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Brain age estimation from anatomical features has been attracting more attention in

recent years. This interest in brain age estimation is motivated by the importance of

biological age prediction in health informatics, with an application to early prediction

of neurocognitive disorders. It is well-known that normal brain aging follows a specific

pattern, which enables researchers and practitioners to predict the age of a human’s

brain from its degeneration. In this paper, we model brain age predicted by cortical

thickness data gathered from large cohort brain images. We collected 2,911 cognitively

normal subjects (age 45–91 years) at a single medical center and acquired their brain

magnetic resonance (MR) images. All images were acquired using the same scanner

with the same protocol. We propose to first apply Sparse Group Lasso (SGL) for feature

selection by utilizing the brain’s anatomical grouping. Once the features are selected,

a non-parametric non-linear regression using the Gaussian Process Regression (GPR)

algorithm is applied to fit the final age prediction model. Experimental results demonstrate

that the proposed method achieves the mean absolute error of 4.05 years, which is

comparable with or superior to several recent methods. Our method can also be a

critical tool for clinicians to differentiate patients with neurodegenerative brain disease

by extracting a cortical thinning pattern associated with normal aging.

Keywords: aging, cortical thickness, cortical lobe, regression analysis, ROI, Sparse Group Lasso, Gaussian

process

INTRODUCTION

Aging is a biological process that exhibits distinct attributes from childhood to old age. Human
brain aging is affected by progressive and regressive neuronal processes due to cell growth and
death (Silk and Wood, 2011). Moreover, environmental factors and health conditions affect
structural changes in the brain (Pannacciulli et al., 2006; Chee et al., 2009; Ziegler et al., 2012).
Thus, the structure of the brain changes continuously throughout a life span. Human brain
degeneration has a specific pattern during the normal aging process (Seidman et al., 2004; Fjell
et al., 2009; Fjell and Walhovd, 2010). This provided the groundwork for studies that predict
brain age from brain atrophy patterns. The majority of these studies were inspired by the clinical
benefits of biological brain age estimation for early prediction of neurocognitive disorders. For
example, diseases related to Alzheimer’s that change brain aging patterns can be examined.
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The human brain changes over a lifespan. According to
neuroscience studies, the brain can be macro-anatomically
grouped into the following major six lobes: frontal, temporal,
parietal, limbic, occipital, and insula (Allen et al., 2005). Cortical
thickness rate of decline in an elderly lifespan is variable in
each cortex lobe (Resnick et al., 2003; Seidman et al., 2004;
Allen et al., 2005; Fjell et al., 2009; Fjell and Walhovd, 2010;
Lemaitre et al., 2012; Ziegler et al., 2012; Ruigrok et al., 2014).
These studies identified that there is variability in the brain aging
process from person to person, and among age groups (neonatal,
youth and adult ages). These evidences indicate the variability of
anatomical measurement trajectories in different cortical regions.
The demographic variables of education and gender are also
confounding factors that influence cortical thickness (Tang et al.,
2013; Li et al., 2014; Mortby et al., 2014; Ruigrok et al., 2014;
Ritchie et al., 2017; Belathur Suresh et al., 2018; Thow et al., 2018).
In particular, the recent work in Belathur Suresh et al. (2018)
and Thow et al. (2018) demonstrated the impact of education
on cortical thickness for the accuracy of Alzheimer’s disease
detection. These indicate the potentiality of gender and education
as predictive variables in addition to brain anatomical features.
We also include these demographic variables in our study.

Brain age prediction is an active research area. There have
been continuous research efforts in the estimation of human
biological brain age using magnetic resonance imaging (MRI).
Currently, there are two major trends of using brain MRI to
predict age: (1) using raw image data and (2) cortex anatomical
measures. The acquisition of both data sources are related to
the arguments for and against using surface-based or voxel-
based registration methods as described in Clarkson et al. (2011).
The works in both directions are continually improving and
have significantly assisted practitioners and researchers in the
neurology-related research domain. Progressively, interesting
and fruitful brain-age-prediction analysis results are presented
in Ashburner (2007), Franke et al. (2010), Cole et al. (2015,
2017), Kondo et al. (2015), Wang et al. (2015), Alam et al.
(2016), Cherubini et al. (2016), Cole and Franke (2017), Liem
et al. (2017), Valizadeh et al. (2017), and Madan and Kensinger
(2018). Recently, the prediction of brain age using 3D raw
image data using deep learning presented by Cole et al. (2017)
showed a promising result. Cole et al. (2017) used convolutional
neural network (CNN) algorithms and obtained the best mean
absolute error (MAE) of 4.16 years. This result is comparably
an improvement on their prior work of brain age prediction
using Gaussian Process Regression (GPR), which had an MAE
= 4.66 years (Cole et al., 2015). The prediction of brain age
prediction using surface-based features has also been studied
(Kondo et al., 2015; Wang et al., 2015; Liem et al., 2017;
Valizadeh et al., 2017; Madan and Kensinger, 2018). The recent
study by Madan and Kensinger (2018) compared different
parcellation approaches to extract explanatory features for brain
age prediction from MRIs. They reported the median absolute
error (MdAE) = 6–7 years using Relevant Vector Regression
(RVR). This prediction result is obtained by the combination
of cortical thickness and fractal dimension. Another recent
study by Valizadeh et al. (2017) presented a detailed feasibility
analysis of age prediction from surface-based measures. They

