z ⊕XY W ⊕XZW ⊕XY ⊕XZ ⊕XW ⊕ Y Z ⊕ Z ⊕W
(3,5,1) f(X, Y, Z, W ) = XY Z ⊕XY W ⊕ Y ZW ⊕XZ ⊕XW ⊕ Y Z ⊕ Y W ⊕ ZW ⊕ Y
(3,5,3) f(X, Y, Z, W ) = XY Z ⊕XY W ⊕XZW ⊕XY ⊕XZ ⊕ Y Z ⊕ Y W ⊕ ZW ⊕X ⊕ Y ⊕W

Table 2: Cryptographic properties of the considered S-boxes. All the properties listed here
corresponding to the Skinny, Piccolo, Noekeon, Midori, and Prince S-Boxes are the same,
and we represent all of them by the symbol X.

S-Box Nonlinearity Differential Optimality Balancedness Algebraic Branch
Uniformity Degree Number

CA-based 4 4 Yes Yes 3 2
PRESENT 4 4 Yes Yes 3 3

GIFT 4 6 No Yes 3 2
X 4 4 Yes Yes 3 2

proposed in [Bil15] to obtain the corresponding TI circuits for each of the corresponding
CA rules. We explicitly depict two of the most area-efficient and low-power TI circuits
below. These correspond to the representative CA-rules for the S-Box classes (1, 2, 2) and
(1, 3, 1), respectively. Note that {Xj , Yj , Zj ,Wj}j∈[1,4] denote the shares for the input bits
X,Y, Z and W , respectively, while {fj}j∈[1,4] denotes the shares for the output f of the
CA rule.

Class:(1,2,2) , CA-Rule: f = XZW ⊕ Y W ⊕ XY ⊕ Y ⊕ Z

f1 = (X1Z2W3)⊕ (X1Z3W2)⊕ (X2Z1W3)⊕ (X2Z3W1)⊕ (X3Z1W2)⊕ (X3Z2W1)⊕ Y1 ⊕ Z1

f2 = ((X2 ⊕X3 ⊕X4)(Z2 ⊕ Z3 ⊕ Z4)(W2 ⊕W3 ⊕W4))⊕ ((X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3 ⊕ Y4))
⊕ ((Y2 ⊕ Y3 ⊕ Y4)(W2 ⊕W3 ⊕W4))⊕ Y2 ⊕ Z2

f3 = (X1(Z3 ⊕ Z4)(W3 ⊕W4))⊕ (Z1(X3 ⊕X4)(W3 ⊕W4))⊕ (W1(X3 ⊕X4)(Z3 ⊕ Z4))
⊕ (X1Z1(W3 ⊕W4))⊕ (X1W1(Z3 ⊕ Z4))⊕ (Z1W1(X3 ⊕X4))⊕ (X1Z1W1)
⊕ (X1(Y3 ⊕ Y4))⊕ (Y1(X3 ⊕X4))⊕ (X1Y1)⊕ (Y1(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4))
⊕ (Y1W1)⊕ Y3 ⊕ Z3

f4 = (X1Z1W2)⊕ (X1Z2W1)⊕ (X2Z1W1)⊕ (X1Z2W2)⊕ (X2Z1W2)⊕ (X2Z2W1)
⊕ (X1Z2W4)⊕ (X2Z1W4)⊕ (X1Z4W2)⊕ (X2Z4W1)⊕ (X4Z1W2)⊕ (X4Z2W1)
⊕ (X1Y2)⊕ (Y1X2)⊕ (Y1W2)⊕ (W1Y2)⊕ Y4 ⊕ Z4
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Class:(1,3,1) , CA-Rule: f = Y ZW ⊕ Y W ⊕ Y Z ⊕ XZ ⊕ X

