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Abstract. In this paper, we study the security of Grain-like small state stream ciphers
by fast correlation attacks, which are commonly regarded as classical cryptanalytic
methods against LFSR-based stream ciphers. We extend the cascaded structure
adopted in such primitives in general and show how to restore the full internal state
part-by-part if the non-linear combining function meets some characteristic. As a case
study, we present a key recovery attack against Fruit, a tweaked version of Sprout
that employs key-dependent state updating in the keystream generation phase. Our
attack requires 262.8 Fruit encryptions and 222.3 keystream bits to determine the
80-bit secret key. Practical simulations on a small-scale version confirmed our results.
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1 Introduction
Design of secure small state stream ciphers for constrained hardware applications is an
important line of work in recent years, which extends the design paradigm domain of
lightweight stream ciphers in theory and provides interesting primitives for low power
devices like passive RFID tags in practice. Such small state ciphers often utilize a key-
dependent state updating in both, initialization and keystream generation phases, to thwart
time/memory/data tradeoff attacks [5], and the non-linear feedback shift registers (NFSR)
are main building blocks to resist (fast) correlation [6, 7, 8, 19, 20, 24] and algebraic attacks
[9, 10]. So far, there are several candidates available in this domain, i.e., Sprout [1], Fruit
[13], Plantlet [25] and Lizard [15], which are designed in an ad-hoc way following the above
essential ideas.

On the other hand, the lack of a well-understood theoretical study in this domain
apparently restricts the confidence that people have on such primitives. The event that
Sprout has been broken shortly after its publication [2, 29, 12, 21, 22], has put heavy
shadows on this kind of ciphers. To remedy the situation, three new primitives are
proposed, i.e., Fruit, Plantlet and Lizard, which are designed carefully with the lessons
learned from Sprout in mind. It is expected that lower area, thus power consumption could
be achieved by using a fixed non-volatile secret key and the key-dependent state updating
in an adequate way. This motivates us to study the security of these small primitives
against a new type of attacks that is well-tailored for them.
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In this paper, we study the security of these Grain-like small state stream ciphers by
fast correlation attacks, the classical cryptanalytic methods against LFSR-based stream
ciphers. We first define a generalized model for such small state ciphers extracted from
the real-world primitives, which adopts a cascaded structure to connect several NFSRs
and exploits the key-dependent state updating in the keystream generation phase. It
is shown that if the non-linear combining function used to generate the final keystream
has some pseudo-linear properties, i.e., for each state candidate of the independently
updating register, the combining function becomes linear with respect to the involved
variables coming from the other registers, then the whole system could be converted into
a degraded sub-system which is a linearly filtered NFSR in nature, whether dynamic
or not. It is further demonstrated that we could restore the full internal state of the
model in a divide-and-conquer manner by utilizing the fast correlation attacks on random
probabilistic linear systems derived from the degraded sub-system. The well-known Fast
Walsh Transform (FWT) [26] plays a central role in building the efficient distinguishers
in the attack. Based on our attack, new general design criteria are suggested for the
model. As a case study, we describe a key recovery attack against the Fruit stream cipher
[13], a tweaked version of Sprout to address the previous weaknesses and suggested for
practical applications in constrained hardware environments. Our attack requires 262.8

Fruit encryptions and 222.3 keystream bits to determine the 80-bit secret key, which clearly
breaks the 80-bit security claim. Note that there is another attack on the target version
of Fruit in [11] with higher complexity and the most recent version of Fruit taking into
account the attacks presented herein is scratched by a weak key attack in [16], while our
attack applies to all the keys and reveals a set of insights on such small state designs in
its own right. In addition, our attack works for any round key generation algorithm, e.g.,
whether round keys are balanced or not (previous attacks on Sprout in [21] and Fruit in
[11] exploit specific properties of round key construction). Practical experiments on a
small-scale version of the primitive well confirmed our results.

This paper is structured as follows. In Section 2, we present a brief description of
Fruit and propose a generic model for Grain-like NFSR-based small state stream ciphers,
which inherits the spirit of the corresponding real-world designs. Then in Section 3,
we present a high-level general description of our attack. In Section 4, we discuss how
to construct parity-checks based on the specified property of the non-linear combining
function both in the model and in Fruit itself. In Section 5, a dedicated fast correlation
attack is developed on the generic model, interleaved by the application to Fruit at each
step with the theoretical complexity analysis. Section 6 provides the experimental results.
Finally, some conclusions are drawn in Section 7 with the new general design criteria on
such primitives.

2 The Grain-like Small State Stream Ciphers
In this section, we will first provide a brief description of the Fruit stream cipher proposed
in [13] as far as relevant to our work, and then present the generic model for Grain-like
small state stream ciphers.

2.1 Description of Fruit
Fruit is a bit-oriented stream cipher adopting a Grain-like structure and utilizes an 80-bit
secret key K = (k0, k1, ..., k79) and a 70-bit public initial value IV = (iv0, iv1, ..., iv69) to
generate the keystream. As shown in Fig. 1, there are five parts involved, a 43-bit LFSR
whose state at time t is denoted by St = (st, st+1, ..., st+42), a linked 37-bit NFSR whose
state at time t is denoted by N t = (nt, nt+1, ..., nt+36), an 80-bit fixed key register, and
two counter registers, a 7-bit Cr = (c0t , ..., c6t ) and an 8-bit Cc = (c7t , ..., c14

t ), allocated for
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the round key function and for the initialization/keystream generation, respectively. Note
that c6t and c14

t are the LSBs of the two counters respectively. These two counters increase
by 1 at each tick, and work continually, i.e., after they become all ones, counting from
zeros to all ones again.

Figure 1: The keystream generation of Fruit

The 43-bit LFSR is updated independently and recursively by a linear function f as
st+43 = f(St) = st⊕st+8⊕st+18⊕st+23⊕st+28⊕st+37. The NFSR is updated recursively
by a non-linear feedback function g defined as

nt+37 =k′t ⊕ st ⊕ c10
t ⊕ g(N t)

=k′t ⊕ st ⊕ c10
t ⊕ nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12nt+3 ⊕ nt+14nt+25

⊕ nt+8nt+18 ⊕ nt+5nt+23nt+31 ⊕ nt+28nt+30nt+32nt+34,

where k′t is the round key bit, and c10
t , the 4-th LSB of Cc, is the counter bit generated
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bit k′t is generated by combining 6 bits of the key as k′t = ksvky+64⊕kpku+72⊕kq+32⊕kr+64.
Given the internal state (St, N t) at time t, the filter function h produces ht =

nt+1st+15 ⊕ st+1st+22 ⊕nt+35st+27 ⊕ nt+33st+11 ⊕ st+6st+33st+42, and the keystream bit
is generated as

zt = ht ⊕ st+38 ⊕ nt ⊕ nt+7 ⊕ nt+13 ⊕ nt+19 ⊕ nt+24 ⊕ nt+29 ⊕ nt+36.

During the key/IV setup phase, first load the key bits in the following way: ni = ki, 0 ≤
i ≤ 36; si = ki+37, 0 ≤ i ≤ 42. Then pad the IV to 130 bits by concatenating 1 bit one
and 9 bit zeros to the head of IV and 50 bit zeros to the end of IV as

IV ′ = 1000000000︸ ︷︷ ︸
10

iv0iv1...iv69︸ ︷︷ ︸
70

000...000︸ ︷︷ ︸
50

= iv′0iv
′
1 · · · iv′129.

In the first step of the initialization, set Cr = Cc = 0 and run the cipher 130 rounds as
follows: the LFSR is updated as st+43 = zt ⊕ iv′t ⊕ f(St), while the NFSR is updated
as nt+37 = zt ⊕ iv′t ⊕ k′t ⊕ st ⊕ c10

t ⊕ g(N t), and no keystream bit is generated. Next
comes the second step of the initialization, first set all bits of Cr equal to the LSBs of the
NFSR except the last bit of Cr that is set to the LSB of the LFSR, and then set s130 to
1. Hereafter run the cipher 80 rounds without the feedback in the LFSR and NFSR, i.e.,
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Figure 2: The generic model for the Grain-like small state stream ciphers

the LFSR updating function is changed to st+43 = f(St), the NFSR updating function is
changed to nt+37 = k′t ⊕ st ⊕ c10

t ⊕ g(N t), and no keystream bit is generated.
After the initialization phase, the keystream generation phase starts and the keystream

bits are produced.