described brain age prediction using anatomical measures such
as cortical thickness, surface area, cortical volume, and their
combinations from a human brainMRI using 148 regional cortex
compartments. Their overall analysis showed the plausibility
of age prediction from brain surface-based features with high
accuracy. In it, the best performance was obtained using a
neural network prediction model, where the prediction errors
were similar to prior results reported in Wang et al. (2015)
and Cherubini et al. (2016). The analysis by Valizadeh et al.
(2017) revealed an additional important point that prediction
error increases with increasing age specifically in older adults.
Wang et al. (2015) used an RVR model (Tipping, 2001) to
estimate age on the basis of different anatomical measures
such as cortical surface area, cortical thickness, mean curvature,
Gaussian curvature, and a combination of these measures by
using 148 regions of interest (ROIs). The best performance
result obtained was by a combination of cortical thickness
and the curvature predictive features, with a reported root
mean square error (RMSE) of 5.57 years. The findings of
Wang et al. (2015) support the idea that among surface-
based features, cortical thickness is more informative for age-
related morphometric changes across the life span than other
type of features. The age prediction algorithm reported in
Kondo et al. (2015) also used RVR based on a local feature
extraction approach from a T1-weighted MRI. They used 90
local regions of white matter, gray matter, and cerebrospinal
fluid (CSF) to reduce the requirement for high-order features
when combining brain anatomical features for age estimation
to simplify the medical implications. There are also several
studies that have investigated the potential of functional
connectivity measures derived from resting state functional
MRI (rsfMRI) data for the brain age prediction (Dosenbach
et al., 2010; Vergun et al., 2013; Smyser et al., 2016; Liem
et al., 2017). In these studies, functional connectivity measures
were derived from rsfMRI data based on regions of interest
(ROIs) defined by different parcellation methods and the
support vector regression was adopted to build age prediction
models.

In general, the major components of brain age estimation
from MRI are feature extraction, feature selection or
identification of the explanatory variables from a brain
feature dataset, and the regression model for fitting the target
age. According to state-of-the-art studies, a consistent age-
to-brain-development relationship pattern is exhibited using
surface-based brain features (Clarkson et al., 2011; Madan
and Kensinger, 2018). Further, model overfitting is one of the
challenging issues in brain age estimation using cortical measures
due to the inherent correlation among brain features. Wang
et al. (2015) and Valizadeh et al. (2017) employed principal
component analysis (PCA) for dimension reduction and feature
extraction. Kondo et al. (2015) used a local feature extraction
approach. For model fitting, the majority of the works focused
on kernel-based regression, specifically RVR models for the
prediction of age from brain anatomical features. The recent
implementation of deep learning algorithms also benefits from
the automatic feature learning property of the algorithm when
the sample size is sufficient (Cole et al., 2017).
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In this paper, we propose the prediction of brain age based
on cortical thickness data by first applying Sparse Group Lasso
(SGL) (Simon et al., 2013) for selecting important features from
each major cortical lobe and then using GPR (Rasmussen and
Williams, 2006) for fitting the age prediction model. The rate
of decline in cortical thickness can differ in each cortex lobe.
Human aging is related to a healthy brain-change pattern within
the respective cortical lobes. SGL is a regularized regression
method for grouped variables that supports feature selection on
a group level and within group level. As such, SGL is robust
and consistent in feature selection. Thus, SGL is an appropriate
approach to select explanatory features on and within the cortical
lobes. Then, we deploy GPR, which is a non-parametric non-
linear regression method to predict the target subject’s brain age
based on the selected features. We obtained prediction accuracy
of MAE = 4.05 years by using the proposed method, which is
comparable with or superior to several recent methods.

METHODS

Study Participants
Study participants were recruited from the Health Promotion
Center of Samsung Medical Center (SMC), Seoul, Korea. The
study population was comprised of men and women 45 years of
age or older who underwent a comprehensive health screening
exam between January 1, 2009 and December 31, 2014. Of
the eligible participants 3,370 attended a preventative medical
check-up, which included an assessment of cognitive function
and dementia status. All study participants underwent a high-
resolution 3.0 Tesla (3T) brain MRI, which included three-
dimensional (3D) volume images as a part of their dementia
assessment. The assessment procedure used for the participants
has been described in detail elsewhere (Lee et al., 2016b).
Participants were excluded for meeting disqualifying conditions:
202 participants with missing educational data or missing Mini-
Mental State Examination score (MMSE); 178 participants who
showed significant cognitive impairment defined by MMSE
scores below the 16th percentile in age-, sex-, and education-
matched norms, or through an interview conducted by a qualified
neurologist; and 136 participants with unreliable analyses of
cortical thickness due to head motion, blurring of the MRI,
inadequate registration to a standardized stereotaxic space,
misclassification of tissue type, or inexact surface extraction,
for which the image preprocessing and cortical thickness
computation process were manually checked and corrected by
an expert neuroanatomist. Participants were excluded if they
had a cerebral, cerebellar, or brainstem infarction; hemorrhage;
brain tumor; hydrocephalus; severe cerebral white matter
hyperintensities (deep white matter ≥2.5 cm and caps or band
≥1.0 cm); or severe head trauma by personal history. The final
sample size was 2,911 healthy individuals (1,460 males and 1,451
females). All 2,911 participants underwent a 3T brain MRI using
the same type of scanner with the same scan parameters. We
parcellated the cerebral cortex into 148 cortical ROIs based on
the Destrieux Atlas (http://surfer.nmr.mgh.harvard.edu/fswiki/
CorticalParcellation). For each of the 148 cortical ROIs, the
average cortical thickness was computed. Because we learn the

prediction model for brain age based on the chronological ages
of healthy individuals, we further detect and exclude outlier
samples to minimize the potential bias from individuals with
unknown health conditions. After excluding noise and outliers
(as is explained in section Filtering Outliers From Cortical
Thickness Data), 2,705 observations (1,368 males and 1,337
females) remained. The age range of the subjects in this study was
45–91 years. The mean age of the subjects was 64.2 years, with a
standard deviation of 7.1 years (male: 65.2 ± 6.9 years; female:
63.1± 7.2 years). See Table 1 for more details.

