
Spatial and temporal shifts in the diet
of the barnacle Amphibalanus eburneus
within a subtropical estuary
Christopher J. Freeman1, Dean S. Janiak1, Malcolm Mossop1,
Richard Osman2 and Valerie J. Paul1

1 Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, FL, USA
2 Smithsonian Environmental Research Center, Edgewater, MD, USA

ABSTRACT
The success of many sessile invertebrates in marine benthic communities is linked to
their ability to efficiently remove suspended organic matter from the surrounding
water column. To investigate the diet of the barnacle Amphibalanus eburneus, a
dominant suspension feeder within the Indian River Lagoon (IRL) of central
Florida, we compared the stable isotopes ratios (d13C and d15N) of barnacle tissue
to those of particulate organic matter (POM). Collections were carried out quarterly
for a year from 29 permanent sites and at sites impacted by an Aureoumbra
lagunensis bloom. d13C and d15N values of Amphibalanus eburneus varied across
sites, but d15N was more stable over time. There was a range of d15N values of
Amphibalanus eburneus tissue from 6.0‰ to 10.5‰ across sites. Because land-based
sources such as sewage are generally enriched in 15N, this suggests a continuum
of anthropogenic influence across sites in the IRL. Over 70% of the variation in
d15N values of Amphibalanus eburneus across sites was driven by the d15N values of
POM, supporting a generalist feeding strategy on available sources of suspended
organic matter. The dominance of this generalist consumer in the IRL may be linked
to its ability to consume spatially and temporally variable food resources derived
from natural and anthropogenic sources, as well as Aureoumbra lagunensis cells.
Generalist consumers such as Amphibalanus eburneus serve an important ecological
role in this ecosystem and act as a sentinel species and recorder of local, site-specific
isotopic baselines.

Subjects Biodiversity, Ecology, Marine Biology
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INTRODUCTION
Organisms that can exploit suspended organic matter fill a unique niche in aquatic
ecosystems (Ricciardi & Bourget, 1999; Riisgård & Larsen, 2010). By efficiently
consuming both living cells and detritus, suspension feeders play critical roles in the
regulation of primary production and benthic-pelagic coupling of nutrients and organic
matter (Gili & Coma, 1998). This feeding mechanism is widely successful in estuarine and
coastal ecosystems, and coincides with highly diverse communities in benthic habitats
(Karlson & Osman, 2012; Cresson, Ruitton & Harmelin-Vivien, 2016). Suspension
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feeders encounter various forms of organic matter that change over space and time
(Richoux, Vermeulen & Froneman, 2014). These sources of nutrition vary in size and
quality and can include bacteria [from <2 mm], phytoplankton [2–200 mm], zooplankton,
and detritus from terrestrial plants, phytoplankton, and submerged aquatic vegetation
(Deegan & Garritt, 1997; Hsieh et al., 2000; Cresson, Ruitton & Harmelin-Vivien, 2016).

Although suspension feeders appear to be ecologically similar and can occupy
overlapping niches within a habitat, there is substantial variation in the feeding structures
and mechanisms of coexisting species (Stuart & Klumpp, 1984; Lesser et al., 1992;
Riisgård &Manríquez, 1997; Karlson, Gorokhova & Elmgren, 2015). This variation impacts
an organism’s ability to acquire, sort, and select food particles and may allow individual
species to specialize in a subset of available suspended particulate matter (Dubois et al.,
2007a; Riisgård & Larsen, 2010; Dubois & Colombo, 2014; Richoux, Vermeulen &
Froneman, 2014; Cresson, Ruitton & Harmelin-Vivien, 2016;Whalen & Stachowicz, 2017).
For example, bivalves are able to sort and selectively feed on particles, releasing
inorganic matter via pseudofeces and efficiently retaining high quality particles greater
than 5 mm (Jørgensen, 1974;Møhlenberg & Riisgård, 1978; Riisgård, 1988; Galimany et al.,
2017a, 2017b). Tunicates, barnacles, and gastropod mollusks, in contrast, largely
lack structures that facilitate particle selection and are considered generalist or
indiscriminate suspension feeders (Lesser et al., 1992; Petersen, 2007; Dubois et al., 2007a;
Cresson, Ruitton & Harmelin-Vivien, 2016). These generalists are, however, capable of
retaining a broader range of particles that may not be consumed by selective
suspension feeders or even adopting an omnivorous nutritional strategy that allows
them to feed at higher trophic levels (Lesser et al., 1992; Bone, Carre & Chang, 2003;
Petersen, 2007; Decottignies et al., 2007; Beninger et al., 2007; Kach & Ward, 2008;
Riisgård & Larsen, 2010; Richoux, Vermeulen & Froneman, 2014; Cresson, Ruitton &
Harmelin-Vivien, 2016).

