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Keggin Structure, Quō Vādis?
Aleksandar Kondinski* and Tatjana N. Parac-Vogt

Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium

Working under the supervisor of William Lawrence Bragg at the University of Manchester

and being under the direct personal and scientific influence by Linus Pauling, Dr. James

Fargher Keggin some 85 years ago published a highly unique discovery—the structure of

phosphotungstic acid (Nature 1933, 131, 908–909). This structure sparked the reports

of other related polyanions from Keggin’s contemporaries, marking the true beginnings

of structural polyoxometalate chemistry. In this perspective article, we unveil some

aspects and applications of Keggin’s structure and discuss how it has shaped the

course of our understanding of polyoxometalate chemistry and nanomolecular metal

oxides/hydroxides in general.
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INTRODUCTION

Over human history, many increments in the understanding of the properties of metal oxides have
led directly to cultural and technological advancements (Brock, 1993; Arns, 1998; Sass, 2011). In the
contemporary era of advanced materials (Heine, 2014), confinement of metal oxides/hydroxides to
the nanoscale led to the emergence of cluster materials with unique physicochemical properties
(Roy, 2011). Polyoxometalates (POMs) (Pope, 1983), also known as (hetero/iso)polyacids, are one
of the earliest discovered metal-oxo nanoclusters with a documented scientific history of over
two centuries (Baker and Glick, 1998; Gouzerh and Che, 2006). POMs are typically comprised
of early transition metals in high oxidation states (mainly V, Mo, W, Nb, and Ta) and they
have been attracting research attention due to their actual and potential applications in catalysis
(Kozhevnikov, 2009; Wang and Yang, 2015), molecular magnetism (Gatteschi et al., 1993; Müller
et al., 1998; Clemente-Juan et al., 2012) and life sciences (Rhule et al., 1998; Absillis et al., 2008;
Bijelic and Rompel, 2015; Ly et al., 2015).

Much of the modern POM chemistry is centered around the concept of the “Keggin structure,”
which historically is representative for many heteropolymolybdates and heteropolytungstates.
One of the earliest reports on these compounds dates back to 1826, when Berzelius reported
the synthesis of phosphomolybdic acid (Berzelius, 1826). However, the structure of these species
remained unknown for over a century. By late 1920’s some of the renowned chemists working
with POMs have attempted to apply Alfred Werner’s coordination chemistry approach, which is
based on covalent bonding between all constituents, to describe possible structural models (Baker
and Glick, 1998). This has changed in 1928 when then a young professor Linus Pauling offered
an unconventional solution to tackle the problem by introducing a structure (Figure 1A) that
resembles what nowadays we refer to as a “host-guest” systems (Pauling, 1929a). Considering that
Pauling’s proposal preceded the foundation of modern supramolecular chemistry, at the time his
model of the 12-heteropolyacids appeared as highly fascinating and controversial. In this model,
a central {XO4} group is encapsulated by a neutral shell of {W12(OH)36O18} (also written as
{W(OH)3O1.5}12). The shell of {W(OH)3O1.5}12 can be described as a virtual truncated tetrahedron
constructed by twelve W and eighteen O centers defining the vertices and the edges respectively.
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Each of the twelve metal centers exhibits octahedral coordination
and coordinates to three bridging oxo/oxido ligands and three
terminal hydroxo/hydroxido ligands (Baker and Glick, 1998).

From the preserved written communications of Linus
Pauling, it is clear that after the submission of his proposal
(Pauling, 1929a) he contributed a significant effort to attract
crystallographic interest to the problem (Pauling, 1928). As the X-
ray crystallography was still in its early stage and very challenging
to apply to large molecular systems, Pauling attempted to attract
the interest of the Bragg’s group at the University of Manchester,
which at the time was globally the most prominent group on
the powder crystal structure elucidation method. In 1930 Pauling
visited Bragg’s laboratory with the main purpose to discuss
crystal structure elucidation of various compounds including the
heteropolyacids (Pauling, 1929b).

