
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 3, pp. 130–150. DOI:10.13154/tosc.v2017.i3.130-150

Tight Security Analysis of EHtM MAC
Avijit Dutta, Ashwin Jha and Mridul Nandi

Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
avirocks.dutta13@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

Abstract. The security of a probabilistic Message Authentication Code (MAC) usually
depends on the uniqueness of the random salt which restricts the security to birthday
bound of the salt size due to the collision on random salts (e.g XMACR). To overcome
the birthday bound limit, the natural approach to use (a) either a larger random
salt (e.g MACRX3 uses 3n bits of random salt where n is the input and output size
of the underlying non-compressing pseudorandom function or PRF) or (b) a PRF
with increased domain size (e.g RWMAC or Randomized WMAC). Enhanced Hash-
then-Mask (EHtM), proposed by Minematsu in FSE 2010, is the first probabilistic
MAC scheme that provides beyond birthday bound security without increasing the
randomness of the salt and the domain size of the non-compressing PRF. The author
proved the security of EHtM as long as the number of MAC query is smaller than
22n/3 where n is the input size of the underlying non-compressing PRF. In this
paper, we provide the exact security bound of EHtM and prove that this construction
offers security up to 23n/4 MAC queries. The exactness is shown by demonstrating a
matching attack.
Keywords: Probabilistic MAC, EHtM, XMACR, Alternating Cycle.

1 Introduction
In recent technological advancement of digital transmission, it is important to use some
cryptographic means to authenticate the transmitted message or packet over an insecure
channel. As a solution to this, MAC (Message Authentication Code), a popular primitive
in symmetric key cryptography, plays an important role to enable two legitimate parties
(having access to a shared secret key) to authenticate their transmissions.

Pseudo Random Function or (PRF) [GGM84] is an essential tool in many cryptographic
solutions. One of the natural uses of PRF is to construct a secure MAC. Out of its enormous
usage, it is used to generate a pseudorandom pad for symmetric encryption, and then
applying a universal hash function for producing a secure Hash-then-Mask (HtM) [CW79]
type MAC. The security of PRF based constructions can be compromised if one applies
the PRF twice to the same input [BC09]. Thus, a natural way to avoid repetition of the
input is for the sender to use a counter, or other forms of varying, non-repeating state
(also called nonce), which is updated with each application of the function, giving rise to
stateful MAC. XMACC [BGR95], WMAC [BC09] etc. are some of the examples of stateful
MAC which follows HtM paradigm. However, these constructions have a drawback in
storing the nonce which might in some settings be impractical or unsafe. For example,
maintaining a synchronized nonce across different applications of the function is sometimes
unsafe or even impossible. Thus, a possibility of having a stateless scheme is to use random
values (also called salt) on which to evaluate the pseudorandom function as adopted in
MACRX3 [BGK99], XMACR [BGR95] etc, giving rise to stateless probabilistic MAC.

Informally, a MAC is defined by a pair of algorithms, called tag generation and
verification algorithm. The verification algorithm must verify any tag generated by the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-06-01, Accepted: 2017-08-01, Published: 2017-09-19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201860919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.13154/tosc.v2017.i3.130-150
mailto:avirocks.dutta13@gmail.com, ashwin.jha1991@gmail.com, mridul.nandi@gmail.com
http://creativecommons.org/licenses/by/4.0/

Avijit Dutta, Ashwin Jha and Mridul Nandi 131

tag generation algorithm. Usually tag of a probabilistic MAC consists of an m-bit salt
(also called random coin) and an n-bit core-tag (formally defined in the definition of
probabilistic MAC) depending on the salt. A forgery algorithm makes queries to both
algorithms (i.e. tag generation and verification algorithm). We say that it successfully
forges if it can submit a non-trivial message tag pair to the verification algorithm which
successfully verifies the message tag pair. By non-trivial message tag pair we mean, it
should not be obtained through some earlier tag generation queries. Informally, a MAC is
information theoretically (qm, qv, ε)-secure if there is no forgery algorithm making up to
qm many tag-generation queries and qv many verification queries, the success probability
of forging is at least ε.

A Brief History on Stateless Probabilistic MAC. HtM, due to Carter-Wegman [BC09],
is a popular approach to construct a secure IV-based MAC. When the IV is random, then
the resulting MAC is called probabilistic MAC. XMACR [BGR95] is one of the popular
examples of probabilistic MAC that follows HtM paradigm. The core-tag of probabilistic
MAC, following HtM paradigm, is computed by masking hash output by the output of a
pseudorandom function applied to the salt. More formally,

HtM(X) = (R,HK(X)⊕ fK′(R))

where R is the salt, HK is a ε-AXU keyed hash function and fK′ is a keyed function [Rog99].
The hash function of XOR-MAC is a parallel construction of counter based AXU-hash
which ensures O(q2

m/2m) unforgeable security for m-bit salt as the security is compromised
when the salt repeats after 2m/2 many tag-generation queries (where qm denotes the total
number of tag-generation queries) due to classical birthday paradox. Thus, the natural
question to ask, how to uplift the security of probabilistic MAC. A natural choice is to
use a larger sized salt, (e.g. m = 2n). But this trivial choice suffers from the following
shortcomings.

- Using larger salt increases communication cost and the sender’s effort for generating
large randomness.

- It needs increased domain sized PRF.

The second issue has been resolved by MACRX3 [BGK99] which still uses salt of size
m = 3n bits to compute the mask based on n-bit PRF whereas RWMAC [Min10], a
randomized version of nonce based WMAC provides O(qm/2n) security using n-bit salt
and a 2n bits to n bit PRF. As a solution to both of the problems, RMAC [JJV02]
and FRMAC [JL04] are known to provide optimal security with n-bit salt and n-bit
PRF. However, their security proofs are based on ideal assumption on the underlying
primitive [JJV02, JL04]. In FSE 2010, Minematsu [Min10] proposed a simple variant of
HtM (called Enhanced Hash-then-Mask or EHtM) that uses only n-bit salt and n-bit
PRF. Author has shown its security upto O(22n/3) tag generation queries [Min10]. This
is the first probabilistic MAC construction, illustrated in Fig. 1, which shows that by
appropriately using the salt can enhance the MAC security to go beyond birthday barrier
without requiring larger domain PRF.

Although Minematsu in [Min10] has shown EHtM is secure against all adversaries that
observes at most 22n/3 MAC queries and can make 2n verification queries, we observe that
the scheme is secure even if adversary observes more than 22n/3 many queries and can
make 2n verification queries. In other words, author in [Min10] considered the following
event as bad

Ri = Rj , Rj ⊕HK(Mj) = Rk ⊕HK(Mk) (1)

for some i, j, k ∈ [qm] and bound the probability of the bad event (1) which gives O(q3
m/22n)

bound. We observe that even if the bad event holds, security of the scheme prevails and

132 Tight Security Analysis of EHtM MAC

hence allows us to uplift the security of the construction. It turns out that if

Ri = Rj , Rj ⊕HK(Mj) = Rk ⊕HK(Mk), Rk = Rl (2)

holds for some i, j, k, l ∈ [qm] then the security of the scheme gets compromised. In fact we
have proposed a forgery attack with attack complexity 23n/4 queries that exploits event (2).

R m

T

ψK1

HK

ψK2

– n – `

– n

– n – n

–

n

Figure 1.1: Figure of EHtM; ψK1 and ψK2 are two independent keyed functions, HK is
n-bit ε-AXU hash function. R is a n bit salt and m is message of at most ` blocks.

Our Contribution. In this paper, we show an improved and exact security bound
of EHtM that provides 23n/4 bit MAC security, in other words we show EHtM is secure
for roughly about 23n/4 MAC queries and 2n verification queries. More precisely, we prove
the following result.
Theorem 1. Let ψK1 , ψK2 : {0, 1}n → {0, 1}n be two independent n-bit keyed instances
of family of functions ψ and HK : {0, 1}∗ → {0, 1}n be a ε-AXU n-bit keyed hash function.
Then we have

AdvRF$,⊥
EHtM (qm, qv, `, t) ≤ 2Advprf

ψ (qm+qv, t′)+ 13q4
m

12 · 23n + q2
m

22n+1 + q2
mε

2n+1 + q4
mε

22n +10qvε+
qv
2n ,

where qm be the total number of MAC queries and qv be the total number of verification
queries, ` be the maximum number of message blocks and t = t′ +O((qm + qv)tH), tH be
the maximum time for computing the hash value.