This study was approved by the Institutional Review Board
at the Samsung Medical Center. The requirement for informed
consent was waived, as we only used de-identified data collected
for clinical purposes during the health screening exams.

Image Acquisition and Preprocessing
3D T1-weighted Turbo Field Echo MRI images were acquired
from all participants in this study using the Philips 3T Achieva
MRI scanner with the same imaging parameters (sagittal slice
thickness 1.0mm, over contiguous slice acquisition with 50%
overlap; no gap; repetition time 9.9ms; echo time 4.6ms; flip
angle 8◦; and matrix size 240 × 240 reconstructed to 480 × 480
over a 240-mm field of view).

For each subject, we first performed image preprocessing
using FreeSurfer v5.1.0 (Athinoula A. Martinos Center at
the Massachusetts General Hospital, Harvard Medical School;
http://surfer.nmr.mgh.harvard.edu/). FreeSurfer was used to
volumetrically segment and parcellate cortex from T1-weighed
images (Dale et al., 1999; Fischl et al., 1999, 2002; Desikan
et al., 2006; Destrieux et al., 2010; Fischl, 2012; Klein and
Tourville, 2012).We first constructed the outer and inner cortical
surface meshes from the MR volume of each subject. The two
meshes are isomorphic with the same vertices and connectivity
because the outer surface was constructed by deforming the
inner surface. In order to establish inter-subject correspondence,
we resampled each subject’s cortical surface to 40,962 vertices
for each hemisphere using the previously proposed method
(Cho et al., 2012).

For smoothing cortical thickness data, we adopted the noise
removal procedure proposed by Cho et al. (2012) to our problem
setting. Cho et al. (2012) employed the manifold harmonic
transform (MHT) to delineate the cortical thickness data with
its spatial frequency components (Vallet and Lévy, 2008). For the
transform, the Laplace-Beltrami operator is used to obtain basis
functions which results in robustness to noise by filtering out high
frequency (Cho et al., 2012). Since high frequency components
of the transformed cortical thickness data were regarded as noise,
those components are filtered out, and the cortical thickness data
were then reconstructed using only low frequency components
(Chung et al., 2007).

In general, the mean cortical thickness values of 148 distinct
ROIs were computed from each brain MRIs and used as
predicting variables. The confounding variables of gender and
education of the subjects were also included to these predictors
because they have cortical thinning effect in relation to normal
aging (Tang et al., 2013; Li et al., 2014; Mortby et al., 2014;
Ruigrok et al., 2014; Ritchie et al., 2017; Belathur Suresh et al.,
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TABLE 1 | Demographic characteristics of study participants.

Age range (in years) Number of participants Education in years of study (mean ± SD)

Male Female Total Male Female Total

45–49 20 33 53 15.10 ± 2.57 13.76 ± 2.81 14.26 ± 2.77

50–54 63 118 181 14.17 ± 2.63 13.03 ± 3.59 13.43 ± 3.32

55–59 146 252 398 13.93 ± 13.93 12.24 ± 12.42 12.86 ± 12.83

60–64 423 410 833 14.16 ± 3.40 12.13 ± 3.40 13.16 ± 3.87

65–69 381 256 637 14.17 ± 3.95 10.79 ± 4.73 12.81 ± 4.59

70–74 210 171 381 14.00 ± 3.79 9.95 ± 4.74 12.18 ± 4.69

75–79 90 82 172 13.81 ± 4.43 8.71 ± 4.97 11.38 ± 5.34

80–84 31 13 44 15.68 ± 3.56 8.23 ± 6.06 13.48 ± 5.56

85–91 4 2 6 11.00 ± 7.57 9.00 ± 4.24 10.33 ± 6.25

Total 1,368 1,337 2,705 14.13 ± 3.67 11.48 ± 4.44 12.82 ± 4.28

2018; Thow et al., 2018). The gender feature is a “0–1” binary
variable that indicates whether the subject is male (0) or
female (1). The education feature is a numeric value that reflects
the level of education the subject has attained, which is related
to the number of years of study (zero indicates uneducated, and
a higher number of years of study indicates a higher level of
education). Thus, we had 150 explanatory variables.

Filtering Outliers From Cortical Thickness
Data
In this study, we used mean cortical thickness data extracted
from brain images for brain age prediction. The proposed model
is a supervised learning method and it is understandable that
the response variable is a chronological age, which is set under
the assumption that chronological age and brain age is the same
for a healthy subject. Outliers significantly affect the prediction
accuracy of a model when non-robust statistical methods are
used. Nevertheless, the cortical thickness measures can deviate
from the expected range due to overlooked health factors, life
style conditions, environmental effects and other related factors
that affect cortical thickness. Most importantly, we are interested
in investigating the outliers due to sample subjects that could
be included in our target study due to bias or latent conditions
of the cognitive health assessment. There are high risk factors
related to cognitive health in older adults. Thus, our target sample
(age 45–91 years) requires additional attention regarding the
reliability of the subjects’ cognitive health. Accordingly, we are
interested in investigating the effects of outliers in the dataset by
using an outlier-filtering method suitable to our problem data
representation.

The choice of the outlier detection method predominantly
depends on the nature and representation of the dataset, which
requires an insight investigation of the problem domain such as
small perturbation values. In this study, we adopted the Local
Outlier Factor (LOF) method to our dataset (Breunig et al.,
2000). LOF is a density-based unsupervised outlier detection
method that has a property of comparing outliers to their local
neighborhoods instead of the global data distribution. The age
range in our study was from 45 to 91 years. In this age range,

cortex thickness gradually decreases with increasing age. Thus,
LOF can be used to identify outliers by grouping ages to their
proximity. Accordingly, we grouped ages by eight intervals:
45–49, 50–54, . . . Then, LOF was applied on each interval to
identify outliers. We are interested in checking outliers per age
group interval because the cortical thickness changes gradually
and we need to manage expected variabilities between the
youngest age groups (approximately age 45) and the oldest age
groups (around age 91) in the target sample of age range from 45
to 91 years.