During his visit at Manchester, Pauling met with Dr. James
Fargher Keggin, which eventually sparked a turning point in the
history of POM chemistry (Ayass and Kortz, 2018; Pütt et al.,
2018). Dr. Keggin (31.12.1905–11.04.1993), born in the Isle of
Man, was a physics graduate from University of Liverpool who
performed synthetic and crystallographic experiments in Bragg’s
laboratory (Figure 1B). After the meeting with Pauling, Keggin’s
research focused on the study of the heteropolyacids. Within
a couple of years, Keggin successfully resolved the positions of
the tungsten and phosphorus atoms and estimated the relative
position of oxygen atoms. Keggin’s work was communicated
in Nature in 1933 (Keggin, 1933a,b) while all details of the
complete work appeared in 1934 (Keggin, 1934). Considering
the complexity of the discovered structure, Keggin described
the tungstophosphic acid as an overall tetrahedral species
constituting of twelve {MO6} octahedra grouped in three triads
of {M3O15} that connect in corner-sharing fashion around the
single central {XO4} unit (Figure 1C). Over the decades, this
topology became commonly referred to as the Keggin structure,
while more recently in Keggin’s honor, a naturally occurring
POM mineral Pb3Ca3[AsV12O40(VO)]·20H2O with Keggin-like
motif became known as kegginite (Kampf et al., 2017).

Within the next two decades, a handful of other structures
have been proposed and structurally elucidated which laid
the foundation of the modern field. However, besides the
crystallographic elucidations, the attempts to predict structural
topologies by some leading structural chemists at the time such as
John Start Anderson (Imperial College London) and Alexander
Frank Wells (University of Cambridge) are also very fascinating
from the contemporary point of view. Anderson’s proposal on
the [IMo6O24]5− structure representing a segment of typical
double layer metal hydroxide M(OH)2 (Anderson, 1937), laid
in general a correct prediction which was first confirmed for
the [TeMo6O24]6− analog (Evans, 1948). On the other hand,
Wells’ structural predictions were based on an approach that
relates to the conceptual construction of polyhedral molecules
such as metal-organic polyhedra (Tranchemontagne et al., 2008).
Wells’ proposal acknowledged the non-uniformity in chemical
bonding among different molecular “aggregates” which include
the heterogroup and the metal-oxo shell (Wells, 1940). In this
regard, he proposed rational stepwise increase of the nuclearity
of the molecular metal-oxo shells, while making it clear that

[MO3]n and their terminal-oxo free derivative [MO2]n follow
the same building up trend. In Wells’ view, the Keggin structure
can be described as a {M12O36} shell with cuboctahedral and
rhombocuboctahedral networks defined by the positions of theM
and O atoms respectively that hosts a heterogroup. Following the
step wise building up, he envisioned that a [MO3]18 shell should
provide sufficient room for two heterogroups leading to the
{P2W18O68} structure. This structural proposal was confirmed
a decade later by Barrie Dawson (Dawson, 1953; Mathieson,
1975).

When examining the {MO6} “octahedra” in the MoVI and
WVI-based Keggin structures, the non-uniformity to whichWells
was referring to becomes apparent. Although many detailed
bonding studies exist (Mingos, 1999), one easily marks the large
discrepancy in the M–O bond lengths which are ca. 1.7 and
1.9 Å from the addenda to the terminal and the bridging µ2-
O atoms respectively, but ca. 2.4 Å from the addenda centers
to the interior O atoms attached to the heterogroup. With the
emergence of supramolecular chemistry, the non-uniformity in
bonding gave rise to the clathrate-model in late 1980’s and
early 1990’s (Pope and Müller, 1991), which later became a
useful model for discussing the electronic properties of Keggin
derivatives on the basis of computational chemistry (Maestre
et al., 2001; Neiwert et al., 2002; López et al., 2006).