If ε ≈ 2−n, then from Theorem 1, the SUF advantage of EHtM is bounded by O(q4
m/23n) +

O(qv/2n) 1.
Second Contribution. As our second contribution in the paper, we exhibit a forgery
algorithm, making roughly about 23n/4 many MAC queries to the tag-generation oracle of
EHtM and it forges with probability 1.
Note. Minematsu [Min10] considered two block cipher based instantiations of EHtM;
MAC-R1 and MAC-R2 with same security bound as that of EHtM [Min10]. Although in
the paper we study only EHtM construction based on PRF, we believe that our proven
bound of EHtM also holds for block cipher based variants which may require a completely
different analysis for its security proof.

2 Preliminaries
Symbol and Notations. We write ⊥ and > to denote two special symbols refer to reject
(or false) and accept (or true) respectively. We define x =? t to be > if x = t, otherwise it

1Polynomial hash functions generally do not acheive 2−n AXU bound; rather block cipher based UHF
can acheive such a small differential probability, but in this paper we are not assuming any specific type of
hash functions.

Avijit Dutta, Ashwin Jha and Mridul Nandi 133

is defined to be ⊥. For a set X , X ←$X means that X is chosen uniformly from the set
X and it is independent to all random variables defined so far. We write [q] to denote the
set {1, . . . , q}.

2.1 Security Definitions
Message Authentication Code. A Message Authentication Code (MAC) allows two
parties to share a common secret key K to authenticate the data they send to each
other. Working principle of MAC is as follows; The sender Alice applies a Tag Generation
algorithm, denoted as TG, to key K and a message M to generate a tag T , and sends the
message-tag pair (M,T) to receiver Bob. Bob, upon receiving (M,T), applies VeriFication
algorithm, denoted as VF, to key K and the received (M,T) pair and returns either > or
⊥ to indicate whether the received (M,T) pair is authentic or not respectively.

Definition 1. A MAC scheme is a pair Π := (TG,VF) of algorithms. TG is a (possibly
probabilistic) algorithm takes a key K ∈ K (key space), a message M ∈ M (message
space) and returns T ∈ T (tag space). We call a pair (M,T) to be valid for a key K if

Pr[TG(K,M) = T] > 0, 2

otherwise it is said to be invalid. VF is a deterministic algorithm that takes a key K, a
message M and a tag T and returns a symbol ¢ ∈ {>,⊥} such that for all valid pairs
(M,T) for a key K, VF(K,M, T) = > (known as the correctness condition of MAC).

Probabilistic MAC. Π is called a probabilistic MAC if the tag generation algorithm is
probabilistic (otherwise we call it deterministic). Hence it returns a probability distribution
on the tag space T for every pair (K,M) ∈ K×M. To emphasize the probabilistic nature
of the tag generation algorithm, we denote it as TG$. In this paper, we focus on a special
type of probabilistic tag generation algorithm. For each MAC query M , it first samples a
random coin R uniformly from a coin space R and then applies an underlying deterministic
algorithm TG(K,M ;R) to message M and R which outputs the core-tag T . The final tag
returned by TG$ consists of the random coin R and the core-tag T . For each verification
query (R̃, M̃ , T̃), the verification algorithm VF of Π simply returns TG(K, M̃ ; R̃) =? T̃ .
We follow the convention to write the verification query in tilde notation.
Security Definitions of MAC. The forging adversary makes several tag generation
queries and verification queries of a MAC scheme Π. We say that a verification query
(M̃, T̃) is trivial if T̃ is obtained from a previous tag generation oracle with M̃ as a MAC
query. Every trivial query must be valid but the converse is not true. In fact, the goal
of the adversary is to find a non-trivial valid pair. Conventionally, we will assume in
this paper that all adversaries in this paper make no trivial queries. We say that
adversary wins if it submits at least one non-trivial valid verification query. We denote the
probability that a forgery adversary A wins as Advsuf

Π (A). The maximum advantage of
forging Π is defined as

Advsuf
Π (qm, qv, t) := max

A
Advsuf

Π (A)

where maximum is taken over all A which makes at most qm many tag generation oracle
and qv many verification oracle queries and runs in time at most time t. A MAC algorithm
Π is called (ε, qm, qv, t)-suf MAC if Advsuf

Π (qm, qv, t) ≤ ε. For an unbounded adversary, we
may skip the time parameter t.
Distinguishing Game and its advantage. Let us consider C0 and C1 be two classes of
functions. In a simple distinguishing game we consider two oracles O0 and O1 which

2Here the probability is computed under randomness, if any, of the tag-generation algorithm. In case
of deterministic algorithm, we can ignore probability and simply write it as TG(K,M) = T .

134 Tight Security Analysis of EHtM MAC

behaves as follows: for b ∈ {0, 1}, Ob samples Φb←$ Cb and simulates it. For an adversary
A interacting with oracles either O0 or O1, we define the distinguishing advantage of
A as

AdvO0
O1

(A) := |Pr[AO0 returns 1]− Pr[AO1 returns 1]|.

We will use this definition of distinguishing advantage in our paper. Moreover, the above
definition of advantage can be similarly extended for two or more oracles.

Random Function. The set of all functions from a set D to a set R is denoted as
Func(D,R). When R = {0, 1}n, then we write FuncD to denote the set of all functions
from D to {0, 1}n and we write Func when D = R = {0, 1}n. An n-bit uniform random
function over a domain D is RFD ←$ FuncD. We write RF when the underlying domain
set is clear from the context.

- PRF Advantage. Given an oracle adversary A, we define prf-advantage of A
against a keyed function Fk that output n-bit as

Advprf
F (A) := AdvRF

FK
(A) = | Pr

K ←$K
[AFK = 1]− Pr

RF←$ Func
[ARF = 1]|.

Let Advprf
F (q, t) denote maxAAdvprf

F (A) where maximum is taken over all adver-
saries A running in time t, making at most q queries.

(Almost-XOR) Universal Hash Functions. An n-bit hash function H is a (K,D)-
family of hash functions {HK := H(K, ·) : D → {0, 1}n}K∈K defined on its domain space
D and indexed by the key space K. H is called ε-Almost-XOR Universal (AXU) hash
function, if for any two distinct X and X ′ in D and for any Y ∈ {0, 1}n,

Pr
K ←$K

[HK(X)⊕HK(X ′) = Y] ≤ ε.

Let Π = (TG$,VF) be a probabilistic MAC scheme. Let RF$ be the the oracle that on
every MAC query M , samples the coin R uniformly at random from coin space and applies
random function RF on the pair (R,M) and returns (R,RF(R,M)) as the tag. By abusing
of notation, let ⊥ be the oracle that on every verification query (M̃, (R̃, T̃)) returns reject
⊥. Note that, for RF$, if the sampled random coin R is same for two different MAC queries
with same message M , then the remaining part of the tag, i.e. RF(R,M) will be same.
The same property is also true for Π. In the following, we state a result that was used
in [CS16, DJN16] to bound the MAC security of Π in terms of distinguishing advantage of
two pair of oracles (TG$,VF) and (RF$,⊥).

Lemma 1. Let Π := (TG$,VF) a probabilistic MAC scheme. Then,

AdvSUF
Π (qm, qv, t) ≤ AdvRF$,⊥

TG$,VF(qm, qv, t).

2.2 The H-Coefficient Technique
In this section, we briefly discuss the H-Coefficient Technique [Pat08b, CS14, CLL+14].
When an adversary is interacting with an oracle, the collection of all queries and response
is called a transcript, denoted as τ . Sometimes we release more internal information about
the oracle only after the adversary completes all queries. In this case a transcript also
includes the additional information and clearly the maximum distinguishing advantage in
this scenario can not be less than that of without additional information.