f1 = (Y1Z2W3)⊕ (Y1Z3W2)⊕ (Y2Z1W3)⊕ (Y2Z3W1)⊕ (Y3Z1W2)⊕ (Y3Z2W1)⊕X1

f2 = ((Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4)(W2 ⊕W3 ⊕W4))⊕ ((X2 ⊕X3 ⊕X4)(Z2 ⊕ Z3 ⊕ Z4))
⊕ ((Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4))⊕ ((Y2 ⊕ Y3 ⊕ Y4)(W2 ⊕W3 ⊕W4))⊕X2

f3 = (Y1(Z3 ⊕ Z4)(W3 ⊕W4))⊕ (Z1(Y3 ⊕ Y4)(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4)(Z3 ⊕ Z4))
⊕ (Y1Z1(W3 ⊕W4))⊕ (Y1W1(Z3 ⊕ Z4))⊕ (Z1W1(Y3 ⊕ Y4))⊕ (Y1Z1W1)
⊕ (X1(Z3 ⊕ Z4))⊕ (Z1(X3 ⊕X4))⊕ (X1Z1)⊕ (Y1(Z3 ⊕ Z4))⊕ (Z1(Y3 ⊕ Y4))⊕
(Y1Z1)⊕ (Y1(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4))⊕ (Y1W1)⊕X3

f4 = (Y1Z1W2)⊕ (Y1Z2W1)⊕ (Y2Z1W1)⊕ (Y1Z2W2)⊕ (Y2Z1W2)⊕ (Y2Z2W1)⊕ (Y1Z2W4)
⊕ (Y2Z1W4)⊕ (Y1Z4W2)⊕ (Y2Z4W1)⊕ (Y4Z1W2)⊕ (Y4Z2W1)⊕ (X1Z2)⊕ (Z1X2)
⊕ (Y1Z2)⊕ (Z1Y2)⊕ (Y1W2)⊕ (W1Y2)⊕X4

Figure 3.1 illustrates the hardware architecture for the direct-sharing based TI circuit
corresponding to a given CA rule. The main components of the architecture are the
shift registers (cyclic) for the shares corresponding to the input variables, the core block
implementing the TI circuit for the CA rule, and the demultiplexer gates that are used to
output one bit per clock cycle. Note that the counter bits are dependent only on the clock
signal; in particular, they are independent of the other intermediate share values, and
hence need not themselves be shared. A comparison of the area and power consumption
for the direct sharing-based TI circuits for all representative S-Boxes is given in Table 3.
The following trend is evident from the hardware implementation results:

Observation 1. If (i) a1 < a2 or (ii) a1 = a2, b1 + c1 < b2 + c2 then TI of an S-Box
belonging to class (a1, b1, c1) has lower area and power consumption than an S-Box of class
(a2, b2, c2).
On the other hand, in the case where a1 = a2 and (b1 + c1) = (b2 + c2), there is no such
obvious trend. This could be attributed to certain optimizations made by the design
compiler during synthesis.

3.3.2 Comparison with Direct-Shared TI for Other Popular S-Boxes

Now, we provide a comparative study of our S-Boxes with a class of lightweight S-Boxes
that includes PRESENT, GIFT, Skinny, Piccolo, Noekeon, Midori, and Prince. Note
that the first six CA-based S-Box representatives (for classes (1, 2, 2) through (1, 5, 3)) in
Table 3 have TI circuits with lower area footprint as compared to all the other S-Boxes.
Additionally, the power consumption for nearly all CA-based TI circuits is significantly
lower.

Note that in the direct-shared TI, each input and output variable is four-shared, which
leads to a significant area overhead. It is possible to minimize the area overheads of these
circuits even further by reducing the number of shares in each case. This is achieved by a
technique referred to as composite TI, which we describe in the next section.