In our dataset, we had N = 2,911 subjects and p = 148
features (mean cortical thickness values) for each subject. The
demographic features, gender and education, were not included
in this case. We check outliers in each subsets of the 2,911
observations per the specified age group. That is, we had sub-
datasets, Sni×p where ni is the number of observations in
the given age group. Based on this, the outlier score values
were computed using the LOF algorithm as stated in Breunig
et al. (2000). LOF uses the K-nearest neighborhood approach
to compute the outlier scores by setting k heuristically. The
algorithm compares the density of each point to the density of its
K-closest neighbors. Note that the distance between two points is
the distance between two vectors X1 ∈ R

p and X2 ∈ R
p. A higher

value of LOF score indicates a potential outlier. An illustration of
our proposed outlier filtering approach is displayed in Figure 2.
After outlier filtering, 2,705 samples remained for the training set
and testing set. The number of identified outliers for each age
group is shown in Figure 3.

Brain Age Modeling Methods
Brain age prediction is a supervised regression problem. The
response variable is chronological age. The predicting variables
are mean cortical thickness measures of the 148 ROIs and
the confounding factors of gender and education. The main
challenge of brain age prediction from brain anatomical features
is overfitting due to the correlation among brain features. Thus,
the parsimony of the model is crucial for the analysis of the
prediction and inferences. Balancing this tradeoff between bias
and variance helps to overcome the overfitting problem in
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relation to analyzing the explanatory variables used in modeling
the brain age prediction. Accordingly, the main concern of our
approach is selecting the most important prediction variables
from the existing features while maintaining good generalization.

The prediction accuracy of brain age using the given P-
dimensional covariates can be improved by combining the
individual strengths of the learning algorithms. The macro
anatomical grouping of cortex structure into cerebral lobes favors
the SGLmodel implementation.We combine the SGL that selects
the most important features on a group and within group levels
with the acceptable prediction power of kernel methods such
as GPR. In general, we use the SGL model described in section
Sparse Group Lasso to select the top q important features from
the P covariates. Then, the brain age prediction model is fitted
using GPR. The general framework of the proposed brain age
prediction model is depicted in Figure 1.

Sparse Group Lasso
SGL is a robust and consistent regularization model with
L1 and L2 penalties for grouped variables (Chatterjee et al.,
2012; Simon et al., 2013). SGL has a sparse effect both
between and within groups. Sparsity is a property of learning
methods that results when only a small number of coefficients
of the model are non-zero. The majority of real-world
problems can be sparsely represented because only a subset
of the underlying features is required to best-fit a model
that generalizes well to test instances. Regularization methods
are frequently used to maintain the complexity of the
model at a reasonable level to prevent the problem of
overfitting.

Considering the regression problem of predicting brain ages
of N individuals Y ∈ R

N based on X ∈ R
N×P, we can represent

the problem in multiple linear regression form as given in
Equation (1).

Y = Xβ + ε (1)

where Y ∈ R
N is the vector of response variable, age; X ∈ R

N×P

is the matrix of predicting variables; β ∈ R
P is a weight vector–

the unknown parameters; and ε ∈ R
N is a vector of random

errors. We omit the bias without loss of generality. Then the
Ordinary Least Square (OLS) method estimates the parameters
β byminimizing the cost function given in Equation (2).

‖Y − Xβ‖22 (2)

However, OLS has a limitation with respect to high collinearity
and on high-dimensional data, including when the number of
observations is less than the number of predictors. Lasso (Least
Absolute Shrinkage and Selection Operator) is a regularization
method that promotes sparsity by extending the OLS method
with an additional penalty term (Tibshirani, 1996). Lasso
estimates β by minimizing Equation (3).

1

2
‖Y − Xβ‖22 + λ ‖β‖1 (3)

Further, (Yuan and Lin, 2007) developed a Group Lasso method
for grouped variables. It minimizes the objective function given
in Equation (4) to estimate β .

min
β

1

2

∥

∥

∥

∥

∥

Y −
m

∑
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X(l)β(l)

∥
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∥
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2

2
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∑
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√
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∥
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∥
β(l)

∥

∥

∥

2
(4)

where m is number of groups, X(l) and β(l) are predictors and
coefficients in-group l, l = 1, 2, · · · , m, respectively and
pl is the length of β(l). The Group Lasso produces a sparse
set of groups that are related to the response variable. That
is, if a group is selected in the model then all coefficients
in the group are non-zero. SGL combines Group Lasso
and Lasso methods to select the most important variables
between and within groups. Considering m total group of
predictors, the general SGL model representation is given in
Equation (5).

min
β

1

2n

∥

∥

∥

∥

∥

Y −
m

∑

l=1

X(l)β(l)

∥

∥

∥

∥

∥

2

2

+ (1− α) λ

m
∑

l=1

√
pl

∥

∥

∥
β(l)

∥

∥

∥

2
+ αλ ‖β‖1 (5)

whereX(l) is the predictors in-group l; β(l) is the coefficient vector
in-group l, l = 1, · · · , pl; pl = the total number of features
in-group l, l = 1, · · · ,m. α and λ are hyper-parameters of the
model. The value of α is between zero and one and controls
the weight assigned to the L1and L2 penalties; That is, α = 0
produces Group Lasso model; α = 1 produces the Lasso model;
when 0 < α < 1, we obtain a balance between the two schemes.
In our case we used α = 0.25. An optimal estimation of the
tuning parameter λ is important for prediction accuracy. We
used 10-fold cross validation on λ sequences of length 50 in
such a way that the optimal value of λ is the point at which
an increase of λ does not provide substantial decrease of cost
function.