Let Xre (resp. Xid) to denote the random variable representing real world and ideal
world transcript respectively. A transcript τ is said to be an attainable transcript if the
probability of realizing τ by ideal oracle is positive (i.e. Pr[Xid = τ] > 0). Let V be

Avijit Dutta, Ashwin Jha and Mridul Nandi 135

the set of all attainable transcripts. For any attainable transcript τ , we similarly write
Pr[Xre = τ], to denote the probability of realizing an attainable transcript in real world.
These probabilities are called interpolation probabilities. Following these notations, we
state the main theorem of The H-Coefficient Technique as follows. We skip the proof of
the theorem as it can be found in many papers, e.g. [Pat08b, CS14, CLL+14].

Theorem 2 (The H-Coefficient Technique). Let V = Vgood t Vbad (disjoint union)
be some partition of the set of all attainable transcripts. Suppose there exists εratio ≥ 0
such that for any τ ∈ Vgood,

Pr[Xre = τ]
Pr[Xid = τ] ≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Vbad] ≤ εbad. Then,

AdvOid
Ore

(A) ≤ εratio + εbad. (3)

When Oid is a uniform random function and Ore is some keyed construction defined over
the same domain, then Eqn. (3) says that Advprf

Ore
(A) ≤ εratio + εbad.

2.3 Results on Alternating Cycle
In this section, we revisit to the basic definition of alternating cycle, alternating path and
its related results which will be used in the MAC security proof and the MAC attack of
EHtM.

Definition 2 (Alternating Cycle [AV96], [Pat08a]). Let us consider a tuple S where

S :=
(
(X1, Y1), (X2, Y2), . . . , (Xv, Yv)

)
.

We say that we have an alternating-cycle in S of length p ≥ 2 and p is even, if we have p
distinct indices i1, i2, . . . , ip such that

Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . . , Xip−1 = Xip , Yip = Yi1 .

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

Figure 2.1: Alternating Cycle of length 4. Continuous line indicates first coordinate
matches. Dotted line indicates second coordinates matches

Definition 3 (Alternating Path [Pat08a]). Given a tuple S :=
(
(X1, Y1), (X2, Y2), . . . , (Xv, Yv)

)
,

we say that we have an alternating-path in S of length p, where p is odd, if we have p+ 1
distinct indices i1, i2, . . . , ip+1 such that

Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . . , Yip−1 = Yip , Xip = Xip+1 .

Similarly, if p is even, then we have an alternating-path in S of length p, where p is even,
if we have p+ 1 distinct indices i1, i2, . . . , ip+1 such that

Xi1 = Xi2 , Yi2 = Yi3 , Xi3 = Xi4 , . . . , Xip−1 = Xip , Yip = Yip+1 .

136 Tight Security Analysis of EHtM MAC

Note: Alternating cycle of length at least 4 must contain an alternating path of length 3.
The following result gives the exact probability of the sum of two independent random
functions over a pair of v inputs, where the tuple of pair of v inputs does not contain any
alternating cycle, as follows. Details proof of it can be found in [AV96].

Lemma 2 ([AV96]). Let f and g be two n-bit independent and uniformly distributed
random functions. Let us consider a tuple S =

(
(X1, Y1), (X2, Y2), . . . , (Xv, Yv)

)
such that

for all i ∈ [v], we have (Xi, Yi) ∈ ({0, 1}n)2 and S does not contain any alternating cycle.
Then for any Ti ∈ {0, 1}n

Pr[f(Xi)⊕ g(Yi) = Ti, 1 ≤ i ≤ v] = 1
2nv . (4)

Since S does not contain any alternating cycle, we obtain a fresh variable 3 either f(Xi)
or g(Yi) from each equation i ∈ [v]. Each of these fresh variable contributes 2−n for each
equation, and thus 2−nv for all the v equations.
A Note on the ramifications of alternating cycle. Let S =

(
(Xi, Yi), . . . , (Xv, Yv)

)
be a tuple where each (Xi, Yi) ∈ ({0, 1}n)2 and it contains an alternating cycle. Let the
alternating cycle be

Xi1 = Xi2 , Yi2 = Yi3 , . . . , Yip = Yi1

of length p, where p is even and i1, . . . , ip are distinct indices, then⊕
j∈{i1,...,ip}

f(Xj)⊕ g(Yj) = 0.

We would like to let the readers know in advance that we use this property to mount the
forging attack on EHtM later in the paper.

3 MAC Security Proof of EHtM
In this section we show MAC advantage of EHtM is O(q

4
m

23n). In other words, we restate
Theorem 1 and prove it in this section. Let us recall the construction of EHtM once again
in the following.

EHtM(M) := ψK1(R)⊕ ψK2(R⊕HK(M))

where R is the random salt, ψK1 and ψK2 are two independent n-bit keyed functions and
HK is an ε-AXU n-bit keyed hash function. In the following, we bound the SUF advantage
of EHtM in terms of bounding the distinguishability advantage due to Lemma 1.
Theorem 1. Let ψK1 and ψK2 be two independent n-bit keyed instances of family of
functions ψ and HK : {0, 1}∗ → {0, 1}n be a ε-AXU n-bit keyed hash function. Then we
have

Adv(RF$,⊥)
EHtM (qm, qv, `, t) ≤ 2Advprf

ψ (qm+qv, t′)+
13q4

m

12 · 23n+ q2
m

22n+1 + q2
mε

2n+1 + q4
mε

22n +10qvε+
qv
2n ,

where qm be the total number of MAC queries and qv be the total number of verification
queries, ` be the maximum number of message blocks and t = t′ +O((qm + qv)tH), tH be
the maximum time for computing the hash value.

In specific, if ε ≈ 2−n then we have,

Adv(RF$,⊥)
EHtM (qm, qv, `, t) ≤ 2Advprf

ψ (qm + qv, t
′) + 3q4

m

23n + q2
m

22n + 11qv
2n .

3A variable is said to be fresh if it is not equal to any of the other remaining variables

Avijit Dutta, Ashwin Jha and Mridul Nandi 137

Proof. Using a hybrid argument, we replace two independent keyed functions with two
independent random functions f and g at the cost of 2Advprf

ψ (qm + qv, t
′) and call the

resulting construction EHtM∗. Then we apply H-Coefficient Technique on EHtM∗ to prove
the following

Adv(RF$,⊥)
EHtM∗ (qm, qv, `) ≤

13q4
m

12 · 23n + q2
m

22n+1 + q2
mε

2n+1 + q4
mε

22n + 10qvε+ qv
2n . (5)

We assume A is computationally unbounded and hence wlog is deterministic and never
repeats a verification query (however it can repeat MAC query). Moreover, it does not
make any trivial verification query. The ideal oracle (RF$,⊥) works similar to the one as
described in Lemma 1 where on each MAC query M , RF$ randomly samples the coin R
and then applies the random function RF(·) on (R,M) and returns (R,RF(R,M)) and on
each verification query (M̃, (R̃, T̃)), ⊥ returns the reject symbol ⊥.

As defined in Sect. 2.2, informally a transcript is a list of query and responses that
is made in an interaction between the adversary and the oracle. In our case, we have
different part of the transcripts as discussed below.
MAC Transcript. A MAC transcript is a finite collection of triplets where each triplet
consists of the queried message, salt and the core-tag. Formally,

τm := {(M1, R1, T1), (M2, R2, T2), . . . , (Mqm
, Rqm

, Tqm
)}

denotes the list of qm many MAC queries of A and its corresponding responses. For
simplicity we avoid the repetition of triplet in τm which can arises due to same random
coin sampled for same message queried to tag-generation oracle. In this case core tag will
be same for both real and ideal oracle i.e, for real oracle,

Ti = f(Ri)⊕ g(Ri ⊕M), Tj = f(Rj)⊕ g(Rj ⊕M) and Ri = Rj ⇒ Ti = Tj .

Similar for ideal oracle,

Ti = RF(Ri,M), Tj = RF(Rj ,M) and Ri = Rj ⇒ Ti = Tj .