APPLICATIONS OF THE “CLASSICAL”
KEGGIN CLATHRATES

The Keggin structure, as originally elucidated, is primarily
representative for hetero-12-molybdates and hetero-12-
tungstates. In this regard, multiple tetrahedral heterogroups
{XO4} where X = P, Ge, Si, or As (but also many other different
cations) have been reported to be encapsulated within the
{M12O36} shell (Pope, 1983; Anyushin et al., 2014). The MoVI-
and WVI-based Keggin anions can be easily reduced forming
blue and brown colored solutions respectively, due to the
intense charge transfer processes. In this context, already starting
from the nineteenth century there has been an application of
this property in the colorimetric detection and quantification
of phosphate anions by the so-called molybdenum blue
method (Holman, 1943; Baker and Glick, 1998). Indeed, this
redox-responsive and reversible change in color has made the
Mo-based Keggin structure recently applicable for preparation
of rewritable paper (Sun et al., 2015). The reduction of the
Mo-based Keggin structure impressively undergoes up to 24
electrons process without disintegration of the structure (Wang
et al., 2012), as the reduction also increases the formation of
metal-metal bonding between the addenda centers (Nishimoto
et al., 2014). It has been noted that the reversible redox processes
of these polyanions are also very useful in the preparation of
electrolytes suitable for light-driven artificial hydrogen evolution
(Symes and Cronin, 2013). Typical Mo- and W-based Keggin
structures exhibit thermal stability up ca. 300◦C, making
them catalytically attractive also at elevated temperatures
(Moffat, 2002). As redox active polynuclear superacids they
provide a reactive surface for a variety of (electro)catalytic
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FIGURE 1 | (A) Structural model of Pauling’s {XO4}@{W(OH)3O1.5}12 model; (B) Photograph of Dr. James F. Keggin; (C) Keggin structure {(XO4)@M12O36} where M

= Mo or W showing the different subunits. Color code: M, black; O, red; and X, purple.

transformations (Kozhevnikov, 2009). The high number of
heavy elements and overall molecular surface covered by
terminal oxo atoms makes the Keggin species also very suitable
for applications in protein crystallography (Bijelic and Rompel,
2015).

The “Achilles heel” of the Mo- and W-based Keggin is that
their stability is pH dependent. As the pH increases the Mo-
and W-based Keggin gradually disintegrate. This property was
one of the main challenges that in the early twentieth century
made the assignment of overall charge to these polyanions very
difficult as the resulting “unsaturated” or “lacunary” structures
exhibit higher negative charges per addendum than the parent
Keggin anion (Baker and Glick, 1998). However, later it was
realized that the lacunary polytungstates encapsulating {PO4},
{SiO4}, {GeO4}, {AsO3}, {SbO3}, and {BiO3} heterogroups can
be effectively isolated and used as polydentate all-inorganic
ligands (Pope, 1983; Baker andGlick, 1998). Typically, the former
Keggin-derived lacunary POMs include the monolacunary
species {(XO4)W11O35} which are generated by a formal loss of
single {MO} unit and a set of trilacunary heteropolytungstate
conformers {(XO4)W9O30} and {(XO3)W9O30}, obtained by the
loss of {MO2}3 unit. Such materials exhibit defect sites with
available nucleophilic O centers that interact with any cation in
solution which can be exemplified by their recent application in
ultrahigh water purification of toxic metal cations (Herrmann
et al., 2017). The lacunary W-based Keggins are typically
prepared at higher pH (ca. 7–9) and have been employed as
all-inorganic ligands in the preparation of many organometallic
(Proust et al., 2012), lanthanide (Boskovic, 2017) and transition
metal containing (Zheng and Yang, 2012) polyanions which
show potential and actual applications in catalytic oxidations
of organics (Proust et al., 2008), luminescence (Binnemans,
2009; Yamase, 2009), hydrolysis of biomolecules (Ly et al.,
2015), stabilization of nanoparticles (Mitchell and de la Fuente,
2012), design of hybrid materials (Proust et al., 2008, 2012),
smart surfactants (Landsmann et al., 2012; Polarz et al., 2014)
molecular magnetism (Gatteschi et al., 1993; Clemente-Juan
et al., 2012) and design of supercapacitors (Gómez-Romero et al.,
2003).