2.2 The Generalized Model
Inspired by Fruit as well as by other similar primitives, now we present the generalized
model for Grain-like small state stream ciphers as depicted in Fig.2, which is helpful in
the sense that we could study some special properties/choices more clearly in a unified
framework. The following notations will be used in the model.

- N t = (nt, nt+1, ..., nt+m−1), the m-bit internal state of the cascaded NFSR at time t.
- St = (st, st+1, ..., st+m′−1), the m′-bit internal state of the FSR at time t, which

updates independently in a invertible way, with a either linear or non-linear feedback
function, in the keystream generation phase.

- K = (k0, k1, ..., kl−1), the l-bit secret key, which satisfies l ≤ m+m′ ≤ 2l.
- k′t = RKF(K, ·), the round key bit generated at time t.
- Cc, a round counter for the NFSR state updating.
- ct, a counter bit generated by the counter Cc at time t.
- PSt = {st+α1 , st+α2 , ..., st+αj1

}, a subset of St and the input variables of the filter
function h, introduced below, from the FSR, 0 ≤ α1 < α2 < ... < αj1 ≤ m′ − 1.

- PNt = {nt+β1 , nt+β2 , ..., nt+βj2
}, a subset of N t and the input variables of the filter

function h from the NFSR, 0 ≤ β1 < β2 < ... < βj2 ≤ m− 1.
- QSt = {st+σ1 , st+σ2 , ..., st+σr1

}, a subset of St and the input variables of the linear
Boolean function φ, introduced below, from the FSR, 0 ≤ σ1 < σ2 < ... < σr1 ≤ m′ − 1.

- QNt = {nt+η1 , nt+η2 , ..., nt+ηr2
}, a subset of N t and the input variables of the linear

Boolean function φ from the NFSR, 0 ≤ η1 < η2 < ... < ηr2 ≤ m − 1. There are five
Boolean functions involved in the model: a (either linear or non-linear) Boolean function
f , a non-linear Boolean function g, a linear Boolean function lin, a linear Boolean function
φ and a non-linear filter function h. At each step, the FSR is updated independently by f ,
while the NFSR is updated by g with the round key bit k′t, the counter bit ct, and some
bits of the FSR as inputs. The round key bit k′t at time t is generated by the round key
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function RKF, which takes the secret key K as part of the input. The model is specified
by the following items in the keystream generation phase.
(1) Components

- Denote the initial state of the FSR by S0. It is updated recursively and independently
by f as St+1 = (st+1, st+2, · · · , st+m′) with st+m′ = f(St). We assume this process
is invertible, and the inverse process is St−1 = (st−1, st, · · · , st+m′−2) with st−1 =
f−1(St).

- Denote the initial state of the NFSR by N0. It is updated recursively by the non-
linear Boolean function g, along with some elements generated by the secret key, the
counter Cc, and the FSR, shown below.

nt+m = k′t ⊕ ct ⊕ lin(St)⊕ g(N t), (1)

where k′t is the round key bit generated at time t, ct is a counter bit generated by
the counter Cc at time t, and lin(·) is a linear Boolean function which represents
the xor of some inputs from the FSR state St. Similarly, we assume this non-linear
process is invertible, and the inverse process is computed as nt−1 = k′t−1 ⊕ ct−1 ⊕
lin′(St−1)⊕ g−1(N t).

- A linear Boolean function φ(·) from GF(2)r1+r2 to GF(2) is used as one part of the
output function, defined as

φt , φ(QSt , QNt) =
(⊕r1

i=1
st+σi

)
⊕
(⊕r2

i=1
nt+ηi

)
,

which takes r1 input values from the FSR state St and r2 input values from the
NFSR state N t, respectively.

- A filter function h : GF(2)j1+j2 → GF(2), ht , h(PSt , PNt) is used as the other part
of the output function, which takes j1 input values from the FSR state St and j2
input values from the NFSR state N t, respectively.

- The output function z(·) = h(·)⊕ φ(·), which generates the keystream {zt}t≥0 based
on the inputs taken from both St and N t for t = 0, 1, ....

(2) Keystream generation. As just stated, the keystream bit zt is recursively computed
as zt = ht ⊕ φt, t = 0, 1, ...

(3) Assumed properties

- (3.1). we assume the RKF is periodic, so are the round key bits. Let p be the least
positive integer such that k′t+p = k′t for any t ≥ 0, i.e., the round key bits repeat in a
cycle of length p. Besides, our model could also cover the case that the counter bits
ct are unknown. In this case, we only assume that ct is periodic, i.e., there exists a
least positive integer q such that ct+q = ct for any t ≥ 0.

- (3.2). (Pseudo-linearity.) For the filter function h : GF(2)j1+j2 → GF(2), hPSt (PNt)
with PSt ∈ GF(2)j1 and PNt ∈ GF(2)j2 is used to replace h(·) for a fixed given
value of PSt . We assume for any choice of PSt , hPSt to be a linear Boolean function
with respect to the inputs from PNt . Note that the FSR is updated independently,
accordingly, for any possible value of the FSR initial state S0, the outputs of the
model depend linearly on the NFSR bits, thus the degraded system can be interpreted
as a linearly filtered NFSR involving the secret round key bits, which have a known
cycle p.
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Here we stress that the NFSR in the model can be further decomposed into a series of
cascaded smaller NFSRs, which could also be treated by our cryptanalysis. It is obvious
that our generalized model could cover Grain v1 [17] and Fruit described above as special
cases, but not Plantlet [25] and Lizard [15] so far, the reason for the latter is that the
Assumed property (3.2) does not hold in the cases of Plantlet and Lizard (and the designers
of Lizard were aware of the fast correlation attack on Fruit to be presented later).

For Grain v1, it fits into the model with the parameters m = 80, m′ = 80 and l = 80,
which are the lengths of the NFSR, the LFSR and the secret key, respectively. Since the
secret key is not involved in the keystream generation phase, thus for any time t the round
key bit k′t is always 0, so is the counter bit ct. Besides, the keystream bit zt at time t is
generated as zt = h(st+3, st+25, st+46, st+64, nt+63)⊕nt+1⊕nt+2⊕nt+4⊕nt+10⊕nt+31⊕
nt+43 ⊕ nt+56, where

h(·) = st+25 ⊕ nt+63 ⊕ st+3st+64 ⊕ st+46st+64 ⊕ st+64nt+63 ⊕ st+3st+25st+46

⊕ st+3st+46st+64 ⊕ st+3st+46nt+63 ⊕ st+25st+46nt+63 ⊕ st+46st+64nt+63,

where we use the underline to show the pseudo-linearity of h(·). To fit into the model, we
have PSt = {st+3, st+25, st+46, st+64}, QSt = ∅, PNt = {nt+63} andQNt = {nt+1, nt+2, nt+4, nt+10, nt+31, nt+43, nt+56}.
Note that hPSt is a linear Boolean function with the inputs from PNt , accordingly, for any
fixed value of the LFSR initial state of Grain v1, the outputs will depend linearly on the
NFSR bits. However, due to the fact that the length of the LFSR in Grain v1 is already
80-bit, our attack will have a time complexity well above 280, thus becomes inefficient.