Verification Transcript. A verification transcript is a finite collection of quadruples
where each quadruple consists of the verification attempted message, salt, core-tag and
the response obtained from the oracle. Formally,

τv := {(M̃1, R̃1, T̃1, ¢1), (M̃2, R̃2, T̃2, ¢2), . . . , (M̃qv , R̃qv , T̃qv , ¢qv)}

denotes the list of qv many verification queries of A and its corresponding responses, where
for all a ∈ [qv], ¢a ∈ {>,⊥} denotes the accept (¢a = >) or reject (¢a = ⊥).
The pair (τm, τv) denotes the combined list of query response of A that constitutes the
query transcript of the attack. In addition to the above values, we also release the hash
key K (it is sampled independently in case of the ideal oracle) only after all queries are
done. Thus, a transcript τ consists of (τm, τv,K). From a given transcript τ = (τm, τv,K),
we compute Hi = HK(Mi), for all i ∈ [qm] and H̃a = HK(M̃a), for all a ∈ [qv]. We also
denote Si = Hi ⊕Ri, for all i ∈ [qm] and S̃a = R̃a ⊕ H̃a, for all a ∈ [qv]. Let V denote the
set of all attainable transcripts. For an attainable transcript τ = (τm, τv,K), note that
¢a = ⊥ for all a ∈ [qv] and the ideal interpolation probability is

pid = Pr[Xid = τ] = 1
22nqm

· 1
|K|

, (6)

where K is the hash key space. This follows easily from the fact that for each MAC query,
the salt R and the random function output T are uniformly and indepedently sampled.

138 Tight Security Analysis of EHtM MAC

This contributes to 2−2nqm to the probability as we have removed the repetition of triplet
(Mi, Ri, Ti) for all i ∈ [qm] from the MAC transcript. Moreover, when all the query
responses are made, the hash key K is uniformly and independently distributed to all the
previously sampled R and T variables. Thus, it contributes to 1

|K| to the probability.

Bad Transcript and Its Probability in Ideal World. Informally, we say an event is bad
if that event either leads to pass the verification attempt in real oracle or leads to a
distinguishing event. Therefore, we briefly describe here the reason about our identified
bad events.
Note that for all MAC queries in real oracle, we have f(Ri)⊕ g(Si) = Ti for all i ∈ [qm].
Hence, if there is an alternating cycle of any size (has to be even) in

(
(R1, S1), . . . , (Rqm

, Sqm
)
)
,

then the sum of the corresponding Ti values must be zero. This can lead to a distinguishing
event. Thus, in our identified bad events, we first avoid alternating cycle of length two
(also includes the verification query) which is (Ri, Si) = (Rj , Sj) where i 6= j ∈ [qm] (in
case of verification query Ri = R̃a, S̃a = Si and T̃a = Ti; we need the last condition on T̃a
to make the valid verification attempt).

AC2: ∃a ≤ qv, there is an alternating cycle of length two in ((R1, S1), . . . (Rqm
, Sqm

), (R̃a, S̃a)).
Formally,

(a) there exists i 6= j such that Ri = Rj , Sj = Si or
(b) there exists i such that Ri = R̃a, S̃a = Si and T̃a = Ti.

We also avoid an alternating path of length three (which should be present for any
alternating cycle of length at least 4). Similar bad event is considered in which one of the
pairs in the above tuple is for the verification oracle, i.e. (R̃a, S̃a) for any a ∈ [qv]. In this
case, we also need an additional condition on T̃a value.

AP3: ∃a ≤ qv, there is an alternating path of length three in ((R1, S1), . . . (Rqm
, Sqm

), (R̃a, S̃a)).
Formally,

(a) there exists distinct i, j, k, l such that Ri = Rj , Sj = Sk and Rk = Rl or
(b) there exists distinct i, j, k such that Ri = Rj , Sj = Sk, Rk = R̃a and T̃a =

Ti ⊕ Tj ⊕ Tk.

A transcript τ is said to be a bad transcript if either of AC2(a) or AC2(b) or AP3(a) or
AP3(b) holds. In other words, a transcript τ is said to be a good transcript if none of
these conditions hold.

Consequence of Bad Transcript. Suppose AC2(a) holds for some i 6= j while
interacting with real oracle. Then clearly, Ti = Tj . In other words, if we observe Ri = Rj
and Ti = Tj for some i 6= j then this may be due to the hash collision. Then, one can
make additional 2× 2n/2 MAC queries with Mi and Mj . In this case whenever we find
collision in R values, we get collision in T values. This will clearly lead a distinguishing
event as this holds with negligible probability in the ideal oracle.
To exploit AC2(b), an adversary can make verification queries with (R̃a = Ri, M̃a, T̃a = Ti)
and hope that HK(M̃a) = HK(Mi), a collision in the hash value. This would happen with
probability ε. So the success probability is about qvε. This attack would be meaningful
when ε is large. We discuss this attack in Sect. 4.2.

Suppose AP3(a) holds for some i, j, k, l while interacting with real oracle. Now, if we
assume that Si = Sl holds, which is possible to achieve due to the appropriate choice of
messages and Si = Sl is a consequence of Ri = Rj , Sj = Sk and Rk = Rl (details of the
choice of messages for which one can acheive Si = Sl and Si = Sl becomes a consequence of

Avijit Dutta, Ashwin Jha and Mridul Nandi 139

Ri = Rj , Sj = Sk and Rk = Rl can be found in Sect. 4), then it forms an alternating cycle
of length 4 in

(
(Ri, Si), (Rj , Sj), (Rk, Sk), (Rl, Sl)

)
and hence we have Ti⊕Tj⊕Tk⊕Tl = 0

and that leads to a valid forgery attempt. We note here that the alternating path of length
3 is that bad event which is exploited by the adversary to mount a forgery with 23n/4

attack complexity. Details of the attack can be found in Sect. 4.
Suppose AP3(b) holds for some i, j, k, a while interacting with real oracle. Now, if we
assume that Si = S̃a holds, which is possible to achieve due to the appropriate choice of
messages and Si = S̃a is a consequence of Ri = Rj , Sj = Sk and Rk = R̃a, then it creates
an alternating cycle of length 4 in

(
(Ri, Si), (Rj , Sj), (Rk, Sk), (R̃a, S̃a)

)
and hence we have

Ti ⊕ Tj ⊕ Tk ⊕ f(R̃a)⊕ g(S̃a) = 0. This implies T̃a = f(R̃a)⊕ g(S̃a) and thus, the forging
attempt with (M̃a, R̃a, Ti ⊕ Tj ⊕ Tk) will be passed by verification oracle.
Now, we make the following claim which argues that for a good transcript τ , there is
no alternating cycle in the tuple

(
(R1, S1), (R2, S2), . . . , (Rqm

, Sqm
), (R̃a, S̃a)

)
for each

a ∈ [qv].

Claim. Let τ be a good transcript. Then there is no alternating cycle in the following
tuple

S :=
(
(R1, S1), (R2, S2), . . . , (Rqm , Sqm), (R̃a, S̃a)

)
for each a ∈ [qv].

Proof. First observe that S cannot contain any alternating cycle of length 2, as otherwise
it immediately satisfies one of the conditions of AC2, i.e. if the alternating cycle includes
(R̃a, S̃a), then it satisfies AC2(b), otherwise it satisfies AC2(a) and hence violates the
property of good transcript.
Now, we observe that S does not contain alternating cycle of length 4. If it contains,
then it would satisfy one of the conditions of AP3, i.e. if the alternating cycle includes
(R̃a, S̃a), then it satisfies AP3(b) (Note that, alternating cycle in this case may be formed
as Si = Sj , Rj = Rk, Sk = S̃a, R̃a = Ri which does not satisfy AP3(b), but this can be
fixed using reordering of indices), otherwise it satisfies AP3(a)) (Note that, in this case also
alternating cycle may be formed as Si = Sj , Rj = Rk, Sk = Sl, Rl = Ri which does not
satisfy AP3(a), but again this can be fixed using reordering of indices) and hence violates
the property of good transcript.
Now, if S contains an alternating cycle of length 6 or more, then irrespective of whether
(R̃a, S̃a) is included in S or not, the cycle must contain an alternating path of length 3 of
the following form

Ri = Rj , Sj = Sk, Rk = Rl

which immediately satisfies AP3(a). Therefore, S cannot contain any alternating cycle of
length 6 or more. Therefore, S is alternating-cycle free set.