The resulting coefficients of SGL are sparse, that is, only
a small number of the coefficients are non-zero; hence, the
most important features with non-zero coefficients can be
automatically selected. Therefore, it supports simultaneous
feature selection and regression coefficient estimation in a
single framework. In the proposed approach, we used SGL
using the cerebral lobe classification of the cortex structure
as primary groups. Cortical regions outside of the major
cerebral lobes are grouped as “Others.” Gender and education
features were considered as a singleton group, i.e., their group
size was one. Thus, the value of m in the SGL model
was nine. Table 2 summarizes the details of the groupings
used in our analysis. We analyzed our model using the R
package SGL library (https://CRAN.R-project.org/package =
SGL).

Gaussian Process Regression
A Gaussian process (GP) is a collection of random variables,
where any subset of the variables follows a multivariate
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FIGURE 1 | Overview of the proposed method.

Gaussian distribution (Rasmussen and Williams, 2006).
GP can be used to describe probabilities over arbitrary
functions, which allows us to apply it in a regression
setting called Gaussian Process Regression (GPR). GPR
is a non-parametric regression model based on the
Bayesian approach (Rasmussen and Williams, 2006).
Multivariate GP can show local patterns of covariance
between individual points. Moreover, the combination of
multiple Gaussians in GP can model non-linear relationships
and it is more flexible than parametric models. GPR
previously demonstrated high accuracy in predicting
age from T1-MRI data of voxel based morphometry
(Cole et al., 2015).

Considering the training dataset of input-target pairs
{

xi, yi
}m

i=1
, the GPR assumes the output yi as a function f on input

xi as given in Equation (6):

yi = f (xi) + εi (6)

where εi ∽
(

0, σ 2
)

. Let Y ∈ R
m be the vector of the response

variables yi, and X ∈ R
m×P be a matrix of features. The GP for

the distribution of function values we are trying to estimate are
based on the mean,m (X) and a covariance function K(X,X′), as
given in Equation (7).

f (x) ∽ GP
(

m (X) , K(X, X′)
)

(7)

The covariance functionK(X,X′), which is called a kernel
function, describes the relationship between the function values
at all input points X and X′. The prior mean m (X) is usually
set to zero without loss of generality, i.e., the set of function
variables have a zero mean Gaussian distribution as indicated in
Equation (8).

f (X) ∼ GP(0,K
(

X,X′)) (8)

For some valid covariance function K
(

X,X′), considering the

test dataset
{

x∗i , y
∗
i

}n∗

i=1
and the corresponding response variable
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FIGURE 2 | Outlier filtering approach: first, the mean cortical thickness values extracted from brain images are partitioned based on eight age interval groups and LOF

algorithm is applied on each age group interval separately to compute outlier scores. The histograms illustrate the distribution of resulting outlier scores. Outliers

correspond to the highest values, which are skewed to the right.

FIGURE 3 | Number of samples and identified outliers per age group interval.

vector Y∗ = (y∗1 , y
∗
2 , · · · , y∗n∗ )

T ∈ R
n∗ , and n∗ × P matrix

of features, X∗ = (x∗1 , x
∗
2 , · · · , x∗n∗ )

T ∈ R
n∗×P, the prediction

of the response variable Y∗ using predicting variables X∗ can be
obtained by using the conditional Gaussian distribution given in
Equation (9).

P (Y∗ |Y , X,X∗) = P
(

f∗ |f , X,X∗
)

∼ N(µ
∗
,6

∗
) (9)

where,

µ
∗ = K(X∗ , X)(K (X,X) + σ 2I)−1Y

6
∗ = K (X∗ ,X∗) + σ 2I − K(X∗ ,X)(K (X,X)

+σ 2I)−1K (X,X∗)

In addition, a special case of GPR called Relevance Vector
Regression (RVR) is used for comparison as it has been widely
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TABLE 2 | Grouping list of predicting variables.

l Frontal Temporal Limbic Parietal Occipital Insula Others Gender Education

1 2 3 4 5 6 7 8 9

pl 38 30 16 20 20 16 8 1 1

used previously in predicting brain age from T1-MRI data
(Ashburner, 2007; Franke et al., 2010; Kondo et al., 2015; Wang
et al., 2015; Madan and Kensinger, 2018). RVR is a Bayesian
sparse learning model used for regression and classification
(Tipping, 2001). RVR determines the relationship between the
target output and the covariates by enforcing sparsity. Given the
training dataset of input-target pairs

{

xi, yi
}n

i=1
, the prediction

of the unseen data x can be defined as a linear combination of a
kernel function as given in Equation (10).

f (x) = β0 +
P

∑

i=1

βiΦi(x) (10)

where β = (β0, β0, · · · , βP) is vector of weights and Φi(x) =
K(x, xi) is the kernel function defining the basis function of each
example of the training set. Because in the yi = f (xi;β) +
εi, εi ∼ N(0, σ 2), thus, P

(

yi
∣

∣xi
)

= N(yi|y (xi) , σ 2).
Accordingly, the likelihood estimate based on the Gaussian
distribution is given in Equation (11).

P
(

Y
∣

∣β , σ 2
)

= (2πσ 2)
−n
2 exp

{

− 1

2σ 2

∥

∥y− 8β
∥

∥

2
}

(11)

where Y = (y1, y2, ··· , yN)
T , and 8 is the N × (N + 1) design

matrix with 8 = [8(x1) ,8(x2) , · · · , 8(xN)]T and 8(xi) =
[1,K (xi, x1) , K (xi, x1) , · · · , K (xi, xN)]T

We analyzed our model of GPR and RVR by using R package
“kernlab” library (http://www.jstatsoft.org/v11/i09/). The GPR is
fitted using Radial Basis Function (RBF) on the most important
features selected from the P covariates by SGL described in
section Sparse Group Lasso.