4 Composite TI: Optimizing TI Circuits for Low Area and
Power

In this section, we present composite TI - a generic technique that allows for highly
optimized TI designs of CA rules, in comparison to direct sharing techniques. A similar
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Table 3: TI of CA-based S-Box representatives: area and power consumption (ASIC
Technology: 180nm)

S-Box Area (GE) Dynamic Power (µ W)

CA-Based

Class
(1,2,2) 265.03 232.51
(1,3,1) 259.23 222.36
(1,3,3) 276.06 247.78
(1,4,2) 288.35 254.89
(1,5,1) 276.55 244.97
(1,5,3) 298.7 284.19
(3,2,2) 378.98 349.76
(3,3,1) 393.83 357.6
(3,3,3) 415.21 398.51
(3,4,2) 405.57 381.00
(3,5,1) 397.10 381.46
(3,5,3) 418.16 413.14

GIFT 303.81 380.44
PRESENT 450.54 490.18
Skinny 370.59 433.9
Piccolo 375.88 424.8
Noekeon 454.54 495.45
Midori 408.00 457.06
Prince 516.99 559.92

technique has been used in [PMK+11] to obtain a highly optimized TI for the PRESENT
S-Box. The idea is to express each 4× 1 CA rule of algebraic degree 3 as a composition
of Boolean sub-functions of degree 2 each. We then proceed by identifying uniform and
non-complete sharing for these degree 2 sub-functions, and subsequently cascading them.
In order to maintain non-completeness, the cascading must ensure that the TI circuits for
the two sub-functions are separated by using registers. This can be illustrated using the
following instance. Suppose that a CA-rule f(X) can be expressed as a composition of two
sub-rules g(A) and h(X), where A denotes the intermediate output of h(X). Now, consider
a uniform first-order 3-sharing of h, denoted as A1 = h1(X1, X2) and A2 = h2(X2, X3),
that are fed subsequently to the sharing of g. Here h(X) = h1(X1, X2)⊕h2(X2, X3). Note
that the share function g1 (A1, A2) can also be written as g1(X1, X2, X3), in which case, a
glitch in this function produces a leakage dependent on all the shares of X. This is avoided
by partitioning the nonlinear operations with a register that disallows the propagation of
a glitch affecting all the shares of an unmasked value. We illustrate the decomposition
strategy for the representative S-Boxes of the classes (1, 2, 2) and (1, 3, 1), which are the
most area and power-efficient among all the S-Box classes (see Table 3).

4.1 Decomposition for CA-based S-Box Class (1, 2, 2)

We begin by illustrating a decomposition of the representative CA-rule for the S-Box class
(1, 2, 2). While the original rule f has algebraic degree 3, each of the decomposed functions
b1, b2 and b3 have degree 2.
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Figure 3.1: Architecture for TI circuits corresponding to CA-based S-Boxes

f = XZW ⊕ Y W ⊕ XY ⊕ Y ⊕ Z

b1(X,Y,W ) = X ⊕ Y ⊕XW ⊕ YW
b2(X,Y, Z) = Z ⊕XY ⊕XZ
b3(X,Z,W ) = X ⊕W ⊕XZ ⊕ ZW

f(X,Y, Z,W ) = b1 ⊕ b2 ⊕ b1b3 ⊕ b2b3 = b1(b1, b2, b3)

The next step is to obtain a uniform three-sharing for the decomposed functions b1, b2,
and b3. We first present a nomenclature of the shares for the various input variables and
decomposed functions.

b1 = b11 ⊕ b12 ⊕ b13

b2 = b21 ⊕ b22 ⊕ b23

b3 = b31 ⊕ b32 ⊕ b33

X = X1 ⊕X2 ⊕X3

Y = Y1 ⊕ Y2 ⊕ Y3

Z = Z1 ⊕ Z2 ⊕ Z3

W = W1 ⊕W2 ⊕W3
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Figure 4.1: Architecture for TI circuits corresponding to CA-based S-Boxes