For a good transcript, tuple of input pairs to functions f and g does not contain any
alternating cycle.
Now we resume our proof. Let Vb ⊆ V denotes the set of all bad transcripts and Vg := V\Vb
denotes the set of all good transcripts. Now, we bound the probability of realizing bad
transcripts in ideal world in the following lemma, proof of which is postponed to Sect. 3.1.

Lemma 3. Let Xid and Vb be defined as above. Then we have

Pr[Xid ∈ Vb] ≤ εbad = 13q4
m

12 · 23n + q2
m

22n+1 + q2
mε

2n+1 + q4
mε

22n + 10qvε.

We show in the following lemma that for a good transcript τ , realizing τ is almost as likely
as real and the ideal world.

140 Tight Security Analysis of EHtM MAC

Lemma 4. Let τ = (τm, τv,K) be a good transcript. Then,

pre

pid
:= Pr[Xre = τ]

Pr[Xid = τ] ≥ (1− εratio) = (1− qv
2n).

Proof. Let τ = (τm, τv, k) be a fixed good transcript. We calculate the real interpolation
probability for a good transcript as follows. Note that, the hash key K is sampled
independent to all queries and responses and for each i ∈ [qm], random salt Ri is distributed
uniformly and independently. Therefore,

pre = 1
|K|
· 1

2nqm
· Pr[f(Ri)⊕ g(Ri ⊕HK(Mi)) = Ti, ∀i ∈ [qm]

f(R̃a)⊕ g(R̃a ⊕HK(M̃a)) 6= T̃a, ∀a ∈ [qv]]

For the short hand of notation we have

p := Pr[f(Ri)⊕g(Ri⊕HK(Mi)) = Ti, ∀i ∈ [qm], f(R̃a)⊕g(R̃a⊕HK(M̃a)) 6= T̃a, ∀a ∈ [qv]],

where the probability is calculated over the randomness of f, g. Now, due to the simple
algebra on probabaility, we have

p ≥ Pr[f(Ri)⊕ g(Si) = Ti,∀i ∈ [qm]︸ ︷︷ ︸
D

]−
qv∑
a=1

Pr[f(Ri)⊕ g(Si) = Ti,∀i ∈ [qm], f(R̃a)⊕ g(S̃a) = T̃a︸ ︷︷ ︸
Da

]

Therefore, the task is now to evaluate Pr[D] and Pr[Da] which are evaluated as follows. As τ
is a good transcript, we note from Claim 1 that, for all a ∈ [qv],

(
(R1, S1) . . . , (Rqm

, Sqm
), (R̃a, S̃a)

)
has no alternating cycle. Thus, by Lemma 2,

Pr[D] = 2−nqm and Pr[Da] = 2−n(qm+1).

Hence, p ≥ 1
2nqm (1− qv

2n). Thus,

Pr[Xre = τ] ≥ 1
22nqm × |K|

× (1− εratio) (7)

where εratio = qv

2n . Combining Eqn. (6), Eqn. (7), Lemma 3 and Theorem 3, we obtain the
result as shown in Eqn. (5).

3.1 Bounding Probability of Bad Events
To complete the security proof, we only require to bound the probability of the bad events
as identified in Sect. 3. In other words, in this section we prove Lemma 3. To bound the
probability of the bad transcript in the ideal world, we have

Pr[Xid ∈ Vb] := Pr[AC2a ∨ AC2b ∨ AP3a ∨ AP3b]
≤ Pr[AC2a] + Pr[AC2b] + Pr[AP3a] + Pr[AP3b] (8)
(1)
≤ q2

mε

2n+1 + (qvε+ q2
m

22n+1) + q4
mε

22n + (9qvε+ 13q4
m

12 · 23n)

= 13q4
m

12 · 23n + q2
m

22n+1 + q2
mε

2n+1 + q4
mε

22n + 10qvε

where (1) follows from Lemma 5, 6, 7, and 10. In the rest of this section, we bound the
probability for each of these events.
Recall that, in ideal oracle, R and T are uniformly and independently sampled for each
query and after all the queries are made, a hash keyK is sampled uniformly and independent
to all previously sampled R and T variables.

Avijit Dutta, Ashwin Jha and Mridul Nandi 141

Lemma 5. Pr[AC2a] ≤ q2
mε

2n+1 .

Proof.

Pr[AC2a] =
∑
i<j

Pr[Ri = Rj ∧HK(Mi)⊕Ri = HK(Mj)⊕Rj]

=
∑
i<j

Pr[Ri = Rj ∧HK(Mi) = HK(Mj)]

=
(
qm

2
)
ε

2n ≤ q2
mε

2n+1

This follows from the fact that the hash key K is chosen independently from all salts as
well as all queries made by the adversary (as we are working in the ideal oracle and it is
sampled only after all queries are made). Moreover, Mi 6= Mj since Ri = Rj and we have
already assumed that MAC transcript does not contain repetition of triplet.

Lemma 6. Pr[AC2b] ≤ qvε+ q2
m

22n+1 .

Proof. To bound the probability of AC2b, we first consider an event E: for some
i 6= j ∈ [qm] such that (Ri, Ti) = (Rj , Tj). In the ideal oracle, it is clear that

Pr[E] = qm(qm − 1)
22n+1 ≤ q2

m

22n+1 . (9)

Now, we fix a tuple ((R1, T1), (R2, T2), . . . , (Rqm
, Tqm

)) such that the tuple satisfies ¬E,
i.e. (Ri, Ti) 6= (Rj , Tj) for all i 6= j ∈ [qm]. Therefore, we have

Pr[AC2b | ¬E] =
qm∑
i=1

qv∑
a=1

Pr[Ri = R̃a,HK(Mi)⊕HK(M̃a) = Ri ⊕ R̃a, Ti = T̃a | ¬E]

=
qm∑
i=1

qv∑
a=1

Pr[Ri = R̃a,HK(Mi) = HK(M̃a), Ti = T̃a | ¬E]

(1)=
qm∑
i=1

qv∑
a=1

Pr[HK(Mi) = HK(M̃a)] · Pr[Ri = R̃a, Ti = T̃a | ¬E]

(2)
≤ qvε (10)

(1) follows due to the independence of the hash key from all salts as well as all queries
and responses made by the adversary as in the ideal oracle the hash key is sampled only
after all queries are made. (2) follows as the maximum number of i for which the event
Ri = R̃a, Ti = T̃a is satisfied is at most 1 as we have conditioned on ¬E. Moreover, the
maximum value of the probability of that event is 1. Finally, summing over all a ∈ [qv], we
obtain the bound qvε. Also note that as we have considered only non trivial adversaries, it
follows that Mi 6= M̃a since Ri = R̃a and Ti = T̃a.

Therefore, from Eqn. (9) and Eqn. (10) we have,

Pr[AC2b] ≤ Pr[AC2b | ¬E] + Pr[E] ≤ qvε+ q2
m

22n+1 .

Lemma 7. Pr[AP3a] ≤ q4
mε

22n .