Deep Neural Network
Deep Learning was used for comparison, as it has previously
shown high accuracy in predicting brain age on MRI raw data
(Cole et al., 2017). An artificial neural network (ANN) is a
machine learning algorithm inspired by a structure of the brain
(Goodfellow et al., 2016). Architecturally, the neurons of ANN
are interconnected and arranged in input, hidden, and output
layers. ANN is typically classified as single layer or multilayer
based on the number of hidden layers. Neural nets having only
one hidden layer are called shallow neural networks. Multilayer
neural networks, i.e., having two or more hidden layers, are
called deep neural networks (DNNs) or deep learning. DNN is
very helpful in automatic feature learning from complex non-
linear data representations. Autoencoder is a special type of
DNN architecture that can be used for feature extraction. It is
an unsupervised learning method that attempts to reconstruct
its input (Goodfellow et al., 2016). Technically, autoencoders

are feedforward neural networks with one hidden layer where
the input is the same as the output. In other words, the
input is compressed to lower dimensional code representation
called a hidden layer and the output is reconstructed from this
representation. The objective of the autoencoder is to learn an
efficient and compact hidden representation of the input to
successfully reconstruct it. Both the encoder and the decoder
functions employ a form of non-linearity in order to learn
rich representations. A stacked auto-encoder (SAE) is a DNN
consisting of multiple layers of sparse autoencoders (Bengio et al.,
2007). The outputs of each layer are wired as the inputs of the
next layer. SAEs are trained in an unsupervised, greedy, and
layer-wise fashion. That is, once the first layer is pre-trained as
in an autoencoder by freezing all the other layers, its output is
wired as input to the next hidden layer. This layer-wise training
is continued to the last layer.

In brain age estimation, we used H2O package in R (https://
github.com/h2oai/h2o-3) for the analysis of DNN model. The
rectified linear unit (ReLU) activation function and dropout
regularization methods are used to train the DNN model. The
number of hidden layers is four with 94, 48, 48 and 94 neurons
in each hidden layer, respectively. In addition, we used stacked
autoencoder to extract features from the P = 150 covariates
irrespective of the cortical lobe grouping structure. In SAE, it
takes the designated covariate vector X ∈ R

P and maps to

the deep hidden vector representation h ∈ R
P
′
, P

′
< P. The

extracted features (vector h ∈ R
P
′
) are used as input to fit the

regression models for comparison with the SGL approach. For
SAE, the number of hidden layers is two with 94 and 61 neurons
in each layer, respectively. One of the challenges of deep learning
is that the learning requires a very large dataset in order to obtain
adequate prediction accuracy.

Cross Validation
The dataset (N = 2,705) was stratified based on age and randomly
divided into training set and test set. About 70% of the dataset
was used for the training set (N1 = 1,895) and the remaining 30%
used for the test set (N2 = 810). The 10-fold cross validation was
done on the training set. We repeated this train-test split 10 times
to obtain reliable generalizations. For each of the ten repetitions,
the N observations were randomly resampled and divided into
training set and test set. Then, the training set was randomly
split into 10-folds for cross validation. When the first fold was
used as the validation set, the model is fit on the remaining 9-
folds. The mean square error (MSE1) was then computed for the
held-out fold. For each fold, the MSE was computed as given in
Equation (12).

MSEk =
1

n

∑n

i=1

(

ŷi − yi
)2
, k = 1, 2, · · · , 10. (12)
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where yi is the actual age, ŷi is the predicted age, and n is number
of subjects in the validation set of a given fold. The 10-fold cross
validation estimate (CVE) was computed by averaging Equation
(12) as shown in Equation (13).

CVE = 1

10

∑10

k=1
MSEk (13)

All performance assessment results reported for the brain age
prediction model were conducted on the test set. Thus, for each
resampled test dataset, we computed accuracy of age estimation
in terms of RMSE and MAE. The RMSE and MAE can be
computed as given in Equations (14,15).

RMSEj =
√

1

N2

∑N2

i=1

(

ŷi − yi
)2

(14)

MAEj =
1

N2

∑N2

i=1

∣

∣ŷi − yi
∣

∣ (15)

where N2 is the number of samples in the test set of each repeat.
Finally, the generalization accuracy of the model is given as the
average of Equations (14,15) as given in Equations (16,17).

RMSE = 1

10

∑10

j=1
RMSEj (16)

MAE = 1

10

∑10

j=1
MAEj (17)

RESULTS AND DISCUSSION

Effect of Outliers
The dataset in this study included only cognitively normal
subjects. The objective of outlier checking was to investigate
outliers that could violate this condition because our samples
were from older adults (age 45–91 years), which are in a risk
zone of cognitive disorder. Outliers affect the prediction accuracy
of the model when non-robust statistical methods are used. As
described in section Filtering Outliers From Cortical Thickness
Data, we designed an algorithm that best suits the mean cortical
thickness data representation by adopting an LOF method. The
proposed outlier filtering approach showed a slight performance
improvement in all tested models, as displayed in Table 3.
The performance results of RMSE and MAE are in years and
computed on the test dataset.

We compared the generalization results of different regression
models on the dataset after removing outliers (resulting in
N = 2,705 samples). The models were trained using 10-
fold cross-validation repeated 10 times for reliability of the
performance results. The best accuracy result was obtained by
GPRmodel (RMSE= 5.18 years andMAE= 4.08 years) as shown
in Table 4. All other models also showed comparable results.