Next, Fruit fits into the model with the parameters m = 37, m′ = 43 and l = 80,
representing the lengths of the NFSR, the LFSR and the secret key, respectively. In
Fruit, the secret key is involved in the NFSR state updating, and the round key bit k′t is
generated as

k′t = ksvky+64 ⊕ kpku+72 ⊕ kq+32 ⊕ kr+64 , RKF(K,Ctr),

where Cr = (c0t , ..., c6t ) is a 7-bit round counter allocated for the round key function. Note
that k′t is periodic with a cycle of length p = 128, i.e., k′t+128 = k′t for any t ≥ 0. There is
an 8-bit counter Cc = (c7t , ..., c14

t ) in Fruit, where the 4th LSB c10
t of Cc is employed in the

NFSR state updating. It should be noted that Cc is deterministic at any time t, and is
independent of the key, thus c10

t is known. Actually, we figure out that the counter bit c10
t

is periodic with a cycle of length q = 32, i.e., c10
t+32 = c10

t for any t ≥ 0, and in each cycle,
this bit takes the values 0, 0, ..., 0︸ ︷︷ ︸

16

1, 1, ..., 1︸ ︷︷ ︸
16

.

Given the internal state (St, N t) of Fruit at time t, the keystream bit is generated as

zt =h(st+1, st+6, st+11, st+15, st+22, st+27, st+33, st+42, nt+1, nt+33, nt+35)
⊕ st+38 ⊕ nt ⊕ nt+7 ⊕ nt+13 ⊕ nt+19 ⊕ nt+24 ⊕ nt+29 ⊕ nt+36,

where h(·) = st+15nt+1 ⊕ st+1st+22 ⊕ st+27nt+35 ⊕ st+11nt+33 ⊕ st+6st+33st+42 with the
pseudo-linearity shown by underline. Fitting into the model, we have PSt = {st+1, st+6, st+11,
st+15, st+22, st+27, st+33, st+42}, QSt = {st+38}, PNt = {nt+1, nt+33, nt+35} and QNt =
{nt, nt+7, nt+13, nt+19, nt+24, nt+29, nt+36}. It is clear that hPSt is a linear Boolean func-
tion with the input variables nt+1, nt+33 and nt+35 for Fruit; accordingly, for any fixed
value of the LFSR initial state of Fruit, the output keystream will depend linearly on the
NFSR bits.

3 A General Description of Our Attack
We first present a high-level overview of our attack. The goal is to recover both the FSR
state and the NFSR state at a fixed time instance which is consistent with the given
keystream, and the round key bits within one repetition cycle.
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The main idea is as follows. In the generic model depicted in Figure 2, the FSR
is updated independently without the influence of the NFSR, the counter bits and the
round key bits. For small state stream ciphers, the internal state size of the FSR cannot
be too large, thus a suitable scale exhaustive search over all the possible values of the
independently updated FSR is often feasible. Further, we could run the FSR forwards and
backwards to obtain any value of its output and peel off the non-linearity of the involved h
function. Combined with the pseudo-linearity of the h function, we could derive a random
probabilistic linear system on the initial NFSR variables with a rather high bias. In fact,
compared to the work in [3] which made the linear approximations of both the feedback
function of the NFSR in Grain v0 and the output function a number of times, now we
make the linear approximation of the feedback function of the NFSR in the model only
once, without any linear approximation of the non-linear output filter function. Hence, the
bias of the random probabilistic linear system is quite different from one half, which will
facilitate the construction of the low-weight parity-checks to further reduce the dimension
of the initial NFSR variables. Then instead of solving the parity-checks directly, we could
just construct a distinguisher via the well-known FWT. The correct FSR candidate could
be easily identified from the full Walsh spectrum of some derived function. Thus, the FSR
is restored independently of the NFSR in the model, which results in a divide-and-conquer
recovery of the whole internal state in presence of unknown round key bits. Finally, the
internal state of the NFSR could be retrieved in a multi-pass manner [28] later with the
complexity much lower than that of recovering the FSR. For the specific ciphers, one
period of the round key bits and the original secret key could be derived with a much
lower complexity according to the mechanism of the primitive and the definition of the
round key function employed.

Formally, a high-level description of our attack is depicted in Algorithm 1.

Algorithm 1 Fast correlation attack on the generic model in Figure 2
Parameters: m, m′, D
Input: A keystream segment z = (z0, z1, . . . , zD−1)
1st phase: Prepare the parity-checks
1: for each possible value of S0 do
2: use the method in section 4.1 to derive the probabilistic system
3: construct the parity-checks by the method in section 4.2
4: end for

2nd phase: Recover the full internal state matching with z
5: for each possible value of S0 do
6: use the distinguisher in section 5.2 to check it
7: for each passed candidate of S0 do
8: recover the NFSR state part-by-part in section 5.3
9: for each candidate of the full internal state do
10: check it and restore the secret key accordingly in section 5.4

In the following, we will interleave the generic idea of Algorithm 1 and the concrete
attack on Fruit, i.e., each step of the generic idea will be followed by the corresponding
procedure on Fruit, to demonstrate our attack in details.

4 Preparing the Parity-checks
As each fast correlation attack needs parity-checks, in this section, we show how to derive
a random probabilistic linear system and construct the desirable parity-checks accordingly,
based on the pseudo-linearity of the output function when combining the input variables,
for both the generic model and the concrete Fruit case.
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4.1 Degrading the System
Suppose the adversary somehow knows the initial state S0 = (s0, s1, ..., sm′−1) of the FSR
and the Assumed properties (3.1) and (3.2) hold. Now the attacker can run the FSR
forwards and backwards to remove its protection over the output keystream, the resultant
system becomes a linearly filtered NFSR, involving the periodic round key bits. Given the
NFSR state N t = (nt, nt+1, ..., nt+m−1) at time t, we rewrite the keystream bit zt as

zt =
j2⊕
i=1

ψit · nt+βi ⊕
r2⊕
i=1

nt+ηi ⊕ ψ0
t , (2)

where the coefficients ψit, i = 0, 1, ..., j2, depend on the FSR state at time t. For Fruit, for
example, the keystream bit generated at time t can be written as

zt =(st+15nt+1 ⊕ st+11nt+33 ⊕ st+27nt+35)
⊕ (nt ⊕ nt+7 ⊕ nt+13 ⊕ nt+19 ⊕ nt+24 ⊕ nt+29 ⊕ nt+36)
⊕ (st+38 ⊕ st+1st+22 ⊕ st+6st+33st+42)

(3)

which corresponds to ψ0
t = st+38 ⊕ st+1st+22 ⊕ st+6st+33st+42, ψ1

t = st+15, ψ2
t = st+11,

ψ3
t = st+27.
In the following, we will show that though there is the masking of the secret information,

any internal state variable of the NFSR can be expressed as a linear combination of the
NFSR state variable at a fixed time instance τ and of some keystream bits, under the
condition that the FSR initial state S0 is known, by extending the technique in [4]. These
linear relations are derived by using the output function of Eq.(2) recursively. Here we
only discuss the following two cases to illustrate the process, while the other cases can be
handled analogously in a dynamic way by induction.
Case 1 (Model). Suppose ηr2 > βj2 holds. In this case, ηr2 is the highest index value of
the initial NFSR variables (nt, nt+1, · · · , nt+m−1) involved in the keystream bit zt. Let
τ = 0, we can express any internal state variable nm+i (i ≥ 0) as a linear combination of
the initial NFSR state variables N0 = (n0, n1, ..., nm−1) and of some keystream bits.

According to Eq.(2), zm−ηr2
is the first keystream bit dependent on nm, we can write

zm−ηr2
= nm ⊕

j2⊕
i=1

ψim−ηr2
· nm−ηr2 +βi ⊕

r2−1⊕
i=1

nm−ηr2 +ηi ⊕ ψ0
m−ηr2

,

thus we have

nm = zm−ηr2
⊕

j2⊕
i=1

ψim−ηr2
· nm−ηr2 +βi ⊕

r2−1⊕
i=1

nm−ηr2 +ηi ⊕ ψ0
m−ηr2

,

i.e., nm is expressed as a linear combination of N0 = (n0, n1, ..., nm−1) and of a keystream
bit zm−ηr2

. Now we assume that for all i : 0 ≤ i < j, all the bits nm+i are expressed as a
linear combination of the NFSR initial state variables and of keystream bits. Note that
zm+j−ηr2

is the first keystream bit that depends on nm+j , which indicates that

nm+j = zm+j−ηr2
⊕

j2⊕
i=1

ψim+j−ηr2
· nm+j−ηr2 +βi ⊕

r2−1⊕
i=1

nm+j−ηr2 +ηi ⊕ ψ0
m+j−ηr2

.