142 Tight Security Analysis of EHtM MAC

Proof. We have,

Pr[AP3a] =
∑
i,j,k,l

Pr[Ri = Rj , Rk = Rl,HK(Mj)⊕HK(Mk) = Rj ⊕Rk]

=
∑
i,j,k,l

∑
r,r′

Pr[Ri = Rj = r,Rk = Rl = r′,HK(Mj)⊕HK(Mk) = Rj ⊕Rk]

(1)=
∑
i,j,k,l

∑
r,r′

Pr[HK(Mj)⊕HK(Mk) = r ⊕ r′] · Pr[Ri = Rj = r ∧Rk = Rl = r′]

(2)
≤

∑
i,j,k,l

ε

22n ≤
q4
mε

22n

(1) follows due to independence of the sampled hash key K over the sampled salts Ri’s.
(2) follows due to the ε-AXU property of the hash function and

∑
r,r′

Pr[Ri = Rj = r ∧Rk =

Rl = r′] is exactly 2−2n. Now, varying over all possible choices of i, j, k, l, we obtain the
bound.
Bounding More Events. Now, we define some more events to bound the remaining bad
event AP3b. We first define multi collision of an element. Given a tuple (X1, X2, . . . , Xv)
and an arbitrary element X, mc(X) is the number of times X appears in the tuple. Let
MC denotes the event that there exists i ∈ [qm] such that mc(Ri) ≥ 4. i.e

Pr[MC] = Pr[∃i ∈ [qm] : mc(Ri) ≥ 4].

The following result establishes a bound on the probability of MC.

Lemma 8. Pr[MC] ≤ q4
m

12·23n , when q4
m ≤ 23n/2.

Proof. To bound Pr[MC] we have the following

Pr[MC] =
qm∑
i=1

Pr[mc(Ri) ≥ 4] =
qm∑
i=1

qm∑
d=4

Pr[mc(Ri) = d]

≤
qm∑
i=1

∞∑
d=4

Pr[mc(Ri) = d] =
∞∑
d=4

qm∑
i=1

Pr[mc(Ri) = d]

(1)
≤

∞∑
d=4

qdm
d! · 2n(d−1)

(2)
≤ 2q4

m

24 · 23n = q4
m

12 · 23n (∵ q4
m ≤ 23n/2)

Note that, (1) is evaluated to at most qd
m

d!·2n(d−1) as we choose a set of d many indices that
are involved in the joint event Ri1 = Ri2 , Ri2 = Ri3 , . . . , Rid−1 = Rid , which gives at most
qdm/d! many choices of indices and for each such choice, the joint event is comprised of
d−1 many independent events (or equalities) where each event contributes 2−n probability.
These events are independent as each Ri is independently distributed. Finally, (2) follows
from simple algebraic calculation.
Now, we define another event MC1 which informally says that, for fixed {i, j} ⊆ [qm] for
which Ri = Rj has occured, the number of {k, l} ⊆ [qm] such that Tk ⊕ Tl collides with
Ti⊕ Tj and Rk = Rl has occured, is at least 3. More formally, MC1 denotes the event that
there exists at least four pair of indices: {{i1, i2}, {i3, i4}, {i5, i6}, {i7, i8}} such that we
have following equalities

(1) =

Ti1 ⊕ Ti2 = Ti3 ⊕ Ti4
Ti3 ⊕ Ti4 = Ti5 ⊕ Ti6
Ti5 ⊕ Ti6 = Ti7 ⊕ Ti8

(2) =

Ri1 = Ri2
Ri3 = Ri4
Ri5 = Ri6
Ri7 = Ri8

Avijit Dutta, Ashwin Jha and Mridul Nandi 143

In the following lemma we bound Pr[MC1 ∧ ¬MC].

Lemma 9. Pr[MC1 ∧ ¬MC] ≤ q4
m

23n .

Proof. Observe that

Pr[MC1 ∧ ¬MC] ≤
∑
i,j

Pr[mc({Ti ⊕ Tj : Ri = Rj}) ≥ 4 | ¬MC].

To compute the probability, we need to select four pair of indices: {{i1, i2}, {i3, i4}, {i5, i6}, {i7, i8}}
such that we have the following linear equations :

(1) =

Ti1 ⊕ Ti2 = Ti3 ⊕ Ti4
Ti3 ⊕ Ti4 = Ti5 ⊕ Ti6
Ti5 ⊕ Ti6 = Ti7 ⊕ Ti8

(2) =

Ri1 = Ri2
Ri3 = Ri4
Ri5 = Ri6
Ri7 = Ri8

Now, we claim that the rank of this system of 7 equations involving T ’s and R’s is at least
6. To argue this, first observe that the rank of the system of equations (2) cannot go below
3 as that would give mc(Ri) ≥ 4. Since, we have conditioned on ¬MC, rank of the system
of equations (2) is either 3 or 4. Now, we have following cases:

• If the system of equations (2) is of full rank, then one can easily see that the rank of
equations (1) is at least 2. Otherwise, there exists at least one choice of indices for
which rank of (2) becomes strictly less than 4.

• When the rank of the system of equations (2) is 3 (e.g if i2 = i3, i4 = i5 and i6 = i1
then Ri5 = Ri6 is trivially dependent on Ri1 = Ri2 , Ri3 = Ri4), then the rank of the
system of equations (1) is 3 (One can see from the above example after applying
the equality of indices in equations (1), we obtain Ti1 = Ti4 , Ti1 = Ti2 , Ti1 ⊕ Ti4 =
Ti7 ⊕ Ti8).

Therefore, in both cases it ensures the rank of this system of equations (involving R and
T) is at least 6. Therefore, (1) is bounded by q8

m

26n ≤ q4
m

23n when q ≤ 23n/4.

Now, we resume to the proof of bounding the final bad event AP3b

Lemma 10. Pr[AP3b] ≤ 9qvε+ 13q4
m

12·23n .

Proof. We have the following

Pr[AP3b] ≤ Pr[AP3b | ¬MC ∧ ¬MC1] + Pr[MC] + Pr[MC1 ∧ ¬MC]

≤ Pr[AP3b | W]︸ ︷︷ ︸
(1)

+ 13q4
m

12 · 23n (From Lemma 8 and 9)

where W = ¬MC ∧ ¬MC1. Now, we bound (1) as follows

qv∑
a=1

∑
i,j,k

Pr[T̃a ⊕ Ti ⊕ Tj ⊕ Tk = 0, Rj = Rk, Ri = R̃a,HK(Mi)⊕HK(Mj) = Ri ⊕Rj | W]

To bound the above probability, we first fix index a and for that fixed a, we write the

144 Tight Security Analysis of EHtM MAC

event as the product of the following conditional probabilities∑
i,j,k
r,r′

Pr[Ti ⊕ Tj ⊕ Tk = T̃a, Rj = Rk = r,Ri = R̃a = r′,HK(Mi)⊕HK(Mj) = Ri ⊕Rj | W]

=
∑
i,j,k
r,r′

Pr[HK(Mi)⊕HK(Mj) = r ⊕ r′] · Pr[Ti ⊕ Tj ⊕ Tk = T̃a, Rj = Rk = r,Ri = R̃a = r′ | W]

(1)
≤ ε

∑
i,j,k
r,r′

Pr[Ti ⊕ Tj ⊕ Tk = T̃a, Rj = Rk = r,Ri = R̃a = r′ | W]

(2)
≤ 9ε

Note that hash key K is sampled independently to all the previously sampled R and T
variables and (1) is evaluated to at most ε due to the ε-AXU property of the hash function.
Moreover, after fixing j, the number of (k, l) for which the event Tj ⊕ Tk ⊕ Tl = T̃i, Rk =
Rl = r,Rj = R̃i = r′ | W is satisfied, is at most 3 and the number of such j is again at
most 3 as we have conditioned on W = ¬MC ∧ ¬MC1. As the maximum value of the
probability of that event is 1, therefore, (2) is evaluated to at most 9ε.
Thus, for fixed a ∈ [qv], the probability of the event is at most 9ε. Therefore, by varying
over all such a, we obtain the bound to be 9qvε.