The three-shared TI circuit is now illustrated below:

b11 = X1 ⊕ Y2 ⊕ (Y1W1)⊕ (Y1W2)⊕ (Y2W1)⊕ (X1W1)⊕ (X1W2)⊕ (X2W1)
b12 = X2 ⊕ Y3 ⊕ (Y2W2)⊕ (Y2W3)⊕ (Y3W2)⊕ (X2W2)⊕ (X2W3)⊕ (X3W2)
b13 = X3 ⊕ Y1 ⊕ (Y3W3)⊕ (Y3W1)⊕ (Y1W3)⊕ (X3W3)⊕ (X3W1)⊕ (X1W3)
b21 = Z1 ⊕ (Z1X2)⊕ (Z2X1)⊕ (Y1X2)⊕ (Y2X1)⊕ (Z1X1)⊕ (Y1X1)
b22 = Z2 ⊕ (Z2X3)⊕ (Z3X2)⊕ (Y2X3)⊕ (Y3X2)⊕ (Z2X2)⊕ (Y2X2)
b23 = Z3 ⊕ (Z1X3)⊕ (Z3X1)⊕ (Y1X3)⊕ (Y3X1)⊕ (Y3X3)⊕ (Z3X3)
b31 = X1 ⊕W2 ⊕ (Z1W1)⊕ (Z1W2)⊕ (Z2W1)⊕ (X1Z1)⊕ (X1Z2)⊕ (X2Z1)
b32 = X2 ⊕W3 ⊕ (Z2W2)⊕ (Z2W3)⊕ (Z3W2)⊕ (X2Z2)⊕ (X2Z3)⊕ (X3Z2)
b33 = X3 ⊕W1 ⊕ (Z3W3)⊕ (Z3W1)⊕ (Z1W3)⊕ (X3Z3)⊕ (X3Z1)⊕ (X1Z3)

4.2 Decomposition for CA-based S-Box Class (1, 3, 1)

We now illustrate a decomposition of the representative CA-rule for the S-Box class (1, 3, 1).
Once again, while the original rule f has algebraic degree 3, each of the decomposed
functions b1, b2, and b3 have degree 2.

f = Y ZW ⊕ XZ ⊕ Y W ⊕ Y Z ⊕ X

b1(X,Y,W ) = X ⊕ YW
b2(X,Y, Z) = Y Z ⊕ YW

f(X,Y, Z,W ) = b2 ⊕ b1W ⊕X = b3(b1, b2, X,W )

We now present a uniform three-sharing for the decomposed functions b1, b2, and b3. The
nomenclature of the shares for the various input variables and decomposed functions is
the same as described above.
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Table 4: Hardware overhead of highly optimized composite TI of CA-Based S-Boxes and
Comparison with popular S-Boxes

S-Box Area (GE) Dynamic Power (µW )
CA-Based Class

(1,2,2) 212.61 170.2
(1,3,1) 140.62 113.3

GIFT 217.57 207.75
PRESENT 278.00 237.4
Skinny 321.24 282.3
Piccolo 324.75 281.1
Noekeon 348.54 298.1
Midori 367.29 331.5
Prince 475.55 411.8

b11 = X1 ⊕ (Y1W2)⊕ (W1Y2)
b12 = X2 ⊕ (W2W3)⊕ (Y2Y3)
b13 = X3 ⊕ (Y3W1)⊕ (Y3W1)⊕ (Y1W3)⊕ (Y3W1)
b21 = (Z1Y2)⊕ (Z2Y1)⊕ (W1Y2)⊕ (W2Y1)⊕ (Z1Y1)⊕ (W1Y1)⊕ (Z1W1)⊕ (Z2W2)
b22 = (Z2Y3)⊕ (Z3Y2)⊕ (W2Y3)⊕ (W3Y2)⊕ (Z2Y2)⊕ (W2Y2)⊕ (Z2W2)⊕ (Z3W3)
b23 = (Z1Y3)⊕ (Z3Y1)⊕ (W1Y3)⊕ (W3Y1)⊕ (W3Y3)⊕ (Z3Y3)⊕ (Z3W3)⊕ (Z1W1)
b31 = (Z1b12)⊕ (b11Z2)⊕ (b21)⊕ (X1)
b32 = ((Z2 ⊕ Z3)(b12 ⊕ (b13)))⊕ (b22)⊕ (X2)
b33 = (Z1b13)⊕ (b11Z3)⊕ (b13b11)⊕ (b23)⊕ (X3)