THE “UNIQUENESS” OF THE KEGGIN
STRUCTURE AND THE RISE OF
MOLECULAR KEGGINOIDS

Already from the mid-1960’s to the end of 1970’s it became
well-established that hetetrometals (M’) can substitute one
or more addenda centers of the {M12O36} shell leading to
mixed-addenda {(XO4)M’xM12−xO36} Keggin anions (Smith
and Pope, 1973; Pope and Scully, 1975; Pope et al., 1976).
These studies combined with the findings that other elements
such as aluminum (Johansson, 1960) and germanium (Bradley
et al., 1990) can form cationic assemblies similar to the Keggin
structure, opened up the way for Baker-Figgis concept of Keggin
configomers (Baker and Figgis, 1970), which implies that in
principle the overall {M12O36} shell can adopt a variety of
topologies that differ mainly on the ratio of edge-sharing vs.
corner-sharing polyhedra. These studies were hinting that other
elements may mimic POM topologies and in particular produce
Keggin-like (Kondinski and Monakhov, 2017), “extended”
Keggin (Müller and Döring, 1991) or as we herein refer to
kegginoidal topologies (Figure 2). One of the early visions in this
directions came from Müller and coworkers who recognized the
relationship between “classical” Keggin structure and “extended”
Keggin structure [X@V18O42]n− (X= SO2−

4 and VO3−
4 ) (Müller

and Döring, 1991). These structures indeed can be virtually
derived by addition of {MO} cations at the unoccupied square
faces of the virtual rhombocubochthedron constructed by
the 24 bridging oxo ligands of the [MO3]12 shell. In the case
of vanadium, the necessity of additional vanadyl cations is
clear because the hypothetical fully-oxidized shell [V12O36]12−

is expected to be highly negative and thus highly reactive.
Therefore, the virtual addition of vanadyl cations is supposed to
charge-stabilize the overall structure. In the case of vanadium’s
heavier congener niobium, highly charged polyanions of the type
[(XO4)Nb12O36]16− (X= Si and Ge) (Nyman et al., 2004) exhibit
very strong interactions with the counteractions in solution and
in the solid state. Due to the high negative charge, the Nb-
Keggin derivatives are also highly reactive with vanadyl cations
producing kegginoidal [(PO4)Nb12O36(VO)6]3− structure

Frontiers in Chemistry | www.frontiersin.org 3 August 2018 | Volume 6 | Article 346

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kondinski and Parac-Vogt Keggin Structure, Quō Vādis?

FIGURE 2 | Ball-and-stick representation of the common

{M12O36}/{M12O24} “skeletons” presented in the classical Keggin structure

(Mo and W) and among the other transition metal based Kegginoids: V (Müller

and Döring, 1991), Cu (Kondinski and Monakhov, 2017), Fe (Sadeghi et al.,

2015), Co (Dong et al., 2013), Mn (Newton et al., 2011), Zr (Day et al., 2005)

Ni, and Pd (Crooks and Weller, 1997; Dong et al., 2009).

(Shen et al., 2014) representing mixed addenda derivatives of the
{V18O42} structure.

However, besides recognizing the relationship between the
classical and the “extended” Keggin shell system, in early 1990’s
Müller and coworkers also recognized the similarity between
the kegginoidal {V18O42} and its polyoxocuprate analog that
misses terminal oxo atoms [Cu18O24]12− (see Figure 2; Kipka
and Müller-Buschbaum, 1977). The kegginoidal topology of the
former is also adopted by the polyoxopalladate [Pd18O24]12− and
the polyoxonickelate [Ni18O24]12− (Crooks and Weller, 1997).
These pioneering discoveries including number of reports of
related heteropoly structures constitute the foundation of late
transition metals based POMs (Ni, Pd, Pt, Cu, and Au) (Izarova
et al., 2012; Kondinski and Monakhov, 2017) which exhibits
potential in revealing insights into precious metal catalysis
(Goloboy and Klemperer, 2009) and in building molecular

nanomagnets with relevance to quantum computing (Baldoví
and Kondinski, 2018).

The conceptual transitioning from {MO3}12 to {MO2}12
is an effective methodology that can assist in recognizing
structural trends among a diversity of reported topologies. In
this regard, copper(II) hydroxide which in the bulk shows
characteristic chain structure (von Jaggi and Oswald, 1961),
once confined to the nanoscale by stabilizing cations forms
kegginoidal [Cu(OH)2]12 clusters (Kondinski and Monakhov,
2017). Normally, six or eight symmetrically arranged cations
can stabilize the 24 labile hydroxo ligands. For instance, the
naturally occurring [Cu(OH)2]12 kegginoid in the cavities of
the zeolitic Tschörtnerite mineral is stabilized by eight Ca2+

cations (Effenberger et al., 1998). As synthetically it is challenging
to mimic the environment of Tschörtnerite, many tenths of
other synthetically reported kegginoidal polyoxocuprates exhibit
metal-hydroxo cores where the local coordination of each
individual copper(II) center besides square planar {CuO4} may
adopt square pyramidal {CuO5} or octahedral {CuO6}, leading
to large variety of structures with local differences, form which
some to great extent mimic the classical Keggin (Kondinski and
Monakhov, 2017).