Coastal ecosystems are subject to seasonal shifts in environmental conditions and
strong resource gradients from a combination of inputs from marine and terrestrial
sources (Deegan & Garritt, 1997). In addition, food webs in these systems are increasingly
impacted by anthropogenically-derived pollution and harmful algal blooms (Carlton,
Newman & Pitombo, 2011; Lapointe et al., 2015; Galimany et al., 2017b). Divergence in
feeding mechanisms among coexisting suspension feeders may lead to differential
responses of species to these changes and shape community composition across sites
(Dubois et al., 2007a; Cresson, Ruitton & Harmelin-Vivien, 2016). Trophic plasticity
may allow generalist species to exploit a broader range of ecological niches and adapt
to both natural and anthropogenic changes in food availability. Barnacles, for instance,
are a dominant component of many intertidal and estuarine ecosystems and are one of the
most prolific invaders into coastal ecosystems worldwide (Carlton, Newman & Pitombo,
2011). Their success is likely linked to their ability to consume a wide range of particle
sizes from zooplankton to phytoplankton (down to 2-5 mm), detritus, and organic matter
from both natural and anthropogenic sources (Barnes, 1959; Crisp & Southward, 1961;
Lesser et al., 1992; Riisgård & Larsen, 2010; Dolenec et al., 2006). The diet of barnacles has
also been shown to vary over space and time (Dolenec et al., 2006; Dubois et al., 2007a;
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Dubois & Colombo, 2014; Richoux, Vermeulen & Froneman, 2014) resulting from shifts in
organic matter composition.

The Indian River Lagoon (IRL) of central Florida is a subtropical, shallow (mean depth
of <1 m) estuary that spans 250 km of the east coast of central Florida. The IRL supports a
high diversity of marine species due to a variety of habitats (mangrove, seagrass, oyster
reefs, and artificial substrates) and its location in a tropical/temperate transition zone in
close proximity to the Gulf Stream (Gilmore, 1995; Swain et al., 1995). Like many
estuaries, both acute and chronic stressors are increasingly impacting communities within
the IRL, leading to cascading effects throughout local food webs. For example, nutrient
loading (Lapointe et al., 2015) and the loss of planktonic grazers have led to an increased
frequency and severity of algal blooms (Phlips et al., 2014). The “superbloom” of a
Picocyanobacteria and a Pedinophyceae (both 1-2 mm) sp. in 2011 and blooms of the
brown tide Aureoumbra lagunensis (4-5 mm) in 2012, 2013, and the winter of 2016
(SJRWMD, 2013; Phlips et al., 2014; Kamerosky, Cho & Morris, 2015; Lapointe et al., 2015)
were particularly devastating within the sublagoons of the northern IRL (NIRL). Although
these algal species are all non-toxic, high concentrations of algal cells blocked sunlight
from reaching seagrass beds and, ultimately, resulted in hypoxic events that led to fish kills
within the NIRL (Phlips et al., 2014).