4.3 Hardware Results for Composite TI of CA-based S-Boxes
In this section, we compare the area and power requirements of the composite TI circuits
described above. We also compare these results with composite TI for all the other
lightweight S-Boxes mentioned in the previous section. The architecture for the composite
TI circuit is illustrated in Figure 4.1. As mentioned before, the counter bits need not be
shared as they are independent of all other intermediate share values. For the PRESENT
S-Box, we implement the same composite TI circuit reported in [PMK+11], while for
all the other S-Boxes (GIFT, Skinny, Piccolo, Noekeon, Midori, and Prince) we present
new results for composite TI that have not been reported in existing literature. The
comparison presented in Table 4 reveals that the smallest composite TI circuit among
CA-based S-boxes has the smallest area footprint and consumes lowest power. In fact,
our CA-based has a 35.36% smaller area-footprint and consumes 44.46% less power as
compared to the highly optimized composite TI of the GIFT S-Box, which is the best
among all the existing lightweight S-Boxes.

4.4 Side-channel Leakage Resistance Evaluation using TVLA
We conclude this section by presenting a side-channel evaluation of the best TI circuit
among all CA-based S-Boxes, corresponding to the representative CA rule for the class
(1, 3, 1). The evaluation was performed by implementing the TI circuit on a Virtex-5
FPGA on a SASEBO-GII board. The programming file for our design was generated
using Xilinx ISE 14.7; the “Keep Hierarchy” constraint was kept on while generating
the programming file in order to prevent optimizations over module boundaries. We
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Figure 4.2: TVLA of Composite-TI circuit for CA-Based S-Box representing class (1, 3, 1)

collected 1 000 000 power trace samples from the target FPGA device, and performed
a fixed-versus-random statistical test vector leakage assessment (TVLA) test on these
collected traces. The fixed class for the test was chosen as the all-zero input in all our
evaluations. Figure 4.2 demonstrates the result of the TVLA analysis on the power traces.
The outcome of the statistical test consists of values in the range (−0.4, 0.3), which is well
within the permissible range of (−4.5.4.5) [SM15].

5 Area and Power Efficient Threshold Implementations for
SPN Block Ciphers

In this section, we provide a brief discussion on lightweight TI designs for the other major
component of an SPN block cipher, namely, the linear diffusion layer. We then discuss how
our CA-based S-Boxes may be combined with such diffusion layers to achieve lightweight
TI circuits for full block ciphers.

5.1 Lightweight TI circuits for Linear Diffusion Layers
Popular diffusion layer choices in SPN block ciphers include bit-permutation (as in
PRESENT and GIFT), MixColumns using MDS matrices (as in AES [DR00]), and
MixColumns using almost-MDS matrices (as in Midori [BBI+15]). Of these, MDS matrices
are typically avoided in ciphers targeting lightweight applications owing to their high area
footprints and power requirements. Bit permutations are obviously the most efficient
choice for hardware implementations, since they have the minimal area footprint and power
consumption. However, bit-permutation based block ciphers require greater number of
rounds to achieve security against standard cryptanalytic attacks. Almost-MDS matrices
constitute a somewhat intermediate alternative, in the sense that they lead to slightly
more expensive implementations, but provide better throughput by reducing the number
of required rounds. In this section, we compare the area and power requirements for TI
circuits of bit permutations and almost-MDS matrices:
TI for Bit Permutations. As a bit permutation is essentially simple wiring of bits, and
does not require any mathematical operations, there is no extra overhead for TI of bit
permutation. Note that permutation layers like Shift-Row (used in AES) or Shuffle-Cell
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(used in Midori) are essentially bit permutations, and hence no additional overhead is
required during TI design of these operations (see Table 5).
MixColumns using Almost-MDS. Another lightweight choice for obtaining diffusion is
MixColumns operation using almost-MDS matrices. Following is the most lightweight
4× 4 almost-MDS matrix: 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