There is a number of other structures that have been already
recognized or that can be recognized as molecular kegginoids.
For instance, the mineral murataite (Ercit and Hawthorne, 1995)
exhibits kegginoidal {(ZnO4)@Ti12O36} motifs, which has been
recognized and considered as a viable synthetic target (Nomiya
et al., 2011). On the other hand, many polyalkoxotitanates
resemble the structure of the {V18O42} kegginoid (Rozes
and Sanchez, 2011). Titanium’s heavier congener zirconium
forms polyoxo/alkoxozirconate kegginoids which encapsulate a
complete {ZrO8} unit (Morosin, 1977; Day et al., 2005). Nickel(II)
and cobalt(II) based kegginoids [Ni20(OH2)24(MMT)12(SO4)]2+

(Dong et al., 2009) and [Co20(OH)24(MMT)12(SO4)]2+) (Dong
et al., 2013; Mu et al., 2016) have been isolated in presence of
MMT = 2-mercapto-5-methyl-1,3,4-tridiazole ligands. These
polyoxocations exhibit {M20(OH)24} cores that can be derived by
formal stabilization of the {M12(OH)24} topology by additional
eight cations (Figure 2). In the case of manganese, mixed-
valence kegginoid [MnIII12MnIVO6(OH)2(OMe)4(bemp)6]4+

(where H3bemp = 2,6-bis[N-(2-hydroxyethyl)iminometyl]-
4-methylphenol) has been isolated and showed impressive
solution and electrochemical stability and single molecule
magnet behavior (Newton et al., 2011). Finally, among the most
influential works on molecular kegginoids remains Nyman’s
“iron Keggin” [FeIIIO4@BiIII6 FeIII12O12(OH)12(Cl3CCOO)12]+

which has been successfully isolated and proposed as a good
structural model of the naturally occurring ferrihydrite (Sadeghi
et al., 2015).

All of these studies appearing over the past few decades
require us to adopt a more inclusive vision of the Keggin
structure and its role in the chemistry of nanomolecular metal
oxides and hydroxides. In this light, the Keggin structure and
its related molecular kegginoids unveil large opportunities for
a conceptual approach to some practically important metal-
oxo/hydroxo compounds. The conceptual approach proposes
that structure-stability trends observed among Mo, W and V
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based kegginoids can be transferred and in silico explored for
a variety of costly late transition noble metals. Such strategies
could pave the way toward a rational synthesis of a variety of
novel mixed-addenda, heterogroup substituted and even hybrid
organic-inorganic kegginoids. Those approaches can also assist
to shed light into the structure of some catalytically active metal
oxides/hydroxides such as the Pearlman’s catalyst (Pd(OH)2/C)
(Albers et al., 2015).

CONCLUSION AND OUTLOOK

The discovery of the Keggin structure some 85 years ago was
a turning point for structural POM chemistry. Over the past
decades, global efforts have expanded the scope of applications
of this structure, but more importantly, they have widened up
our understanding of nanomolecularmetal oxides. The structural
similarities of the Mo- and W- based Keggin structure with
many emerging metal-oxo/hydroxo/alkoxo clusters hint at the
existence of common metal-oxo “skeletons,” which subsequently
loosen the traditional boundaries of POM chemistry. So then
where is the Keggin structure going? Considering that many
metal cations may take a role as addenda centers or as stabilizing
units, the landscape of molecular kegginoids that includes

possible mixed-addenda, semimetal, and hybrid functionalized
derivatives is limitless. Thus, with the ever-growing synthetic
and theoretical insights into these systems, rational design and
atom-economic preparation of novel kegginoids with desired
properties are eminent.
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