Surveys of epifauna communities at 90 sites in the NIRL have found high species
diversity (175 taxa in 11 phyla) and a dominance of the barnacle Amphibalanus eburneus,
with a mean percent cover of 30% to 40% across sites (D.S. Janiak, 2016, unpublished data;
Fig. S1). The success of Amphibalanus eburneus across sites in the NIRL may be linked to
its generalist feeding on available sources of suspended organic matter, but little is known
about how the diet of Amphibalanus eburneus changes over time and space and whether
these changes mirror general shifts in particulate organic matter (POM). To investigate
this, we compared the stable isotope ratios (d13C and d15N) of Amphibalanus eburneus
tissue to that of POM from the water column. Collections were carried out quarterly for a
year and also during an Aureoumbra lagunensis bloom. We tested the following
hypotheses: (1) the d13C and d15N values of Amphibalanus eburneus vary over space and
time and will be closely tied to the d13C and d15N values of POM, and (2) Amphibalanus
eburneus will demonstrate shifts in d13C and/or d15N values that indicate consumption of
the brown tide Aureoumbra lagunensis.

MATERIALS AND METHODS
Sample collection
As part of a project monitoring epifaunal community composition and diversity over
space and time, we established 29 permanent monitoring sites spanning 150 km within the
three sub-lagoons (Indian River and Mosquito Lagoons, and the Banana River) of the
northern region of the greater IRL (NIRL; Fig. 1; Table S1). Collections of Amphibalanus
eburneus (N = 5–10 individuals) were carried out at each of these monitoring sites on
a quarterly basis (in January, April, July, and October of 2015). Permits for species
collections were provided by the Florida Fish and Wildlife Conservation Commission
(SAL-14-1567-SR). To test whether a bloom of Aureoumbra lagunensis influenced the diet
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Figure 1 Map of 29 permanent monitoring sites established in the three sublagoons (Banana River [B],
Indian River Lagoon [I], and Mosquito Lagoon [M]) of the Northern IRL of central Florida (inset
map). Map data: Google, SIO, NOAA, U.S. Navy, NGA, GEBCO, and Landsat/Copernicus.

Full-size DOI: 10.7717/peerj.5485/fig-1
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of Amphibalanus eburneus, samples were also collected opportunistically at sites within
the Banana River and IRL that were influenced by Aureoumbra lagunensis from
December of 2015 to March of 2016 (Fig. S2; Galimany et al., 2017a). Barnacles were
removed from mangrove prop roots or artificial substrates (dock and bridge pilings or
seawalls) using a paint scraper and placed into a 4 L plastic bag containing seawater
for transit back to the Smithsonian Marine Station. There were missing data for some sites
on particular dates resulting from sample loss or inaccessibility.

During seasonal and Aureoumbra lagunensis collections, a sample of seawater (20 L)
for POM was also taken at each site to monitor the d13C and d15N values of general
sources of particulate carbon and nitrogen available to Amphibalanus eburneus. In the
laboratory, this seawater was prefiltered through 105 mm mesh and then filtered
through a Millepore quartz fiber filter (2 mm porosity) stacked on top of a Whatman glass
fiber (GF) filter (0.7 mm porosity) to obtain a single POM sample for each time point at
each site. The organic matter content on GF filters was below detection limits, so POM
d13C and d15N values are based on the results from organic matter on quartz fiber filters
(2 mm porosity) that were stacked on top of the GF/F.

Sample preparation and stable isotope (δ13C and δ15N) analysis
Samples of Amphibalanus eburneus were kept separate and held overnight in flowing,
sand-filtered seawater to allow for gut evacuation and then frozen at -20 �C. Once thawed,
the shell diameter was measured for each individual (n = 10 per site for each sampling
period) and, using forceps, all tissue within the shell of a barnacle was placed into an
individual glass vial (Richoux, Vermeulen & Froneman, 2014). Tissue was dried at 60 �C for
24 h and homogenized using a mortar and pestle. Homogenized samples were acidified to
remove carbonate by exposure to 12 N HCl fumes for 12 h, after which samples were
returned to the oven at 60 �C for 24 h (Freeman & Thacker, 2011). Quartz and GF
filters containing POM were also dried and acidified prior to analysis. POM was scraped
from each filter, and POM from each filter and barnacle samples were separately weighed
to the nearest 0.001 mg into tared tin capsules. Isotope analysis was carried out at the
Stable Isotope Facility at UC Davis using a PDZ Europa ANCA-GSL (for barnacle tissue
samples) or Micro Cube (for POM samples) elemental analyzer interfaced to a PDZ
Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd, Cheshire, UK). Isotope values
are reported in d notation in units of permille (‰).