This matrix is used in the block cipher Midori. We implemented a TI circuit for multiplying
a 4× 1 state vector with the aforementioned matrix. Note that a straightforward TI circuit
must protect 8 XOR gates (two per row of the matrix). In our implementation, we reduce
the overhead to 7 XOR gates as follows: we first compute the XOR of all input vector
elements (this requires 3 XORs), and then XOR one element per row to obtain the desired
output. The area and power requirements for the same are reported in Table 5.

Table 5: TI circuits for diffusion layer choices (ASIC Technology: 180nm)
Diffusion Layer Area (GE) Dynamic Power (mW)
Bit Permutation 3.15 0
Almost-MDS 213.47 1.47

5.2 Combining it All Together
In this section, we propose two design paradigms for combining the CA-based optimal
S-Boxes with the aforementioned diffusion layer choices to achieve SPN block ciphers with
low-area and low-power TI circuits. The first of these paradigms focuses only on optimizing
area and power of the TI circuit, without caring for the throughput. In the second design
paradigm, we also incorporate the throughput as an additional performance criteria for
the TI circuit.

5.2.1 Design Paradigm-1: Focus on Area and Power Only

In this design paradigm, we adopt the SPN block cipher structure of GIFT (which is
conceptually identical to that of PRESENT), in the sense that a layer of n 4× 4 S-Boxes
(typically, n = 16) is followed by a bit permutation layer. The S-Box is chosen to be one of
the two CA-based S-Boxes (corresponding to classes (1, 2, 2) and (1, 3, 1)), or is the original
GIFT/PRESENT S-Box. Note that these CA-based S-Boxes (i) have branch number
equal to 2 and (ii) do not posses the BOGI (Bad Output Good Input) property1 defined
in [BPP+17]. This observation essentially tells us that, to sustain against linear and
differential cryptanalysis, the number of rounds required for an SPN block cipher using our
CA-based S-Box with bit permutations would be considerably higher than an equivalent
cipher using the GIFT/PRESENT S-Box with bit permutations. More specifically, to
achieve linear and differential probability less than 2−80 (assuming 80 bit key size as used
in PRESENT), we would require 40 rounds. This is due to the fact that in 40 rounds,
there is at least 40 many active S-Boxes and the maximum differential probability of the
S-Box is 2−2.

We note that the aforementioned derivation of the number of rounds is an estimation
based solely on the resistance of the cipher against linear and differential analysis. In order
to achieve security against other advanced cryptanalytic techniques, additional rounds

1In fact, all 4 × 4 CA-based optimal S-Boxes have branch number 2 and none of them possess BOGI
property.
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may be necessary. However, such additions would primarily affect the throughput of the
design rather than the area or power consumption. This does not violate the principles
the first design paradigm, which primarily targets efficiency in terms of area and power,
without much restrictions on throughput. In other words, our CA-based S-Boxes act as
viable alternatives to the GIFT/PRESENT S-Boxes in applications where area and power
consumption are the primary targets for optimization.

Following the implementation results summarized in Table 62, one can observe that
the area requirement and power consumption for SPN block ciphers with CA-based S-Box
representing class (1, 3, 1) and bit-permutation is optimal in this design paradigm.