Performance of Hybrid Methods
As described in section Sparse Group Lasso, we used the SGL
model to select the most important features based on macro-
anatomical cortex structure grouping of the brain. The major
benefit of SGL is its robustness to select features on-group and
within-group levels. The grouping of brain structures according
to cerebral lobes best complies with the SGL benefits. In our
dataset we had N = 2,705 observations and P = 150 covariates
(ROIs= 148 and demographic variables–gender and education).
Among the P = 150 covariates, the SGL method selected 94
features (ROIs = 93 and Education). Gender was not selected
as an important predictor by SGL. Accordingly, we applied RVR
and GPR on the selected features to estimate the brain age. The
combination of SGL and GPR showed an improved performance
result (RMSE = 5.16 years and MAE = 4.05 years) as indicated
in Table 5. The paired t-test between MAEs from SGL + GPR
and SGL + RVR produced a p-value of 0.004, which shows the
statistical significance of the performance difference. The results
from GPR and SGL + GPR also showed significant difference
with p-value of 0.003.

In addition, we tested stacked autoencoder (SAE) for feature
extraction based on the ungrouped covariates. The SAE was used
to extract the features, and we applied RVR and GPR to estimate

TABLE 3 | Performance results before and after filtering outliers.

# Model All data After removing outliers

RMSE MAE RMSE MAE

1 OLS 5.409 4.240 5.264 4.112

2 SGL 5.347 4.162 5.265 4.071

3 GPR 5.274 4.151 5.139 4.033

4 RVR 5.368 4.213 5.179 4.063

5 DNN 5.378 4.181 5.160 4.022

TABLE 4 | Performance comparison of different regression models.

# Model RMSE MAE

1 OLS 5.296 4.206

2 SGL 5.281 4.145

3 GPR 5.184 4.078

4 RVR 5.241 4.127

5 DNN 5.268 4.137

TABLE 5 | Performance results of hybrid approaches; SD, standard deviation.

# Hybrid methods RMSE MAE

Mean SD Mean SD

1 SGL + GPR 5.157 0.119 4.053 0.099

2 SGL + RVR 5.191 0.108 4.094 0.092

3 SAE + GPR 5.185 0.159 4.063 0.133

4 SAE + RVR 5.266 0.137 4.135 0.112
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the brain age. The results were comparable with that of SGL
combined with GPR. However, if the actual selected features need
to be known, it is impossible to identify them in the case of SAE
as the learning of features is weighted and combined. This is
because SAE learns a combination of features, whereas we were
attempting to select a subset of features using SGL. The results of
the hybrid methods are presented in Table 5.

The overall results of the SGL and GPR hybrid model showed
marginal improvement over GPR. In addition, with SGL, the
most important cortex regions are identified. Many studies
showed that late life education reduces the rate of cortical
thinning (Belathur Suresh et al., 2018; Thow et al., 2018). Thus,
education can be considered as one of the features for brain age
prediction.

The value of R2 we obtained across the different methods is
around 0.5 which is relatively lower than previous works. We
conjecture this might be partly due to the age range of our study
population. In this work, we studied only older adults (age 45–91
years with mean age around 64) than in other studies. Moreover,
owing to the more complex non-linear relationship between
normal aging and cortex anatomical structure of older adults,
the amount of variance in the dependent variable explained by
the independent variable(s) could be smaller. Therefore, R2 may
not always be an absolutely better measure that could compare
the results under different age range and sample size. We would
like to emphasize that our method has the additional advantage
over previous methods in that it identifies the most contributing
features and cortex regions having cortical thinning pattern due
to normal aging.

The fitted plots for the SGL + GPR model are presented in
Figure 4. The plot on the left displays the fitted lines of both
chronological age and predicted age indexed from the least value
of actual age to the greatest value. For example, the index for age
45 is “1,” and the index for age 91 is m = 810 where m is the
number of samples in the test set. Accordingly, the prediction
interval of the test sample is shown as the gray area in Figure 4

(left). The scatter plot for the chronological age vs. the predicted
age is shown on the right in Figure 4. We find that the estimation

result reveals an age-related bias such that the predicted age is
higher for younger subjects and lower for older subjects. This
appears to be due to the sample size imbalance across age groups.
The prediction of age tends to be more accurate where more
samples exist for each age, particularly in the 50–79 range, and
the estimations for those groups in two extreme ranges with
fewer samples tend to be substantially influenced by the estimates
for the majority of samples in the middle. See Table 1 for the
detailed distribution of the ages in the target samples. A similar
observation and discussion has been presented in Pardoe and
Kuzniecky (2018).

Consistency of SGL
We used a resampling method in order to verify the consistency
of the SGL feature selection. We trained the SGL model with
ten different random sample combinations of our dataset to
validate its consistency. The experimental results showed that
the majority of features selected were also repeatedly selected
in the 10 random trials. Among the 94 features selected by
SGL, 61 of them were repeatedly selected in different resampling
trials. Education was selected in all ten trials. Gender was not
selected in any of the ten trials. Among the 148 ROIs, most of
the repeatedly selected cortex regions were from the frontal lobe,
temporal lobe, and parietal lobe. The results of age estimation
on these repeatedly-selected features showed comparable results
with the 94 features. This shows the credibility of the selected
regions, indicating the regions having cortical thinning patterns
associated with normal aging. The results of age estimation on
the repeatedly selected 61 features are shown in Table 6.