Data analysis
Isotope values provide a time-integrated record of an organism’s diet, with d13C values
providing information about the primary sources of carbon fueling local food webs and
d15N values acting as a proxy for trophic level and the sources of nitrogen assimilated
(Michener & Kaufman, 2007). To test the effect of season and site on the placement of
Amphibalanus eburneus samples within bivariate (d13C and d15N) isotopic space, we
calculated isotopic dissimilarity (measured as Euclidean distance) among samples and
analyzed dissimilarity using a permutational multivariate analysis of variance
(PERMANOVA) (Primer 6 with PERMANOVA+ add-on). Seasonal variation in
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individual isotope values was assessed using a Kruskal–Wallis One-Way Analysis of
Variance (ANOVA). Linear regressions were used to investigate the relationship between
the d13C and d15N values of Amphibalanus eburneus tissue and the d13C and d15N values of
POM at each site. These analyses were carried out using Systat.

RESULTS
There was significant variation in the d15N and d13C values of Amphibalanus eburneus
tissue over space and time (PERMANOVA testing the effect of site [PseudoF29,1046 = 23.89;
p(perm) = 0.001] and season [PseudoF3,1072 = 140.6; p(perm) = 0.001]) (Figs. 2A and 3A; Fig. S3
in supplemental information) during annual collections. Within each season, d15N and
d13C values also varied among sites (PERMANOVA testing the effect of individual site
nested within collection period: PseudoF96,976 = 56.58; p(perm) = 0.001) (Fig. S3). Annual
mean d15N values from each site ranged from 6.0‰ to 10.5‰, with depleted (6.0‰ to
7.7‰) d15N values in the northern region of the IRL (site #s I1–5) and in the Mosquito
Lagoon (site #s M1–6) compared to sites in the Banana River and the southern IRL (site #s B

Figure 2 Mean (±SE) δ15N values of Amphibalanus eburneus tissue (A) and particulate organic
matter (POM; (B)) at individual sites within the three sublagoons of the northern Indian River
Lagoon. Sublagoons include the Banana River [B], Indian River Lagoon [I], and Mosquito Lagoon [M].
Data are shown as annual means (from each season from January to October of 2015) and mean
(Amphibalanus eburneus tissue) and single POM values from an Aureoumbra lagunensis bloom in
January 2016. Full-size DOI: 10.7717/peerj.5485/fig-2
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and I6–13) that had d15N values between 8.3‰ and 10.5‰ (Fig. 2A). Annual mean
d13C values ranged from -22.3‰ to -17.8‰, with variation at finer spatial scales
(within lagoons and even between geographically adjacent sites) than d15N values (Fig. 3A;
Fig. S3). In addition, d13C values varied more across seasons than d15N values
(Kruskal–Wallis: H: 5063; p < 0.001 and H: 10.23, p < 0.05 for d13C and d15N, respectively)
(Figs. 2A and 3A; Fig. S3).

The d13C and d15N values of POM varied across space and time (Figs. 2B, 3B and 4;
Fig. S4), with a range of annual means from -24.6‰ to -20‰ and 3.3‰ to 8.2‰ for
d13C and d15N, respectively. The average d13C and d15N values of POM at each site
explained 22% and 71% of the variation in the mean d13C and d15N values of
Amphibalanus eburneus at the same site (linear regression: r2 = 0.22; p < 0.01; N = 35 and
r2 = 0.71; p < 0.001; N = 35 for d13C and d15N values, respectively) (Fig. 4; Fig. S4 for
individual site values for each season). Tissue values of Amphibalanus eburneus were,
on average, enriched in both d15N and d13C compared to POM (+2.78 ± 0.15 SE and
+1.76 ± 0.17 SE for d15N and d13C, respectively) (Fig. 4; Fig. S4).

