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Abstract A significant part of cost of machining is associated with non-optimum use of cutting tool. 
Moreover cutting tool failure is responsible for almost 20% of the machining downtime. Thus, 
having knowledge of residual life of cutting tool is highly recommended so as to maximise the 
availability time and reduce the machining cost. The aim of this work is to find out residual life of 
a worn cutting tool which has been used for turning of Ti-6Al-4V alloy under constant cutting 
condition. The lognormal distribution is used to model the cutting tool life data. Remaining useful 
life of cutting tool is estimated using Mean Remaining Life (MRL) function. The results obtained 
from model are compared with the experimental results and it shows good agreement.

1 Introduction 

Aim of modern manufacturing industry is to produce 
economical and reliable product along with good quality. 
Quality of machining product is generally referred as 
surface finish and accuracy in dimensions, which are 
highly dependent on the condition of cutting tool. Besides 
product quality, tool failure puts high impact on 
machining system and productivity. Moreover, in the total 
cost of machining, tooling cost accounts for a significant 
part (approximately 25%) [1]. Most of the time cutting 
tools are either overused or underused with respect to 
optimum tool life.  Study suggests that, cutting tools are 
typically utilised only up to 70–80% of its optimum life 
[2]. Hence, the prediction of remaining useful life (RUL) 
of cutting tool is important when a significant amount of 
cost is involved in a machining process. 

Till now many researchers have developed 
various models for estimating cutting tool life. Devor, et 
al [3] concluded that the life span of cutting tool is a 
probabilistic phenomenon. Based on this fact, till now 
different reliability model has been proposed [4-5]. 
Rodriguez, et al [6] suggested a strategy of optimum tool 
replenishment based on analysis of cutting tool reliability. 
Xiao-Sheng, et al [7] presented brief review on recent 
developments of various models for estimating the RUL. 
Benkedjouh, et al [8] proposed a methodology for 
estimating the remaining useful life of cutting inserts 
which is based on the support vector regression. Gebraeel, 

et al [9] used artificial neural network approach for 
predicting remaining life of bearing. Aramesh, et al [10] 
introduced a model for predicting the remaining tool life 
in variable machining conditions using proportion hazard 
model. In this paper, the weibull distribution was used for 
modelling baseline hazard function of PHM.  

The aim of this study is to present a probabilistic 
approach to assess useful remaining life of a worn cutting 
tool which has been used for turning of Ti-6Al-4V alloy 
under constant cutting condition. The lognormal 
distribution is used to fit the tool life data. Finally, Mean 
Remaining Life (MRL) equation is used to estimate 
expected residual life of cutting tool. 

2 Tool Wear 

Failure of cutting tool mainly occurs due to gradual 
blunting of cutting edge. Tool wear which takes place on 
the rake surface of the tool is called crater wear and which 
occurs on the flank surface called flank wear. Flank wear 
being the most predominant wear mechanism, maximum 
length of flank wear (𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) is generally used as failure
criteria for determining tool life. However, depending on 
the desired application crater wear could also be used as 
failure criteria [11].  
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As shown in Fig. 1, a typical tool flank wear curve 
involves three different states. At the initial state, the rate 
of tool wear is high which is known as rapid initial wear 
state. Next, at the steady state, wear rate remains almost 
constant followed by the accelerating wear state where 
tools wear out very rapidly.  

Fig. 1. Different states of flank wear 

3 Experiment Setup 

Dry turning operations were performed on MAXTURN 
Plus CNC turning centre. Fig. 2 shows the experimental 
setup used in this study. Cylindrical bar made up of Ti-
6Al-4V alloy was used as work piece material. Turning 
tool chosen for this study was TiN coated tungsten carbide 
insert having specification CNMG 120408 as shown in 
Fig. 3. 

Fig. 2. The experimental setup 

Experiments were performed using total eight number of 
new tool inserts. Turning operations were carried out for 
each tool under constant cutting parameters. Cutting 
parameters are chosen based on the supplier’s 
recommendations which are listed in Table 1. 

Table 1. Machining parameters 

Parameters Speed 
(m/min) 

Feed Rate 
(mm/rev) 

Depth of 
Cut 

(mm) 
Value 50 0.15 0.2 

While each test, sequential observations of flank wear 
were performed using Upright Materials Microscope 
Leica DM2700 M as shown in Fig.5. For example, the 
experimental data of sequential wear measurements for 

tool-3 is shown in Table 2. The same procedure is 
repeated for each new tools. 

Fig. 3. Geometry of insert type tool (CNMG 120408) [16] 

Table 2. Progressive wear of tool-3 

Sequential 
measurement 

no. 

Machining 
Time (s) 

Tool Wear 
(mm) 

1 0 0 
2 150 0.064 
3 300 0.079 
4 450 0.103 
5 600 0.121 
6 750 0.133 
7 900 0.146 
8 1050 0.153 

It is assumed that nature of the progression of tool wear is 
linear [12] between two measurement points as shown in 
Fig. 4. Time-to-failure (t) corresponding to the threshold 
limit (𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  = 0.15 mm) is calculated by interpolating 
between last two observations (𝑖𝑖𝑡𝑡ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖 + 1)𝑡𝑡ℎ) by 
using equation (1). This procedure is performed for the 
each tools and the obtained results are presented in Table 
3. 

                             𝑡𝑡−𝑡𝑡𝑖𝑖
𝑡𝑡𝑖𝑖+1−𝑡𝑡𝑖𝑖

=  𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚− 𝑉𝑉𝑉𝑉𝑖𝑖
𝑉𝑉𝑉𝑉𝑖𝑖+1−𝑉𝑉𝑉𝑉𝑖𝑖

  (1) 

Table 3. Tool life data for eight inserts 

Tool Id Tool Life (s) 
1 912 
2 873 
3 982 
4 1018 
5 958 
6 1007 
7 854 
8 898 

4 Methodology 
Eight number of cutting tool inserts are used for this study. 
While machining, sequential observations (measurements 
of tool flank wear) are performed until critical tool wear 
level is reached. Same procedure is carried out for eight 
inserts.  
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Time to failure data is calculated for each insert by the 
regression process between last two observation points. 