That is, the variable nm+j is expressed as a linear combination of a keystream bit zm+j−ηr2
and of the NFSR variables nm+i with i < j. By induction, nm+j can finally be expressed
as a linear combination of the NFSR initial state variables n0, n1, ..., nm−1 and of some
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keystream bits, under the condition that the FSR initial state S0 is known.
Case 1 (Fruit case). For Fruit, we have ηr2 = 36 and βj2 = 35, thus ηr2 > βj2 holds.
Assume the initial state S0 = (s0, s1, ..., s42) of the LFSR is known, we will express each
NFSR state variable ni (i ≥ 37) as a linear combination of the NFSR initial state variables
N0 = (n0, n1, ..., n36) and of some keystream bits.

First we consider how to express n37. From Eq.(3), we have z1 = (s16n2 ⊕ s12n34 ⊕
s28n36)⊕ (n1 ⊕ n8 ⊕ n14 ⊕ n20 ⊕ n25 ⊕ n30 ⊕ n37)⊕ (s39 ⊕ s2s23 ⊕ s7s34s43), and z1 is the
first keystream bit dependent on n37, thus we have

n37 =z1 ⊕ (s16n2 ⊕ s12n34 ⊕ s28n36)⊕ (n1 ⊕ n8 ⊕ n14 ⊕ n20 ⊕ n25 ⊕ n30)
⊕ (s39 ⊕ s2s23 ⊕ s7s34s43).

That is, we have expressed n37 as a linear combination of the NFSR initial state variables
and of the keystream bit z1. Next for n38, we have n38 = z2 ⊕ (s17n3 ⊕ s13n35 ⊕ s29n37)⊕
(n2 ⊕ n9 ⊕ n15 ⊕ n21 ⊕ n26 ⊕ n31)⊕ (s3s24 ⊕ s8s35s44 ⊕ s40), i.e., n38 depends on n37. By
a simple substitution, we get

n38 = (z2 ⊕ s29z1)⊕ (s29s16n2 ⊕ s17n3 ⊕ s29s12n34 ⊕ s13n35 ⊕ s29s28n36

⊕ s29n1 ⊕ n2 ⊕ s29n8 ⊕ n9 ⊕ s29n14 ⊕ n15 ⊕ s29n20 ⊕ n21 ⊕ s29n25

⊕ n26 ⊕ s29n30 ⊕ n31)⊕ s29(s39 ⊕ s2s23 ⊕ s7s34s43)⊕ s40 ⊕ s3s24 ⊕ s8s35s44.

Note that in this process, the effects of the round key bits have been masked successfully.
Thus if we carry on this procedure continually, we can get the desirable expressions
for n37+2, n37+3,...,n37+(D−1) from the keystream bits z1, z2, ..., zD, where D is a given
parameter.
Case 2 (Model). Suppose η1 < β1 holds, thus η1 < βi for 2 ≤ i ≤ j2. In this
case, η1 is the lowest index value of the initial NFSR variables (nt, nt+1, · · · , nt+m−1)
involved in the keystream bit zt. For a fixed time instance τ , we will express any
internal state variable nτ−j (j ≥ 1) as a linear combination of the NFSR state variables
Nτ = (nτ , nτ+1, ..., nτ+m−1) and of some keystream bits.

According to Eq.(2), zτ−1−η1 is the first keystream bit which is dependent on nτ−1, we
rewrite it as

zτ−1−η1 = nτ−1 ⊕
j2⊕
i=1

ψiτ−1−η1
· nτ−1−η1+βi ⊕

r2⊕
i=2

nτ−1−η1+ηi ⊕ ψ0
τ−1−η1

,

thus we have

nτ−1 = zτ−1−η1 ⊕
j2⊕
i=1

ψiτ−1−η1
· nτ−1−η1+βi ⊕

r2⊕
i=2

nτ−1−η1+ηi ⊕ ψ0
τ−1−η1

,

i.e., nτ−1 is expressed as a linear combination of the NFSR state variables Nτ =
(nτ , nτ+1, ..., nτ+m−1) and of a keystream bit zτ−1−η1 .

Now we assume that for all i : 1 ≤ i < j, all the bits nτ−i are expressed as a linear
combination of the NFSR state variables from Nτ and of some keystream bits. Note that
zτ−j−η1 is the first keystream bit that depends on nτ−j , and we have

nτ−j = zτ−j−η1 ⊕
j2⊕
i=1

ψiτ−j−η1
· nτ−j−η1+βi ⊕

r2⊕
i=2

nτ−j−η1+ηi ⊕ ψ0
τ−j−η1

.

That is, the variable nτ−j is expressed as a linear combination of a keystream bit zτ−j−η1

and of the NFSR variables nτ−i with i < j. By induction, nτ−j can finally be expressed as
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a linear combination of the NFSR state variables from Nτ = (nτ , nτ+1, ..., nτ+m−1) and
of some keystream bits, under the condition that the FSR initial state S0 is known.
Case 2 (Fruit case). For Fruit, we have η1 = 0 and β1 = 1, thus η1 < β1 holds. Similarly,
assume the initial state S0 = (s0, s1, ..., s42) of the LFSR is known, we will express each
NFSR state variable nτ−j (j ≥ 1) as a linear combination of the NFSR state variables
Nτ = (nτ , nτ+1, ..., nτ+36) and of some keystream bits.

First we consider how to express nτ−1. From Eq.(3), we find that zτ−1 is the first
keystream bit dependent on nτ−1, and zτ−1 = (sτ+14nτ ⊕ sτ+10nτ+32 ⊕ sτ+26nτ+34) ⊕
(nτ−1⊕nτ+6⊕nτ+12⊕nτ+18⊕nτ+23⊕nτ+28⊕nτ+35)⊕(sτ+37⊕sτsτ+21⊕sτ+5sτ+32sτ+41),
thus we have

nτ−1 = zτ−1 ⊕ (sτ+14nτ ⊕ sτ+10nτ+32 ⊕ sτ+26nτ+34)
⊕ (nτ+6 ⊕ nτ+12 ⊕ nτ+18 ⊕ nτ+23 ⊕ nτ+28 ⊕ nτ+35)
⊕ (sτ+37 ⊕ sτsτ+21 ⊕ sτ+5sτ+32sτ+41)

That is, we have expressed nτ−1 as a linear combination of the NFSR state variables
Nτ = (nτ , nτ+1, ..., nτ+36) and of the keystream bit zτ−1. Next for nτ−2, we have
nτ−2 = zτ−2⊕ (sτ+13nτ−1⊕ sτ+9nτ+31⊕ sτ+25nτ+33)⊕ (nτ+5⊕nτ+11⊕nτ+17⊕nτ+22⊕
nτ+27 ⊕ nτ+34)⊕ (sτ+36 ⊕ sτ−1sτ+20 ⊕ sτ+4sτ+31sτ+40), i.e., nτ−2 depends on nτ−1. By
a simple substitution, we get

nτ−2 = (zτ−2 ⊕ sτ+13zτ−1)⊕ (sτ+13sτ+10nτ+32 ⊕ sτ+9nτ+31 ⊕ sτ+13sτ+26nτ+34

⊕ sτ+25nτ+33 ⊕ sτ+13sτ+14nτ ⊕ sτ+13nτ+6 ⊕ nτ+5 ⊕ sτ+13nτ+12 ⊕ nτ+11

⊕ sτ+13nτ+18 ⊕ nτ+17 ⊕ sτ+13nτ+23 ⊕ nτ+22 ⊕ sτ+13nτ+28 ⊕ nτ+27

⊕ sτ+13nτ+35 ⊕ nτ+34)⊕ sτ+13(sτ+37 ⊕ sτsτ+21 ⊕ sτ+5sτ+32sτ+41)
⊕ (sτ+36 ⊕ sτ−1sτ+20 ⊕ sτ+4sτ+31sτ+40),

hence we have expressed nτ−2 as a linear combination of the NFSR state variables
Nτ = (nτ , nτ+1, ..., nτ+36) and of the keystream bits zτ−1 and zτ−2. We carry on this
procedure continually, and finally can get the desirable expressions for nτ−3, nτ−4,...,nτ−D
from the keystream bits zτ−1, zτ−2, ..., zτ−D, where D is a given parameter.
Complexity. In [4], the time/memory complexities for expressing D NFSR state variables
for a linearly filtered NFSR are given as m · D computations and (m + 1) · D bits of
memory, respectively. In our attack, we need to repeat the above process 2m′ times for all
the possible initial states of the FSR. Thus the total time complexity is 2m′ ·m ·D. When
applied to Fruit, the time complexity of this step is C1 = 243 · 37 ·D = 248.21 ·D.