4 A Matching Attack
In this section, we discuss a forgery attack by exploiting the specific bad event AP3a,
discussed in Sect. 3. We show that the query complexity of the attack matches with the
the proven bound of the construction upto a constant factor and hence proves the tightness
of the security bound.
We construct the following adversary A that makes 23n/4 many tag-generation queries to
the tag generation oracle of EHtM with message M1 and another 23n/4 many queries with
a different message M2. Thus, it makes total 2× 23n/4 many tag-generation queries.
Word on notation. The response obtained from the tag generation oracle when queried
with message M2, will be denoted in prime (′) notation and will be followed throughout
the discussion in this section.
Rationale of the attack. Let us discuss the rationale of the forgery on EHtM. A
chooses two distinct messages M1 and M2 and makes 23n/4 many MAC queries to the
tag-generation oracle with each of these messages. We note here that, for any two queries
with same message, if the sampled random coin happens to be same, then the core-tag
will be same and A will exclude that response from its consideration. Now, after making a
total 2× 23n/4 many queries, it tries to find four indices i, j, k, l such that i 6= k and j 6= l
and all of these following events are satisfied

1. Ri = R′j ,

2. Rk = R′l

3. Ti ⊕ T ′j ⊕ Tk ⊕ T ′l = 0

where Ri, Rk are the sampled random coin when queried with message M1 and R′j , R′l for
message M2. Now, observe that for these fixed four indices i, j, k, l, if all the above events
hold simultaneoulsy, then we have

g(Si)⊕ g(S′j)⊕ g(Sk)⊕ g(S′l) = 0. (11)

Avijit Dutta, Ashwin Jha and Mridul Nandi 145

R M

T

ψK1

HK

ψK2

– n – `

– n

– n – n

–
n

M1 M2

...
...

Ri1

Ri2

R′j1

Rk R′l

Ri R′j ,

δ

δ

Figure 4.1: Forgery on EHtM; Guessing the hash difference in the lower part which is
depicted through solid red line and dashed blue line. Forging attempt in the upper part
which is depicted through solid cyan line and dashed orange line. If Ri = R′j , Rk = R′l
and Ti ⊕ T ′j ⊕ Tk ⊕ T ′l = 0 then A computes Rk ⊕R′j = δ, an estimated hash difference.
Then A finds Ri1 = R′j1

and Ri1 ⊕Ri2 = δ and forges with (M2, Ri2 , Ti1 ⊕ T ′j1
⊕ Ti2). A

little calculation shows that if δ is the correct guess of hash difference then ψK1(R′i2)⊕
ψK2(Ri2 ⊕HK(M2)) = Ti1 ⊕ T ′j1

⊕ Ti2 .

Eqn. (11) holds either (a) due to the randomness of g function (i.e the output of random
function sums to zero) or (b) HK(M1)⊕HK(M2) = Rk ⊕R′j . If case (b) holds, then A
can retrieve the hash difference and use this difference to make the forgery attempt and if
case (a) holds then we have to repeat the experiment as described in the following attack
algorithm.
Attack Algorithm.

Online Phase of Attack on EHtM

1 : fix M1 and i = 1 to 23n/4

2 : M1 → EHtM.TG; (Ri, Ti)← EHtM.TG;L1 ← L1 ∪ {(Ri, Ti)}.

3 : fix M2 6= M1 and i = 1 to 23n/4

4 : M2 → EHtM.TG; (R′i, T ′i)← EHtM.TG;L2 ← L2 ∪ {(R′i, T ′i)}.

Offline Phase of Attack on EHtM

1 : ∀(Ri, Ti) ∈ L1, if (R′j , T ′j) ∈ L2 such that Ri = R′j = R then L← L ∪ {(R, Ti, T
′
j)}.

2 : ∀(R, Ti, T
′
j), (R∗, Tk, T

′
l) ∈ L, if Ti ⊕ T ′j = Tk ⊕ T ′l , then δ = R⊕R∗, L∆ ← L∆ ∪ {δ}.

Verification Attempt on EHtM

1 : ∀δ ∈ L∆, if (R, Ti1 , T
′
j1) ∈ L and (Ri2 , Ti2) ∈ L1 such that R⊕Ri2 = δ

2 : then (Ri2 ,M2, (Ti1 ⊕ T
′
j1 ⊕ Ti2))→ EHtM.VF;

3 : if EHtM.VF→ >, return 1
4 : if no such (Ri2 , Ti2) is found repeat all three phases.

Figure 4.2: SUF adversary A for EHtM.

Analysis of the attack. To start with the analysis, we assume that AXU advantage of
the underlying hash function H is 2−n (i.e. ε = 2−n). Let us fix four indices i 6= k ∈ [qm]

146 Tight Security Analysis of EHtM MAC

and j 6= l ∈ [qm]. For each such fixed four indices we define the indicator random variable
Iijkl as follows:

Iijkl =
{

1 if Ri = R′j , Rk = R′l and HK(M1)⊕HK(M2) = R′j ⊕Rk
0 otherwise

.

Let X denotes the number of possible ways we can choose the set of four indices i, j, k, l
such that

(1) =

Ri = R′j
Rk = R′l
HK(M1)⊕HK(M2) = R′j ⊕Rk

holds. As a result, we have
X =

∑
ijkl

Iijkl.

Now, we are interested to find E[X]. Due to linearity of expectation, we have

E[X] =
∑
ijkl

Pr[Iijkl = 1]

=
∑
ijkl

Pr[Ri = R′j , Rk = R′l,HK(M1)⊕HK(M2) = R′j ⊕Rk]

=
(
qm

4
)

23n

Therefore, expected number of i, j, k, l for which (1) holds is (qm
4)

23n .
Now, we fix indices i1 6= i2 ∈ [qm], j1 ∈ [qm]. For each such fixed indices, we define
indicator random variable Ĩi1j1i2 as follows:

Ĩi1j1i2 =
{

1 if Ri1 = R′j1
, Ri1 ⊕Ri2 = HK(M1)⊕HK(M2), Ri2 /∈ L2

0 otherwise
.

Let X̃ denotes the number of possible ways we can choose the set of three indices i1, j1, i2
such that

(2) =

Ri1 = R′j1

Ri1 ⊕Ri2 = HK(M1)⊕HK(M2)
Ri2 /∈ L2

holds. As a result, we have
X̃ =

∑
i1j1i2

Ĩi1j1i2 .

As before, we are interested to find E[X̃] and due to linearity of expectation, we have

E[X̃] =
∑
i1j1i2

Pr[Ri1 = R′j1
, Ri1 ⊕Ri2 = HK(M1)⊕HK(M2), Ri2 /∈ L2]

≥
∑
i1j1i2

(Pr[Ri1 = R′j1
, Ri1 ⊕Ri2 = HK(M1)⊕HK(M2)]

−
23n/4∑
k=1

Pr[Ri1 = R′j1
, Ri1 ⊕Ri2 = HK(M1)⊕HK(M2), Ri2 = R′k])

≥
∑
i1j1i2

(1
22n −

1
29n/4)

≥ q3
m

22n (1− 1
2n/4) (12)

Avijit Dutta, Ashwin Jha and Mridul Nandi 147

As we mentioned before, the observable events (i.e. Ri = R′j , Rk = R′l, Ti⊕T ′j⊕Tk⊕T ′l = 0)
implies Eqn. (11) which can be satisfied due to the randomness of g function. Using the
same analysis before, it is easy to see the expected number of i, j, k, l, which we denote as
E[X ′], such that the following events are satisfied simultaneously

(3) =

Ri = R′j
Rk = R′l
g(Si)⊕ g(S′j)⊕ g(Sk)⊕ g(S′l) = 0

is (qm
4)

23n . Therefore, the expected number of verification attempt made by adversary is the
sum of E[X] and E[X ′] which is 2(qm

4)
23n .

Choice of parameters. If we choose number of MAC queries qm = 23n/4, then on
average there exists 1 choice of i, j, k, l such that (1) holds. For such choice of i, j, k, l we
retrieve the correct hash difference. For that correct hash difference, from Eqn. (12), there
exists on average at least one choice of i1, j1, i2 such that (2) holds and for that choice of
i1, j1, i2, the verification attempt is successful. Since, the expected number of verification
queries is 2(qm

4)
23n , we require on average 2 verification attempts.

Remark 1. In the discussion of Consequence of bad transcripts in Sect. 3, we stated
that Si = Sl is possible to achieve due to the appropriate choices of messages and Si = Sl
is a consequence of Ri = Rj , Sj = Sk and Rk = Rl. Note that, in our attack, with two
distinct messages M1,M2, Si = S′l trivially follows from Ri = R′j , Rk = R′l and Sk = S′j .