 

Fig. 4. Linear variation of tool flank wear between two points 

Tool wear threshold limit is chosen based upon 
the economic aspect of machining. As, once the tool gets 
worn out significantly, it effects the surface finish and 
dimensional accuracy of machining product. In this study, 
maximum tool flank wear,𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 0.15 mm, is taken as 
failure criteria. Which means, machining time 
corresponding to tool flank wear of 0.15 mm is considered 
as useful tool life.  

In this study, lognormal distribution is used to fit 
time-to-failure data of eight inserts. From previous 
literature, it can be stated that lognormal distribution 
describes tool life accurately over other distributions [13]. 
The probability density function 𝑓𝑓(𝑡𝑡), for lognormal 
distribution is represented as follow: 

                         𝑓𝑓(𝑡𝑡) = 1
𝜎𝜎𝜎𝜎√2 𝜋𝜋 𝑒𝑒[− (ln 𝑡𝑡− 𝜇𝜇)2

2 𝜎𝜎2 ]  (2) 

Where, σ and  denote the standard deviations and mean 
respectively and t represents tool life as continuous 
variable. The corresponding cumulative distribution 
function F(t), for lognormal distribution  can be derived 
using the following relationship: 

𝐹𝐹(𝑡𝑡)  =  ∫ 𝑓𝑓(𝑡𝑡)𝑡𝑡
0 𝑑𝑑𝑑𝑑   

         =   ∫ 1
𝜎𝜎𝜎𝜎√2 𝜋𝜋  𝑒𝑒[− (ln 𝑡𝑡− 𝜇𝜇)2

2𝜎𝜎2 ]𝑡𝑡
0  𝑑𝑑𝑑𝑑   (3) 

Consequently, the reliability function 𝑅𝑅(𝑡𝑡), for lognormal 
distribution can be obtained from following relation: 

𝑅𝑅 (𝑡𝑡) = 1 −  𝐹𝐹(𝑡𝑡)  

         = 1 − ∫ 1
𝜎𝜎 𝑡𝑡 √2𝜋𝜋  𝑒𝑒[− (ln 𝑡𝑡− 𝜇𝜇)2

2𝜎𝜎2 ]𝑡𝑡
0  𝑑𝑑𝑑𝑑  (4) 

After constructing probability density function and 
reliability function, next step is to estimate the useful 
residual life of cutting tool using mean residual life 
function (MRL) [14]. Given that a tool has used for 
machining up to a certain time 𝑡𝑡𝑜𝑜 , the expected residual 

life of the tool from that observation point can be 
calculated by the following equation: 

                       MRL (𝑡𝑡𝑜𝑜) =  
∫ 𝑡𝑡 .  𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑∝

𝑡𝑡𝑜𝑜
𝑅𝑅(𝑡𝑡𝑜𝑜) − 𝑡𝑡𝑜𝑜  (5) 

5 Results and discussion 
Firstly, turning operation is performed for each tool and 
tool life data are collected as shown in Table 3. Maximum 
likelihood estimation (MLE) method is used to calculate 
unknown parameters ( and σ) of Lognormal distribution 
using experimental data set [15]. This MLE is performed 
using the statistical software R. The estimated parameters 
of lognormal distribution are shown in Table4 and 
corresponding probability density function is shown in  

Fig. 5. Worn-out cutting edge after machining 

Fig. 6. Probability density function  

After estimating distribution parameters and 
constructing reliability model, the next step is to calculate 
expected residual life. This calculation is done by the help 
of Matlab software. 

Table 4. Parameters of Lognormal distribution 

Parameters  σ 

Estimated value 6.842 0.062 

Let a cutting tool insert which already used 𝑡𝑡𝑟𝑟= 120 (s) 
while operating under the same constant cutting 
parameters, then it’s Mean Residual Life will be given by 
the Eq. 6 as below: 

𝑓𝑓(𝑡𝑡) 
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MRL (120) =  ∫
𝑡𝑡.𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑∝

120
𝑅𝑅(120) − 120   (6) 

Three Confirmation tests were conducted on three cutting 
tools and the estimated results of residual life from the 
statistical model are presented in Table 5. In order to 
check the accuracy of the estimated result, the residual life 
was observed by further machining with the tools and 
noted down as presented in Table 5. 

Table 5. Comparison between estimated and experimental 
result 

Sl. 
no 

Consumed 
life 
(s) 

Residual 
life from 
model (s) 

Residual 
life from 

experiment 
(s) 

Perce
nt-age 
error 
(%) 

1 120 818.961 837.000 2.15 
2 600 338.961 322.000 5.26 
3 840 103.977 114.000 8.79 

It can be seen in table 5, that the probabilistic results 
obtained from the model are quite close to the actual 
experimental results. 

6 Conclusions 
In this study, a methodology for predicting residual life of 
cutting tool is introduced which is intended for optimize 
the cost of machining and maximise the availability time 
of machine tool. Turning of Ti-6Al-4V is performed on a 
CNC turning centre and experimental data are collected. 
Statistical model is constructed based on these tool life 
data. Once the reliability model is developed, it can 
estimate expected useful life of a worn out cutting tool. 
Experimental results show that the estimated residual life 
is in good agreement with the experimental one. It can be 
concluded that, this approach of predicting remaining tool 
life is helpful for mass production of parts, made up of 
same workpiece material and with same type of cutting 
tool. 
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