4.2 Building the Parity-checks
Now we discuss how to derive the desirable parity-check relations from the linear approxi-
mations of the NFSR feedback function g (or g−1) and from the fact that the secret round
key bits involved in the NFSR updating form a periodic sequence.

4.2.1 Expressing the NFSR variables

Assume there are R linearly independent linear approximations for g having the same
largest bias ε > 0 and let aj = (aj0,a

j
1, · · · ,a

j
m−1) be a binary vector of length m, then

with the probability 1
2 + ε, each linear approximation for g, corresponding to the linear

mask aj and a sign bj , could be written as

g(N t) = aj · (N t)T ⊕ bj = aj · (nt, nt+1, ..., nt+m−1)T ⊕ bj , for j = 1, 2, ..., R,
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where the dot operator · between a row vector and a column vector represents the usual
inner GF(2)-product and the operator (·)T is the transpose of a row vector in the vectorial
scenario. For the inverse process g−1 of the NFSR updating function, the corresponding
linear approximation is

g−1(N t) = (aj ≪ 1) · (nt, nt+1, ..., nt+m−1)T ⊕ bj , for j = 1, 2, ..., R.

For simplicity, we only illustrate how to build the parity-checks for the above Case 1
(Model), while a similar procedure can be carried out for Case 2 (Model) by using the
linear approximations for g−1. In addition to these two cases, other cases can be handled
dynamically in a similar way.

Suppose ηr2 > βj2 holds. In this case, any internal state variable nm+i (i ≥ 0) can
be expressed as a linear combination of the NFSR initial state variables (n0, n1, ..., nm−1)
and of some keystream bits, under the condition that the FSR initial state S0 is known.
Suppose the keystream bits zm−ηr2 +i, i = 0, 1, ..., D − 1, are available, we first determine
the expression of the D NFSR state variables nm+i, i = 0, 1, ..., D − 1, which can be
accomplished in time 2m′ ·m ·D. We represent the derived expressions in matrix form as

(n0, n1, · · · , nm+D−1) = N0G⊕ χ⊕ υ = (n0, n1, ..., nm−1)G⊕ χ⊕ υ,

where the m× (m+D) matrix G is formed as G = [I,gm, · · · ,gm+D−1] with the first m
columns corresponding to the identity matrix I and gi (m ≤ i ≤ m + D − 1) being the
column vector, χ = (0, 0, · · · , 0, χm, · · ·χm+D−1) and υ = (0, 0, · · · , 0, υm, · · · , υm+D−1)
are (m+D)-bit vectors depending on the FSR initial state and the keystream bits zm−ηr2 +i
for 0 ≤ i ≤ D − 1. Then for j = m, ...,m+D − 1, we have

nj = N0 · gj ⊕ χj ⊕ υj = (n0, n1, ..., nm−1) · gj ⊕ χj ⊕ υj , (4)

where χj and υj are the jth coordinates of χ and υ, respectively.
Fruit case. We have m = 37, m′ = 43, ηr2 = 36, βj2 = 35, and ηr2 > βj2 holds. Applying
the FWT to the feedback function g of the NFSR in Fruit, we have found that there
are R = 7 linearly independent linear approximations for g having the same largest bias
ε , 2−4.6, i.e., nt ⊕ nt+10 ⊕ nt+20, nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12, nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+3,
nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+14, nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+25, nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+8, nt ⊕
nt+10 ⊕ nt+20 ⊕ nt+18. For i = 0, 1, ..., 36, denote by Ii the 37-bit ith row vector of the
identity matrix I37×37, where the i-th bit is 1 and all the other bits are 0. Then we have
bj = 0 for j = 1, 2, ..., 7, and

a1 = I0 ⊕ I10 ⊕ I20
a2 = I0 ⊕ I10 ⊕ I20 ⊕ I12 = a1 ⊕ I12
a3 = I0 ⊕ I10 ⊕ I20 ⊕ I3 = a1 ⊕ I3
a4 = I0 ⊕ I10 ⊕ I20 ⊕ I14 = a1 ⊕ I14
a5 = I0 ⊕ I10 ⊕ I20 ⊕ I25 = a1 ⊕ I25
a6 = I0 ⊕ I10 ⊕ I20 ⊕ I8 = a1 ⊕ I8
a7 = I0 ⊕ I10 ⊕ I20 ⊕ I18 = a1 ⊕ I18.

For a given ω, let D = 128(ω − 1) + 1, provided the keystream bits z0, z1, ..., zD−1, the
expressions of the NFSR variables n37+i, i = 0, 1, ..., D − 1, can be computed in time
C1 = 243 · 37 ·D = 248.21 ·D for all the possible LFSR initial states.

Next, we come back to the model and proceed to use the state updating function g of
the NFSR to derive the probabilistic linear system. According to the NFSR updating in
Eq.(1) and the linear approximation (aj , bj) for g, with the probability 1

2 + ε, we have

nt+m = k′t ⊕ ct ⊕ lin(St)⊕ aj · (nt, nt+1, ..., nt+m−1)T ⊕ bj , for j = 1, 2, ..., R.
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From the Assumed property (3.1), the round key bits k′t and the counter bits ct are
unknown, and k′t has a cycle of length p and ct has a cycle of length q. Let d be the least
common multiple of two integers p and q, i.e., d = lcm(p, q), then k′t+di ⊕ ct+di = k′t ⊕ ct
for t = 0, 1, ..., d− 1 and any i ≥ 0. Accordingly with the same probability, we have

nt+m+di ⊕ aj · (nt+di, nt+1+di, ..., nt+m−1+di)T ⊕ lin(St+di) = k′t ⊕ ct ⊕ bj , j = 1, 2, ..., R.