Analysis of the Proposed Model
We designed a brain age prediction model with cortical thickness
data extracted from 148 ROIs and confounding demographic
variables of gender and education. The proposed method used
SGL to select the most important features contributing to brain
age prediction. SGL selected 94 features i.e., 93 ROIs and
Education. The selected cortex regions are shown in Figure 5

with different colors for cortical lobe groupings. The majority

FIGURE 4 | Chronological age vs. predicted age using the SGL + GPR model.
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of the selected regions are from cortex regions having cortical
thinning pattern associated to normal aging (Allen et al., 2005;
Fjell et al., 2009; Lee et al., 2016a,b). Our target study age
range is from 45 to 91. In this range, brain cortical thickness
declines due to normal aging. Education is one of the most
important factors that reduce the rate of cortical thinning
(Thow et al., 2018). Thus, Education has a contribution to the
prediction of brain age as a confounding factor. We used these
selected features to predict brain age using a GPR model and
obtained good performance accuracy of MAE = 4.05 years.
The combination of SGL with GPR has two benefits. First, it
identifies the most contributing cortex regions having cortical
thinning pattern due to normal aging. Secondly, it offers a
comparable or superior generalization result to GPR alone or
other models.

TABLE 6 | Age estimation on repeatedly selected 61 features; the number of

repetition is ten.

# Hybrid methods RMSE MAE

Mean SD Mean SD

1 SGL + GPR 5.187 0.107 4.074 0.087

2 SGL + RVR 5.191 0.091 4.083 0.076

3 SAE + GPR 5.203 0.104 4.081 0.082

4 SAE + RVR 5.282 0.088 4.157 0.074

The importance of surface-based morphology in comparison
to voxel-based morphology was reviewed by Mechelli et al.
(2005), Clarkson et al. (2011), and Madan and Kensinger (2018).
The surface-based approach allows examining distinct measures
of cortical structure. In contrast, the volume-based approach that
estimates gray matter volume is influenced by a combination of
structural features. In surface-based morphology, the predictive
value of each specific ROI’s cortical thickness can be assessed.

For an insightful analysis of our approach in relation to related
studies of age prediction from brain anatomical features, the
comparison of our model with the state-of-the-art studies is
presented in Table 7. The prediction accuracy of our approach
is comparable with the recent state-of-the-art studies. The major
contribution to the improvement of generalization accuracy
is the SGL regularization technique used to select important
features that best fit the age prediction model. It is worth
mentioning that each previous study for comparison had slightly
different experimental setting because they either used a small
sample size or studied relatively young subjects (see the mean
age of the previous studies in Table 7). In this work, we studied
only older adults (age 45–91 years). In this older age lifespan, the
risk of dementia is higher. Cognitive functioning declines due
to normal aging. Moreover, owing to the more complex non-
linear relationship between normal aging and cortex anatomical
structure of older adults, the amount of variance in the dependent
variable explained by the independent variable(s) could be
different.

FIGURE 5 | Visualization of the features significantly contributing to age estimation: the warm and cold color represent important features in predicting brain age using

cortical thinning patterns.
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TABLE 7 | Our model vs. related studies: N, number of samples; * given in median absolute error (MdAE).

# Author Age range Mean age N Model RMSE MAE

1 Ashburner, 2007 17–79 31.80 471 RVR 6.50 –

2 Franke et al., 2010 19–86 48.08 547 RVR 5.90 4.61

3 Wang et al., 2015 20–82 47.04 360 RVR 5.57 4.57

4 Kondo et al., 2015 20–75 45.60 1,146 RVR 5.65 4.50

5 Cole et al., 2015 18–90 – 1,749 GPR – 4.66

6 Cole and Franke, 2017 18–90 36.95 2,001 CNN 5.31 4.16

7 Madan and Kensinger, 2018 18–97 – 1,056 RVR – 6–7*

8 Our model 45–91 64.20 2,705 SGL + GPR 5.16 4.05

The cortical thickness measurements are known to be
sensitive to the selection of scanner vendor, imaging protocols,
or sites. Our dataset was collected from one center (SMC) using
a single scanner with the same protocol which is one of the
limitations to consider. In addition, our study aims to model
the biological age from healthy subject samples, and therefore
the analysis of cortical thinning due to pathology is out of the
scope. The other related point is atrophy in the subcortical
structuresmight be important in normal aging. Our study focuses
on the cortical change due to normal aging; the atrophy in the
subcortical structures can be considered in the future study.

Analysis of Brain Features Significantly
Contributing to Age Estimation
We extracted and visualized the brain features that significantly
contribute to the age estimation. Figure 5 shows a cortical
thinning pattern specifically associated with normal aging,
extracted by the SGL model. As shown in the figure, our findings
were consistent with previous studies. A recent study from our
group suggested that there were brain regions vulnerable to
brain aging. Specifically, compared to those in their twenties and
thirties, participants in their forties showed thinning primarily
in the medial and lateral frontal and inferior parietal regions,
and cortical thinning occurred across most of the cortices with
increasing age (Lee et al., 2016a,b).

We find that age-related cortical thinning occurs on areas
responsible for executive processing tasks, spatial cognition,
vocabulary learning, and episodic memory retrieval, which
are also known to be associated with age-related cognitive
decline(Pochon et al., 2001;Monsell, 2003; Cavanna and Trimble,
2006; Singh-Curry and Husain, 2009; Caspers et al., 2012;
Barbey et al., 2013). Furthermore, our findings could support

the “last in, first out” hypothesis(McGinnis et al., 2011). That
is, late-maturing regions of the brain, such as the heteromodal

association cortices, are preferentially vulnerable to age-related
loss of structural integrity.

CONCLUSIONS

We presented a brain age estimation model using cortical
thickness data extracted from T1 MRI. We designed a feature
selection approach that identifies cortical regions associated with
cortical thinning and better generalizes brain age prediction.
The best prediction accuracy was obtained with the SGL +
GPR hybrid model. The best performance result was MAE
= 4.05 years, which is comparable with results obtained
by several recent state-of-the-art studies. The deep learning
automatic feature-learning capability of the stacked auto-encoder
also showed comparable result when combined with GPR. In
general, the analysis of this research indicates the desirability
of feature selection strategies to design predictive models of
brain age from surface-based features that are capable of
generalizing.
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