Figure 3 Mean (±SE) δ13C values of Amphibalanus eburneus tissue (A) and particulate organic
matter (POM; (B)) at sites within the sublagoons of the northern Indian River Lagoon.
Sublagoons include the Banana River [B], Indian River Lagoon [I], and Mosquito Lagoon [M].
Data are shown as annual mean (from each season from January to October of 2015) and mean
(Amphibalanus eburneus tissue) and single POM values from an Aureoumbra lagunensis bloom in
January 2016. Full-size DOI: 10.7717/peerj.5485/fig-3
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d15N of Amphibalanus eburneus tissue was between 9.1‰ and 13.1‰ during the
Aureoumbra lagunensis bloom, with an average enrichment of 1.8‰ (range of 0.7 to
2.7‰) compared to annual mean values (Figs. 2A, 4A and 5; Fig. S3). Likewise, d13C of
Amphibalanus eburneus tissue during the Aureoumbra bloom ranged from -21‰ to
-19‰, with a mean enrichment of 0.9‰ (range of -0.2‰ to 2.1‰) compared to the
annual mean at a site (Figs. 3A, 4B and 5; Fig. S3). The d15N and d13C values of POM
were variable during the Aureoumbra lagunensis bloom, with enrichment at some,
but not all, sites (mean enrichment of 0.3‰ [range of -1‰ to 1.6‰] and -0.4‰
[range of -4.6‰ to 2.7‰] for d15N and d13C, respectively) relative to the annual mean
(Figs. 2B, 3B and 4; Fig. S4). Tissue values of Amphibalanus eburneus were enriched in

Figure 4 Mean (±SE) δ15N (A) and δ13C (B) values of Amphibalanus eburneus tissue at a site as a
function of mean (±SE) δ15N and δ13C values of particulate organic matter (POM) at the same
site. Data include 29 sites within the sublagoons of the northern Indian River Lagoon. Tissue and
POM samples were taken each season from January to October of 2015 (shaded circles) and also during
an Aureoumbra lagunensis bloom in January of 2016 (open circles).

Full-size DOI: 10.7717/peerj.5485/fig-4
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both d15N and d13C relative to POM under bloom conditions (+4.37 ± 0.30 SE (range
+3.47 to +5.9) and +1.91 ± 0.75 SE (range -1.59 to +4.83) for d15N and d13C, respectively
(Fig. 4; Fig. S4).

DISCUSSION

Trophic ecology of Amphibalanus eburneus
The d13C and d15N values of POM suggest that particulate sources of organic matter vary
across seasons and small spatial scales in the IRL. Variation in d13C values is likely due to
inputs of organic carbon from a combination of marine phytoplankton (d13C values of
-18‰ to -24‰) and detritus from terrestrial C3 plants such as mangroves (-35‰ to
-25‰) and seagrasses (-13.5‰ and -5.2‰) (Deegan & Garritt, 1997; Michener &
Kaufman, 2007). Likewise, the d15N values of POM provide information about the sources
of nitrogen fueling local food webs. For instance, while depleted d15N values suggest
natural N-fixation, elevated d15N values (>3‰) are suggestive of nitrogen derived from
15N-enriched sources such as wastewater (Lapointe et al., 2015). POM d15N values in our
study that range from ∼3 to 8‰ therefore suggest a continuum of impact from
anthropogenically-derived nutrients across sites in the IRL. High levels of dissolved
inorganic nitrogen and total dissolved nitrogen have been reported previously in regions of
the northern IRL resulting from long water residence times and inputs of
anthropogenically-derived nitrogen via surface water runoff and groundwater from septic
tanks (Smith, 1993; Lapointe et al., 2015). Our data suggest that sites close to human
development in the Banana River and southern sites in the Indian River (d15N values of
∼6 to 8‰) are more impacted by these 15N-enriched sources than those in the more
sparsely populated Mosquito Lagoon and northern IRL sites; our POM values are in
general agreement with the magnitude of 15N enrichment found in macroalgae from this
region of the IRL (Lapointe et al., 2015).