Let D = d(ω − 1) + 1, where ω is a parameter to be determined later. By choosing t = 0,
we get

nm+di ⊕ aj · (ndi, n1+di, ..., nm−1+di)T ⊕ lin(Sdi) = k′0 ⊕ c0 ⊕ bj ,

for j = 1, 2, ..., R and any i ≥ 0. For brevity, we define the following notations:

ui,j , gm+di ⊕ (aj · gdi,aj · gdi+1, ...,aj · gdi+m−1)T ,
Zi,j , χm+di ⊕ aj · (χdi, χ1+di, ..., χm−1+di)T ,
vi,j , υm+di ⊕ aj · (υdi, υ1+di, ..., υm−1+di)T ⊕ lin(Sdi),

Substitute each nj by (4) into the above equation, it can be further written as

N0 · ui,j ⊕ Zi,j ⊕ vi,j = k′0 ⊕ c0 ⊕ bj , i = 0, 1, ..., ω − 1, j = 1, 2, ..., R,

where ui,j is a column vector in the inner GF(2)-product with N0 = (n0, n1, ..., nm−1), and
Zi,j and vi,j are the derived binary values. Note that ui,j and vi,j are totally determined
by the FSR initial state and the corresponding linear approximation for g, Zi,j depends on
the keystream information, the FSR initial state and the linear approximation employed.
From the above, we actually achieve a noisy system with ω′ , ωR linear equations on the
unknowns (n0, n1, ..., nm−1), k′0 and c0, which can be rewritten as

N0 · ui,j ⊕ Zi,j ⊕ vi,j = k′0 ⊕ c0 ⊕ bj ⊕ ei,j , j = 1, 2, ..., R, i = 0, 1, ..., ω − 1, (5)

where ei,j is the random noise introduced by the corresponding linear approximation
(aj , bj) for the NFSR state feedback function g satisfying Pr(ei,j = 0) = 1

2 + ε for all
j = 1, 2, ..., R and i = 0, 1, ..., ω − 1. We notice that the complexity to construct the above
system of equations is related to the Hamming weight of each aj , and is at most m2ω′. In
our attack, we need to repeat the same process 2m′ times for all the possible initial states
of the FSR. Thus the total time complexity is at most 2m′ ·m2 · ω′.
Fruit case. In Fruit, the counter bit c10

t is known and has the period q = 32, while the
round key bit k′t has the period p = 128. For each possible LFSR state in Fruit, we can
obtain a linear system in the form of Eq.(5) with ω′ = 7 · ω linear equations, all holding
with the bias ε = 2−4.6 and bj = 0 for 1 ≤ j ≤ 7, shown in the following Eq.(6).

(n0, n1, · · · , n36) · ui,j ⊕ Zi,j ⊕ vi,j = k′0 ⊕ c10
0 ⊕ ei,j , j = 1, 2, ..., 7, i = 0, 1, ..., ω − 1, (6)

This can be accomplished in time C2 = 243 × [(1× 37× 3) + (6× 37× 2)] · ω = 252.12 · ω,
which is derived from the concrete forms of the linear mask aj (1 ≤ j ≤ 7) for Fruit.

4.2.2 Constructing the Parity-checks

Now we are ready for constructing the parity-checks from the derived probabilistic system.
As above, we first take a look at the generic model, and then the concrete Fruit case.

Let Lowx(a)/Highx(a) be the value of the vector a on the least/most significant x
positions. As in previous fast correlation attacks [7], now we try to find some linear
combinations of columns which vanish on the lowest significant bits to reduce the secret
dimension, i.e., we look for some κ-tuple of (usually κ = 2 or κ = 4 to cancel the secret
information) column vectors (ui1,j1 , ...,uiκ,jκ) satisfying Lowm−m1(ui1,j1 ⊕ ...⊕ uiκ,jκ) =
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(0, ..., 0)′. For 0 ≤ i ≤ ω − 1 and j = 1, 2, · · · , R, we will regard the column vectors ui,j in
Eq.(5) as random vectors and vi,j as random variables. For the ω′ column vectors ui,j ,
there is an expected number of Ω =

(
ω′

κ

)
· 2−(m−m1) ≈ ω′κ

κ!2m−m1 such κ-tuples. We define
the following notations to denote the indices of the t-th such column tuple for t = 1, 2, ...,Ω,

Ut = Highm1

(⊕κ
r=1 u(t)

ir,jr

)
, Zt =

⊕κ
r=1 Z

(t)
ir,jr

, Vt =
⊕κ

r=1 v
(t)
ir,jr

,

Bt =
⊕κ

r=1 b
(t)
jr
, Et =

⊕κ
r=1 e

(t)
ir,jr

and accordingly we obtain

(n0, n1, ..., nm1−1) · Ut ⊕Zt ⊕ Vt = Bt ⊕ Et, t = 1, 2, ...,Ω (7)

for t = 1, 2, ...,Ω. Let εF = 2κεκ > 0, from the piling-up lemma [23], we have

Pr(Et = 0) = 1
2 + 2κ−1εκ = 1

2(1 + εF ).

Fruit case. Set the positive integer m1 such that 0 < m1 < 37, we look for κ = 2 column
vectors (ui1,j1 ,ui2,j2) satisfying Lowm−m1(ui1,j1 ⊕ ui2,j2) = (0, ..., 0)′. For the ω′ column
vectors ui,j , there are an expected number of Ω =

(
ω′

2
)
·2−(m−m1) ≈ ω′2 ·2−(m−m1+1) such

pairs. To fulfill this task, a sort-and-merge procedure is applied. First, these vectors ui,j
are sorted into 2m−m1 equivalence classes according to their values on the least significant
m−m1 positions, thus any two vectors in the same equivalence class will have the same
value on these positions. Then we look at each pair of vectors (ui1,j1 ,ui2,j2) in each
equivalence class, deriving that Lowm−m1(ui1,j1 ⊕ ui2,j2) = (0, ..., 0)′. For each value of
the LFSR initial state, we need to repeat this process. This can be finished in time
C3 = 243 · (ω′ + Ω).

Denote the t-th pair of columns by (u(t)
i1,j1

,u(t)
i2,j2

) for t = 1, 2, ...,Ω. Similarly we
define the notations that Zt = Z

(t)
i1,j1
⊕ Z(t)

i2,j2
, Vt = v

(t)
i1,j1
⊕ v(t)

i2,j2
, Et = e

(t)
i1,j1
⊕ e(t)

i2,j2
and

Ut = Highm1

(
u(t)
i1,j1
⊕ u(t)

i2,j2

)
, thus we derive Ω = ω′2 · 2−(m−m1+1) equations as follows,

(n0, n1, ..., nm1−1) · Ut ⊕Zt ⊕ Vt = Et, t = 1, 2, ...,Ω (8)

Here Pr(Et = 0) = 1
2 + 2ε2 , 1

2 (1 + εF ), where ε = 2−4.6 and εF = 4ε2 = 2−7.2.
All together, for each value of the LFSR initial state of Fruit, we have derived a

corresponding linear system of the form (8) which involves the first m1 bits of the NFSR
initial state.

5 A Divide-and-Conquer Fast Correlation Attack
In this section, we launch a divide-and-conquer fast correlation attack against the generic
model and demonstrate it on Fruit itself. First, we provide a brief review on the multi-pass
strategy exploited in our attack, then the detailed process is given with theoretical analysis.

5.1 The Multi-pass Strategy
After building the desirable parity-checks, we first make an independent recovery of the
FSR initial state S0. Conditioned on the restored FSR bits, we continue to retrieve the
NFSR initial state N0 part-by-part as follows. Precisely, we divide the NFSR initial state
N0 = (n0, n1, ..., nm−1) into several smaller parts as shown below and try to recover them
part-by-part in a sequential order.

(n0, ..., nm1−1︸ ︷︷ ︸
m1

, nm1 , ..., nm1+m2−1︸ ︷︷ ︸
m2

, nm1+m2 , ...︸ ︷︷ ︸
...

, ..., nm−1)
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We first recover the firstm1 bits of N0, i.e., (n0, n1, ..., nm1−1) conditioned on both the FSR
initial state candidates and the known keystream. Once we recovered the first

∑i
j=1mj

bits of the NFSR initial state, we enter the next pass to determine the next mi+1 bits of
N0 conditioned on the recovered information and the known keystream bits, which will
have a much lower complexity than the recovery of the first m1 bits. That is, we adopt a
multi-pass strategy [28] to determine the whole NFSR initial state.

5.2 Independent Recovery of the FSR Initial State
As in the last section, we first show how to recover the FSR initial state of the model, and
then present the illustration to Fruit. For any value of S0 in the model, we first rewrite
the parity-checks Eq.(7) for the model as

(n′0, n′1, ..., n′m1−1) · Ut ⊕ Bt ⊕Zt ⊕ Vt
= (n0, n1, ..., nm1−1) · Ut ⊕ (n′0, n′1, ..., n′m1−1) · Ut ⊕ Et, t = 1, 2, · · · ,Ω

where (n′0, n′1, ..., n′m1−1) is the guessed value of the first m1-bit of the NFSR initial state,
Ut and Vt are computed from the currently guessed value S0 and the linear approximation
for g, while Zt is computed from the given keystream segment and the guessed value S0.
Here we introduce the target function ∆(i(t)1 , j

(t)
1 , ..., i

(t)
κ , j

(t)
κ ) as

∆(i(t)1 , j
(t)
1 , ..., i(t)κ , j(t)

κ ) =(n0, n1, ..., nm1−1) · Ut ⊕ (n′0, n′1, ..., n′m1−1) · Ut ⊕ Et.