4.1 Attack Implementation
In this section, we present neccessary data structures for execution of the attack and
estimate required memory and time complexity. As discussed, the attack is divided into
the following two parts : (a) Online phase to detect alternating cycle of length 4, and
(b) Offline phase to detect alternating path of length 3. We require the following data
structures for execution of the attack algorithm.
Data Structures.

1. A Master Hash Table Lhash with the following attributes:

(indxR, indxR′ , R,R′, TR, TR′).

2. A Collided Salt Hash Table Lsalt with the following attributes:

(indxR, indxR′ , R,R′).

3. A Tag Collision Hash Table Ltag with the following attributes:

(Tag-XOR, Indx1, Indx2).

With abuse of notation, we denote the blank entries for all of the above tables by ⊥.
Online Phase. In the online phase of the attack, adversary A does the following:

1. For message M1, let A makes i-th tag generation query. If the sampled Ri for that
corresponding query already appears in the 3rd column of Lhash, then A does nothing.
Otherwise, it makes the following entry in Lhash.

(i,⊥, Ri,⊥, Ti,⊥).

A continues this step until the number of entries in Lhash reaches to 23n/4.

148 Tight Security Analysis of EHtM MAC

2. For message M2, let A makes j-th tag generation query. If the sampled R′j for that
corresponding query already appears in the 4th column of Lhash, then A does nothing.
Otherwise, if it appears in 3rd column of Lhash, let the entry be

(i,⊥, Ri,⊥, Ti,⊥)

then A modifies that entry as

(i, j, Ri, R′j , Ti, T ′j).

Otherwise, it makes the following entry in Lhash.

(⊥, j,⊥, R′j ,⊥, T ′j).

A continues this step until the number of entries in Lhash reaches to 23n/4.

3. Make a linear search in Lhash and construct two more tables in the following way

(a) Start searching from top of Lhash and search for entries in the table with indxR
and indxR′ do not contain ⊥. Let such entry be

(i, j, Ri, R′j , Ti, T ′j).

.

For each such entry, A does the following

(a) Make a new entry in Lsalt with following items

(i, j, Ri, R′j).

(b) Then A computes ∆T := Ti ⊕ T ′j .
(c) A checks if ∆T already appears in the 1st column of Ltag. Let the entry be

(∆T , k, l).

Then, A retrieves the value (k, l) ans thus obtains four indices i, j, k, l. Otherwise,
it makes a new entry to Ltag with items

(∆T , i, j).

Offline Phase. In the offline phase of the attack, adversary A does the following:

1. Given i, j, k, l, go to the row of table Lhash with first two entries i, j and retrieve the
value of the 3rd column of that row i.e Ri. Similarly, go to the row of table Lhash
with first two entries k, l and retrieve the value of the 3rd column of that row i.e Rk.
Then compute δ = Ri ⊕Rk.

2. For each entry (u, v,Ru, R′v) in Lsalt, search for Ru ⊕ δ (R′v ⊕ δ resp.) in 3rd column
(4th column resp.) of Lhash. If A finds an entry

(w,⊥, Rw,⊥, Tw,⊥)

in Lhash where Rw = Ru ⊕ δ then forge with

(M2, Rw, Tu ⊕ Tv ⊕ Tw).

or if A finds an entry
(⊥, w′,⊥, Rw′ ,⊥, Tw′)

in Lhash, where Rw′ = Rv ⊕ δ then forge with

(M1, Rw′ , Tu ⊕ Tv ⊕ Tw′).

Avijit Dutta, Ashwin Jha and Mridul Nandi 149

Memory and Time Complexity. The major part of memory consumption lies in online
phase of the attack to build three tables. Expected size of table Lhash is 23n/4 since we have
two independently without replacement sampled random vectors of size 23n/4 each and
hence expected size of Lsalt and Ltag is 2n/2. Moreover, the expected number of quadruple
(i, j, k, l) for which Ti ⊕ T ′j ⊕ Tk ⊕ T ′l = 0 is 1 and hence the expected number of δ value
is 1 which is the correct estimation of hash difference with high probability. So, overall
the memory required for the attack is roughly 23n/4. Time complexity of online phase of
the attack is dominated by building Lhash which is roughly 23n/4. The time complexity of
offline phase is bounded by the size of Lsalt which is roughly 2n/2 and hence the overall
time complexity of the attack is 23n/4.

4.2 Attack Algorithm of EHtM Exploiting Bad Event AC2b
We construct an adversary A that forges on EHtM exploiting the bad event AC2b. This
attack is simple to describe. A only makes a single MAC query with messageM and obtains
response (R, T). Now, A will make qv many verification queries (M1, R, T), . . . , (Mqv , R, T)
where M1, . . . ,Mqv

are all distinct messages, hoping to find a hash collision i.e. within qv
many verification attempts A hopes that ∃i ∈ [qv] such that HK(M) = HK(Mi).
Note that, success probability of the adversary in mouting this attack is roughly about qvε
where ε is the AXU advantage of HK . This attack is meaningful when ε is large.

Acknowledgements
We would like to thank all the anonymous reviewers for their valueable comments and
suggestions to improve the quality of the paper.

References
[AV96] William Aiello and Ramarathnam Venkatesan. Foiling birthday attacks in

length-doubling transformations - benes: A non-reversible alternative to feistel.
In Advances in Cryptology - EUROCRYPT ’96, pages 307–320, 1996.

[BC09] John Black and Martin Cochran. MAC reforgeability. In Fast Software Encryp-
tion, FSE 2009, pages 345–362, 2009.

[BGK99] Mihir Bellare, Oded Goldreich, and Hugo Krawczyk. Stateless evaluation of
pseudorandom functions: Security beyond the birthday barrier. In Advances in
Cryptology - CRYPTO ’99, pages 270–287, 1999.

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR macs: New methods
for message authentication using finite pseudorandom functions. In Advances
in Cryptology - CRYPTO ’95, pages 15–28, 1995.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round even-mansour cipher. In Advances in
Cryptology - CRYPTO 2014,, pages 39–56, 2014.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Advances in Cryptology - EUROCRYPT 2014,, pages 327–350, 2014.

[CS16] Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday
secure, nonce-misuse resistant MAC. In CRYPTO 2016, Proceedings, Part I,
pages 121–149, 2016.

150 Tight Security Analysis of EHtM MAC

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. Syst. Sci., 18(2):143–154, 1979.

[DJN16] Avijit Dutta, Ashwin Jha, and Mriul Nandi. Exact security analysis of hash-
then-mask type probabilistic mac constructions. Cryptology ePrint Archive,
Report 2016/983, 2016. http://eprint.iacr.org/2016/983.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In Advances in Cryptology, Proceedings of
CRYPTO ’84, pages 276–288, 1984.

[JJV02] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of ran-
domized CBC-MAC beyond the birthday paradox limit: A new construction.
In Fast Software Encryption, FSE 2002, pages 237–251, 2002.

[JL04] Éliane Jaulmes and Reynald Lercier. Frmac, a fast randomized message authen-
tication code. IACR Cryptology ePrint Archive, 2004:166, 2004.

[Min10] Kazuhiko Minematsu. How to thwart birthday attacks against macs via small
randomness. In Fast Software Encryption, FSE 2010, pages 230–249, 2010.

[Pat08a] Jacques Patarin. A proof of security in o(2n) for the benes scheme. In Progress
in Cryptology - AFRICACRYPT 2008, pages 209–220, 2008.

[Pat08b] Jacques Patarin. The “Coefficients H” Technique. In Selected Areas in Cryptog-
raphy, SAC, pages 328–345, 2008.

[Rog99] Phillip Rogaway. Bucket Hashing and Its Application to Fast Message Authen-
tication. J. Cryptology, 12(2):91–115, 1999.

	Introduction
	Preliminaries
	Security Definitions
	The H-Coefficient Technique
	Results on Alternating Cycle

	MAC Security Proof of EHtM
	Bounding Probability of Bad Events

	A Matching Attack
	Attack Implementation
	Attack Algorithm of EHtM Exploiting Bad Event AC2b