The isotopic composition of Amphibalanus eburneus tissue was coupled to the temporal
and spatial dynamics of POM d15N and, to a lesser extent, d13C values, supporting the

Figure 5 Mean (±SE) δ15N and δ13C values of Amphibalanus eburneus for each season from January
to October of 2015 and during an Aureoumbra lagunensis bloom in January 2016. Values were
calculated from d15N and d13C values of Amphibalanus eburneus from all sites within the three
sublagoons of the Northern Indian River Lagoon. Full-size DOI: 10.7717/peerj.5485/fig-5
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contention that barnacles are generalist suspension feeders utilizing predominant
components of the organic matter pool in the water column (Cresson, Ruitton &
Harmelin-Vivien, 2016). In contrast, if barnacles had a broader capacity to sort and select
particles based on size or nutritional quality, we would expect less variation in the d13C
and d15N of barnacle tissue over time and space and a decoupling of POM and
Amphibalanus eburneus isotope values (Decottignies et al., 2007; Dubois et al., 2007a;
Dubois & Colombo, 2014). For example, in the oyster Crassostrea gigas, the d13C and d15N
values of POM explained less than 5% of the variation in isotope values of oyster muscle
tissue (Marchais et al., 2013). Although this relationship was significant in our study
(explaining 71% and 22% of the variance for mean d15N and d13C values at each site,
respectively), the trend may have been even stronger if we had finer temporal resolution
instead of a single POM isotope “snapshot” for each season from a site. The tissue of
Amphibalanus eburneus was generally enriched in 13C and 15N (higher d13C and d15N
values) relative to POM (by +1.76‰ and +2.78‰, respectively). Because consumers
are generally enriched in both 13C and 15N due to the process of trophic enrichment, this
implies the presence of a “trophic step” between particulate matter and Amphibalanus
eburneus (Dubois et al., 2007b). The magnitude of trophic enrichment varies across
species, but is generally hypothesized to range from <1.0‰ to 2.0‰ for d13C and
3.0‰ to 3.6‰ for d15N (DeNiro & Epstein, 1981; Zanden & Rasmussen, 2001;
McCutchan et al., 2003; Dubois et al., 2007b). Our values are therefore well within the
estimated range for trophic enrichment, supporting generalist feeding on bulk POM by
Amphibalanus eburneus (Hsieh et al., 2000).

Unlike many suspension feeders, barnacles are able to consume higher trophic level
prey such as zooplankton (Richoux, Vermeulen & Froneman, 2014). Enriched d15N values
of Amphibalanus eburneus from the IRL may therefore reflect feeding on zooplankton
(Dix & Hanisak, 2015). We posit, however, that if zooplankton had been a dominant
component of the diet of Amphibalanus eburneus in the IRL, we would have observed
an additional trophic step between POM (predominately phytoplankton) and
Amphibalanus eburneus tissue isotope values. Enriched d15N values are thus likely the
result of the passage of anthropogenically-derived nitrogen assimilated by phytoplankton
into the epifaunal food web. Enriched d15N values in POM and barnacle tissue at sites
impacted by anthropogenically-derived nutrients has been reported before in other
systems, with up to a 5‰ enrichment in barnacles from impacted sites and strong
linear correlations between POM and barnacle d15N values (Dolenec et al., 2006, 2007).
Elevated d15N values of POM and Amphibalanus eburneus tissue (>8‰) in the
more urbanized regions of the NIRL (Banana River and southern sites in the Indian River)
and relatively stable d15N values across seasons therefore suggest chronic exposure to
nitrogen from anthropogenic sources at some sites. In contrast, d13C values within a
site were more variable over both space and time, implying shifts in carbon sources over
small spatial scales and the potential for seasonal fluctuations in phytoplankton
productivity or growth rates (Cifuentes, Sharp & Fogel, 1988). It is possible that higher
variability in d13C values of Amphibalanus eburneus tissue over time may be due to
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differences in the turnover rate of this isotope relative to d15N (Dubois et al., 2007b),
but little is currently known about the turnover rate of carbon and nitrogen isotopes
in barnacles.