It is obvious that if both the FSR initial state S0 and the first m1-bit (n′0, n′1, ..., n′m1−1)
of the NFSR initial state are correctly guessed, Ut and Vt will take their true values
consistent with the keystream, and ∆(i(t)1 , j

(t)
1 , ..., i

(t)
κ , j

(t)
κ ) = Et, thus Pr(∆ = 0) =

1
2 (1+εF ), where εF = 2κεκ (> 0). Besides, if S0 is correctly guessed and (n′0, n′1, ..., n′m1−1)
is wrongly guessed, then Ut and Vt will have their true values, and ∆(i(t)1 , j

(t)
1 , ..., i

(t)
κ , j

(t)
κ ) =

(n0 ⊕ n′0, n1 ⊕ n′1, ..., nm1−1 ⊕ n′m1−1) · Ut ⊕ Et. Since Ut = Highm1

(⊕κ
r=1 u(t)

ir,jr

)
, then we

further get

∆(i(t)1 , j
(t)
1 , ..., i(t)κ , j(t)

κ ) = (n0 ⊕ n′0, n1 ⊕ n′1, ..., nm1−1 ⊕ n′m1−1) · Ut ⊕ Et

=
⊕

t:nt⊕n′t=1

(⊕κ

r=1
u(t)
ir,jr

)
⊕ Et.

As described above we have Pr(u(t)
ir,jr

= 0) = Pr(u(t)
ir,jr

= 1) = 1/2, then ∆(i(t)1 , j
(t)
1 , ...,

i
(t)
κ , j

(t)
κ ) has the distribution Pr(∆ = 0) = 1/2. Finally, if S0 is wrongly guessed, whatever

the guess (n′0, n′1, ..., n′m1−1) is, ∆(i(t)1 , j
(t)
1 , ..., i

(t)
κ , j

(t)
κ ) will always have the distribution

Pr(∆ = 0) = 1/2.
To fulfill the above observation, we could exhaustively search over all the possible

guesses of the FSR initial state, and for each guess, we evaluate the parity checks to
count the number of the vanishing ∆s, for all the possible guesses (n′0, n′1, ..., n′m1−1).
The straightforward method, as that in [7], has a time complexity of 2m′2m1Ω, which is
obviously an inefficient attack. Instead our approach differs from [7] with the exploitation
of FWT as proposed in [8]. For each possible value of S0, we regroup the Ω parity-checks
according to the pattern of Ut and define an integer-valued function hS0 as

hS0(a) =
∑

t: Ut=a
(−1)Zt⊕Vt⊕Bt ,

for all the patterns appearing in the Ω parity-checks; if a pattern does not occur, we just
let hS0(a) = 0 at that point. Thus hS0 : GF(2)m1 → R is a well-defined function and we
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could compute its Walsh transform as follows,

WhS0 (n0, n1, ..., nm1−1) =
∑

a∈GF (2)m1

hS0(a)(−1)a·(n0,n1,...,nm1−1)′

=
∑

a∈GF (2)m1

(∑
t: Ut=a

(−1)Zt⊕Vt⊕Bt
)

(−1)a·(n0,n1,...,nm1−1)′

=
Ω∑
t=1

(−1)(n0,n1,...,nm1−1)·Ut⊕Zt⊕Vt⊕Bt

= Π0 −Π1,

where Π0 and Π1 are the number of 0s and 1s respectively, for the value of Zt ⊕ Vt ⊕ Bt ⊕
(n0, n1, ..., nm1−1) · Ut. From this we have

Ω∑
t=1

(∆(i(t)1 , j
(t)
1 , ..., i(t)κ , j(t)

κ )⊕1) =
Ω +WhS0 (n0, n1, ..., nm1−1)

2 .

Hence we only need to compute the Walsh transform of hS0 to get the 2m1 values for
the number of vanishing ∆s, corresponding to the 2m1 guesses of (n0, n1, ..., nm1−1). This
can be done efficiently by FWT in Ω + m12m1 time with 2m1 memory. Note that for
each guess of S0, we should execute the above process once. Thus, the time complexity is
2m′(Ω +m12m1), which is greatly reduced compared to the complexity 2m′2m1Ω of the
straightforward method. From the above, we define the statistic F as

F(S0) = max
(n0,n1,...,nm1−1)

WhS0 (n0, n1, ..., nm1−1).

Denote sc as the correct guess for S0 and sw otherwise. According to the central limit
theorem, we have

(Ω + F(sc))/2− Ω(1 + εF )/2√
Ω(1 + εF )(1− εF )/2

= F(sc)− ΩεF√
Ω(1− ε2F )

∼ N (0, 1),

(Ω + F(sw))/2− Ω/2√
Ω/2

= F(sw)√
Ω
∼ N (0, 1),

where N (·, ·) is the normal distribution with the specified expectation and variance. From
this we get F(sc)−F(sw) ∼ N

(
ΩεF ,Ω(2− ε2F )

)
. Let Φ be the cumulative function of the

standard normal distribution, i.e., Φ(x) = 1√
2π

∫ x
−∞ e−

1
2 t

2
dt, thus the probability that a

wrong guess sw has a better rank than the correct sc, i.e., F(sc) < F(sw), is approximately
Φ
(
−
√

Ωε2F /(2− ε2F )
)
. Thus to identify the correct candidate of the FSR initial state

with a high probability, the number Ω of parity-checks should satisfy Ω ≥ 4m′ ln 2/ε2F . To
have a flexible attack, we set a threshold value T of F(S0) when choosing the FSR initial
state candidates, i.e., all the values that result in F(S0) ≥ T will be chosen as candidates,
otherwise will be filtered out. Denote by α the probability that the correct guess will be
chosen as a candidate, and by β the probability that a wrong guess would be chosen as a
candidate, then

α = Pr(F(sc) ≥ T ) = 1− Φ
(

T − ΩεF√
Ω(1− ε2F )

)
,

β = Pr(F(sw) ≥ T ) = 1− Φ
(
T√
Ω

)
, 2a

′
.
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In cryptanalysis, we expect to choose a T such that α is very close to 1 to assure a high
passing probability for the correct guess, meanwhile β is very small to filter out all the
wrong guesses, or to reduce the passing number of wrong guesses as much as possible.
Fruit case. Now we demonstrate the above procedure on Fruit to obtain some LFSR
initial state candidates with the focus on the relations of the parameters originating in the
attack.

Given the exact values of the parameters ω and m1, we have D = 128(ω − 1) + 1,
ω′ = 7ω and Ω = ω′2 · 2−((37−m1)+1) = ω2/2(32.39−m1). To identify the correct candidate
of the LFSR initial state with a high probability, the number of parity-checks of Eq.(8)
should be at least Ω = 4× 43× ln 2/ε2F = 221.30. The time complexity of this procedure
for Fruit is C4 = 243(Ω +m12m1).