Table 6: Lightweight TI for SPN block cipher: area and power (ASIC Technology: 180nm)
S-Box Diffusion Layer Area (GE) Power (mW)

CA-Based

Class 16 S-Boxes Diffusion Layer Total

(1, 2, 2) Bit permutation 3 401.76 3.15 3 404.91 2.72
Almost-MDS 216.62 3 618.38 4.19

(1, 3, 1) Bit permutation 2 249.92 3.15 2 253.07 1.81
Almost-MDS 216.62 2 466.54 3.28

PRESENT Bit permutation 4 448.00 3.15 4 451.15 3.79
GIFT Bit permutation 3 481.12 3.15 3 484.27 3.32
Skinny Almost-MDS 5 139.84 216.62 5 356.46 5.99
Midori Almost-MDS 5 876.64 216.62 6 093.26 7.35

Table 7: Area, Power, and Throughput Comparison for TI of SPN block cipher across
different choices of S-Boxes and design paradigms (ASIC Technology: 180nm).For through-
put calculation, we have used the following: (i) the number of clock cycles required for
CA-based S-Box is 8, where as for all the other S-Boxes it is 2; (ii) the critical operating
frequencies for CA-based S-Box and the PRESENT S-Box are 526.2 MHz and 476 MHz,
respectively; all other S-Boxes have critical operating frequencies close to 500 MHz.

S-Box Diffusion Rounds Area (GE) Power (mW) Throughput (MBps)
CA-Based (1, 3, 1) Bit Permutation ≥ 40 2 253.07 1.81 ≤ 17.54
CA-Based (1, 3, 1) Almost-MDS 16 2 466.54 3.28 43.85

PRESENT Bit Permutation 31 4 448.00 3.79 61.41
GIFT Bit Permutation 28 3 484.27 3.32 71.42
Skinny Almost-MDS 32 5 356.46 5.99 62.50
Midori Almost-MDS 16 6 093.26 7.35 125.00

5.2.2 Design Paradigm-2: Focus on Area and Power with Reasonable Throughput

In this design paradigm, we adopt an SPN block cipher structure with the following design
choices:

• We use standard bit permutations in conjunction with the S-Boxes of PRESENT
and GIFT.

• We use a standard bit permutation followed by a MixColumns operation using an
almost-MDS matrix in conjunction with our CA-based S-Boxes, and the S-Box of
Midori and Skinny.

Note that use of MixColumns operation with an almost-MDS matrix achieves significant
diffusion in each round, ensuring a significant reduction in the number of rounds (and
hence, an improved throughput) as compared to the previous design paradigm. If we use

2In Table 6, we restrict the comparison of our proposed CA-based optimal S-Boxes with the S-Boxes for
PRESENT, GIFT, Skinny and Midori. The remaining candidate S-Box choices, namely Piccolo, Noekeon
and PRINCE, are either significantly more area consuming or are parts of block ciphers that do not adhere
to the SPN design paradigm.
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the same bit permutation and almost-MDS matrix as used in Midori, exactly 16 rounds
would be sufficient to achieve the desired security. This analysis essentially follows from
the analysis of Midori itself, which has 16 rounds, uses an S-Box with identical branch
number (= 2), linear and differential characteristics as our (1, 3, 1) S-Box, and the same
almost-MDS matrix. Hence, in this case, it is natural to expect that 16 rounds would
provide the same cryptanalytic resistance as Midori. Following Table 73, we observe that
block ciphers with CA-based S-Box representing class (1, 3, 1) and bit-permutation followed
by almost-MDS MixColumns, retain a reasonable throughput of 43.85 MBps, which is
comparable with the throughputs of PRESENT and GIFT (61.41 MBps and 71.42 MBps
respectively). On the other hand, even though the CA-based S-Box is used in conjunction
with the almost-MDS matrix, the area and power savings from the choice of S-Box make
up for the additional overhead due to the MixColumns layer. In fact, the overall area
requirement for this CA-based S-Boxes with almost-MDS MixColumns as diffusion is
2 466.54 GE, which is lowest among all the constructions considered here.