Amphibalanus eburneus and algal blooms
The IRL has been exposed to multiple, acute algal blooms over the past decade, with a
particularly detrimental superbloom in 2011 and recurring Aureoumbra lagunensis
blooms in 2012, 2013, and 2016 (Phlips et al., 2014; Galimany et al., 2017a). The
Aureoumbra bloom in 2016 occurred after we had gathered a year of baseline quarterly
sampling on Amphibalanus eburneus feeding in the NIRL, providing an opportunity
to investigate how the trophic ecology of Amphibalanus eburneus changes during an algal
bloom. A single “snapshot” assessment of the d15N and d13C values of POM during the
Aureoumbra bloom demonstrated d15N values that were at or above annual means and
d13C values that were highly variable, with evidence of both enrichment and depletion in
d13C relative to annual means. In contrast, a more time integrated assessment (via d15N
and d13C values of Amphibalanus eburneus tissue) revealed that d15N and, to a lesser
extent, d13C values of Amphibalanus eburneus were enriched during the Aureoumbra
bloom compared to annual means. For d13C, this shift likely reflects a combination of
source homogenization (predominately Aureoumbra) and isotopic fractionation
associated with algal growth and high productivity that alters the d13C signal at the base of
the food web (Cifuentes, Sharp & Fogel, 1988). Although the average enrichment of d13C in
Amphibalanus eburneus tissue relative to POM was still within the range of a trophic
step (mean 1.91‰ ± 0.75 SE) during the bloom, substantial variation in this enrichment
(range -1.59‰ to 4.83‰) suggests that direct reliance of Amphibalanus eburneus on
phytoplankton may be reduced during blooms.

Enrichment of d15N (up to 13‰) may reflect increased Amphibalanus eburneus
consumption of phytoplankton that are relying on enriched sources of anthropogenically-
derived N. Although blooms of Aureoumbra in the IRL have previously been shown to
elicit lower POM15N values than under non-bloom conditions (Kang, Koch & Gobler,
2015), Aureoumbra is also known to rapidly assimilate NH4, a common component of
nitrogen derived from anthropogenic sources such as septic tanks (Lapointe et al., 2015;
Kang, Koch & Gobler, 2015). We therefore propose that Amphibalanus eburneus may be
consuming 15N-enriched Aureoumbra cells at bloom sites. Alternatively, because barnacles
have been shown to reduce feeding efficiency at lower particle sizes (3 to 5 mm; Lesser et al.,
1992), enriched d15N values under bloom conditions may also reflect an additional trophic
step (d15N values of Amphibalanus eburneus tissue was on average enriched by 4.37‰
(range of 3.47‰ to 5.9‰) compared to POM during the bloom) as Amphibalanus
eburneus is feeding more heavily on zooplankton than phytoplankton during an algal
bloom. These data provide initial evidence of nutritional shifts in Amphibalanus eburneus
under bloom conditions, but additional work in the laboratory is needed to verify the role
of this epifaunal species in bloom mitigation (Galimany et al., 2017b).
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CONCLUSIONS
The generalist feeding strategy of Amphibalanus eburneus appears to allow it to exploit
spatially and temporally variable sources of organic matter and may contribute to the
successful dominance of this species across sites in the NIRL (Carlton, Newman &
Pitombo, 2011; Karlson & Osman, 2012). The abundance of Amphibalanus eburneus on
diverse substrates and across both impacted and pristine sites within the NIRL is in
direct contrast to other epifaunal organisms that are more constrained in their distribution
or are currently present at only a fraction of their historical abundance (e.g., Crassostrea
virginica and Mercenaria mercenaria; MacKenzie, Taylor & Arnold, 2001; Wilson et al.,
2005; Garvis, Sacks & Walters, 2015; D.S. Janiak, 2016, unpublished data). As a dominant
and stable faunal component of the NIRL, Amphibalanus eburneus is likely playing an
important role in nutrient and organic matter cycling in this system (Dubois et al., 2007a).
In addition, with a wide distribution and an integration of diverse sources of carbon and
nitrogen into its tissues, Amphibalanus eburneus acts as an important sentinel species and
recorder of isotopic baselines (Post, 2002; Dolenec et al., 2006; Fukumori et al., 2008).
Finally, its nutritional plasticity may also allow Amphibalanus eburneus to capture and
consume bloom particles such as Aureoumbra, providing a potential means for
bioremediation and the prevention of algal blooms via top-down control.
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