5.3 Scope for Non-optimal CA-Based S-Boxes: An Exploration

In the aforementioned analysis, we have primarily focused on CA-based S-Boxes that
have optimal cryptographic properties with respect to their nonlinearity and differential
uniformity. Cryptographic optimality is typically essential for good diffusion: intuitively,
using an optimal S-Box in a block cipher construction (as opposed to a non-optimal one)
reduces the overall number of rounds required to achieve the desired linear and differential
probabilities. This often outweighs the potential area savings afforded by non-optimal
S-Box variants. An exception to this intuitive rule is the GIFT S-Box [BPP+17], which is
non-optimal yet allows high throughput, while also being significantly more lightweight
as compared to the PRESENT S-Box. The reason for this is the existence of a unique
BOGI permutation that compensates for the non-optimality of the GIFT S-Box itself. To
explore similar possibilities with respect to CA-based S-Boxes, we explored each of the
1 024 possible non-optimal bijective 4× 4 CA-based S-Boxes. Our exploration led to the
following observations:

• Out of the 1 024 non-optimal bijective CA-based S-Boxes, 112 S-Boxes have com-
parable area overhead with the most lightweight candidate among their optimal
counterparts.

• Each of the 1 024 non-optimal bijective CA-based S-Boxes lacks in strong crypto-
graphic properties. To be more specific, either these S-Boxes have nonlinearity 0 or
2 (which is highly undesirable) or linear and differential characteristics greater than
or equals to 2−1.414.

• Finally, and most crucially, none of the 1 024 non-optimal CA-based S-Boxes exhibit
the BOGI property of the GIFT S-Box.

From the aforementioned observations, we conclude that with respect to CA-based S-
Boxes, optimality is an essential criteria with respect to both cryptanalytic resistance and
throughput. In other words, non-optimal CA-based S-Boxes seem to offer no benefits over
their optimal counterparts.

3In Table 7, we again restrict the comparison of our proposed CA-based optimal S-Boxes with the same
set of S-Boxes considered in Table 6, namely PRESENT, GIFT, Skinny and Midori. The reason for this
restriction has been discussed earlier.
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6 Conclusions and Discussions
In this paper, we present highly optimized TI circuits for cryptographically optimal 4× 4
S-Boxes, obtained from CA rules. We classify such CA-based S-Boxes into 12 categories
based on their amenability to low-area and low-power TI, and present direct-sharings
for representative S-Boxes from the each class. The architecture for our implementation
direct-shares the local CA rule, and iterates over the same to obtain SCA resistant S-Box
implementations. Subsequently, we reduce the number of shares further via functional
decomposition of CA-rules, to obtain composite TI-circuits with even lower area footprint
and power consumption. Our implementation results on ASIC (180nm technology) show
that the most lightweight TI circuit among all CA-based S-boxes has a 49.42% smaller
area-footprint and consumes 52.3% less power as compared to the best-known TI of the
PRESENT S-Box. The same TI circuit also leads to a 35.36% smaller area-footprint and
consumes 44.46% less power as compared to a highly optimized TI of the GIFT S-Box.
Finally, this TI circuit also passes the TVLA test over 1 000 000 power traces.

Subsequently, we present TI circuits for bit permutations and MixColumns using
almost-MDS matrices, with hardware results naturally favoring the former for lightweight
applications. We finally present design paradigms for SPN block ciphers that combine TI
circuits for our CA-based S-Boxes with TI circuits for bit permutations (and optionally,
for MixColumns operations) for full-fledged side-channel resistance. In particular, the use
of TI-protected MixColumns operation offers a practical trade-off between area and power
savings, and reasonable throughput requirements.

An apparent disadvantage inherent to any CA-based S-Box design strategy is the
reduction in throughput due to its iterative nature. One possible workaround is to operate
the target device at higher clock frequencies, keeping in mind that local CA rules are usually
simple combinatorial circuits, and hence afford designs with higher critical frequencies.
Additionally, with respect to TI circuits, iterative architectures seem to minimize the
possibility of additional leakages resulting from correlations among the output bits, since
they are processed in different clock cycles. A more thorough exploration of the pros and
cons of such iterative S-Box design principles can be an interesting direction of future work.
Extensions of our design principles to TI circuits for 5× 5 and 8× 8 S-Boxes seem to be
an intriguing direction of future research.
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