To illustrate the basic idea of this stage, we show in Fig.3 and Fig.4 the Walsh Spectrum
of the function hsc for a correct guess sc and the function hsw for a randomly generated
wrong guess sw, respectively. Precisely, set ω = 211.3 and D = 128(ω − 1) + 1 = 218.3, we
first used the RC4 cipher to randomly generate one (K, IV ) pair for Fruit, and then run
Fruit to generate the initial state (S0, N0) and the corresponding keystream bits {zi}D−1

i=0 .
Next, we proceed as follows: we first fixed the values of the last 29 bits of N0. Then with
the correct guess sc = S0, we expressed each NFSR state variable n37+i, i = 0, 1, ..., D− 1,
as a linear combination of the unfixed variables (n0, n1, ..., n7) with the known keystream
bits z0, ..., zD−1. By using the 7 linearly independent linear approximations for g with the
largest bias 2−4.6, we can construct ω′ = 7 · ω = 214.1(> 4×43×ln 2

(2×2−4.6)2 ) parity checks only
containing the variables (n0, n1, ..., n7). The Walsh spectrum can be computed by FWT
for all the patterns of (n0, n1, ..., n7). Further, we randomly generated a wrong guess for S0

and derived the corresponding Walsh spectrum for all the patterns of (n0, n1, ..., n7) with a
similar process. Fig. 3 and Fig. 4 show that there is a peak in the Walsh spectrum derived
for the correct guess of S0, while it keeps in a steady state for a randomly generated wrong
guess of S0.

Figure 3: The Walsh Spectrum of the func-
tion hsc for the correct guess of S0

Figure 4: The Walsh Spectrum of the func-
tion hsw for a random wrong guess of S0

The success probability of the attack depends essentially on the choice of the threshold
T , which will be determined precisely according to various attack conditions in section 5.5.
Naturally we expect to choose a T such that α is very close to 1, while β is very small,
i.e., we let the correct candidate pass the statistical test with a high probability, while the
wrong guesses will be reduced to a large extent.

5.3 Recovery of the NFSR Initial State
We first show how to recover the NFSR initial state of the model, and then focus on the
concrete Fruit case.
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We first recover the first m1 bits of N0, i.e., (n0, n1, ..., nm1−1). The target function
is the sum

∑Ω1
t=1 (∆(i(t)1 , j

(t)
1 , ..., i

(t)
κ , j

(t)
κ )⊕1), which will follow the binomial distribution

(Ω1,
1
2 (1+εF )) for the correct (n0, n1, ..., nm1−1), and otherwise this sum will have the bino-

mial distribution (Ω1,
1
2 ), where Ω1 is the number of parity-checks needed for the recovery

of (n0, n1, ..., nm1−1). To guarantee a high success rate, we set Ω1 = 8m1 ln 2/ε2F , it is clear
that the sum

∑Ω1
t=1 (∆(i(t)1 , j

(t)
1 , ..., i

(t)
κ , j

(t)
κ )⊕1) should be maximum for the correct guess.

We will use the distinguisher statistic Whsc
(n0, n1, ..., nm1−1) to characterize this property.

Similarly we define an integer-valued function hsc by regrouping the Ω1 parity-checks
and compute the Walsh transform of hsc for all the possible guesses of (n0, n1, ..., nm1−1),
then Whsc

(nc) ∼ N (Ω1εF ,Ω1(1− εF 2)) and Whsc
(nw) ∼ N (0,Ω1), where nc denotes the

correct guess and nw otherwise. Accordingly, the statistic Whsc
(n0, n1, ..., nm1−1) should

be maximum if (n0, n1, ..., nm1−1) is correct and the best candidate is

(n0, n1, ..., nm1−1) = argmax(n0,n1,...,nm1−1)Whsc
(n0, n1, ..., nm1−1).

The time complexity of this procedure, conditioned on one candidate of the FSR initial
state, lies in the calculation of the Walsh transform of hsc for all the 2m1 possible values
of the (n0, n1, ..., nm1−1), which is Ω1 +m12m1 .

Once the first m1 bits of the NFSR initial state is recovered, we enter the next pass to
determine the next m2 bits of N0 with a similar procedure conditioned on the recovered
information, which will have a complexity much lower than the first step. Thus we can
finally determine the whole NFSR initial state.
Fruit case. For Fruit, we set Ω1 = 8m1 ln 2/ε2f . After we obtain the candidates of
the LFSR initial state in section 5.2, we proceed to determine the first m1-bit of the
NFSR initial state following a similar method as above, conditioned on the LFSR state
candidates and the available keystream. For one LFSR initial state candidate, the time
complexity is computed as C5 = Ω1 + m12m1 . After the recovery of (n0, n1, ..., nm1−1),
the remaining 37 − m1 bits can be recovered with a similar method and a small-scale
exhaustive search, conditioned on the state candidates of the LFSR initial state S0,
(n0, n1, ..., nm1−1), and the keystream, and the time complexity for one set of candidate is
C6 = 237−m1 · 4

(2ε)2 = 237−m1 · 1
ε2 .

5.4 Recovery of the Secret Information Bits Within one Cycle
Algorithm 2
Input: a state candidate (S0, N0).
Output: a flag representing the correctness of the state candidate,

and output k′i ⊕ ci, i = 0, 1, ..., d− 1, for the correct one.
1: Create a d-bit vector ζ;
2: for i = 0, 1, ..., d− 1 do
3: compute nm+i from zm−ηr2

, zm−ηr2 +1, ..., zm−ηr2 +i with the technique
described in section 4.1;

4: compute k′i ⊕ ci = nm+i ⊕ lin(Si)⊕ g(ni, n1+i, ..., nm−1+i);
5: store k′i ⊕ ci at the i-th position of the vector ζ, i.e., ζ[i] = k′i ⊕ ci.
6: for i = 0, 1, ..., d− 1 do
7: compute nm+d+i from zm+d−ηr2

, zm+d−ηr2 +1, ..., zm−ηr2 +d+i;
8: compute vi , nm+d+i ⊕ lin(Sd+i)⊕ g(nd+i, n1+d+i, ..., nm−1+d+i);
9: if vi = ζ[i] then continue for next i;
10: else output a flag that the state candidate is wrong and stop.
11: if vi = ζ[i] for all i = 0, 1, ..., d− 1

then output a flag that the state candidate is correct,
and output the d secret information bits, i.e., ζ[i], i = 0, 1, ..., d− 1.
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After identifying the candidates of the FSR initial state S0 and the NFSR initial state
N0, we will carry out the Algorithm 2 to check whether a state candidate is correct, and
if so, to further restore d consecutive secret information bits k′i ⊕ ci (i = 0, 1, ..., d − 1)
within one cycle. For any state candidate, the average number of ticks for state checking
is d+ (1 · 1

20 + 2 · 1
2 + 3 · 1

22 + ...+ d · 1
2d−1 ) ≈ d+ 4.

For Fruit, we have m = 37, ηr2 = 36, m− ηr2 = 1 and d = 128. Plugging them into
Alg.2, we obtain the corresponding algorithm for recovering the 128 round key bits of
Fruit, by combining the fact that the counter bits c10

t are deterministic at any time t. The
average number of ticks for state checking is 132.

5.5 Complexity Analysis
In the process of restoring the FSR initial state, a threshold T is introduced which can
provide large flexibility when actually constructing a fast correlation attack. According
to the value of T , the two probabilities α and β = 2−a′ are computed, indicating the
probabilities that the correct guess and a random wrong guess could be chosen as an initial
state candidate of the FSR, respectively. The following four cases could be encountered
according to the different values of α and β = 2−a′ .
I. α > 0.99 and β < 2−m′ (i.e., a′ > m′). This means that the correct guess of the m′-bit
FSR initial state will almost certainly be chosen as a state candidate, while none of the
wrong ones could be chosen. In this case, we have only one state candidate of the FSR,
thus it seems no need for the state checking step.
II. α > 0.99 and β > 2−m′ (i.e., a′ < m′). This means that the correct guess of the FSR
initial state will be chosen as a state candidate with a high probability, together with some
wrong guesses. In other words, we will have to deal with some state candidates of the FSR
and check the correctness for each of them. In this case, we need to carry out the state
checking process.
III. α < 0.99 and β < 2−m′ (i.e., a′ > m′). This means that the correct guess might not
be chosen as a state candidate, but on the good side, none of the wrong guesses would be
chosen. In this case, we might obtain no candidate, and thus have to repeat the whole
attack process several times, denoted by λ, to guarantee a high success rate.
IV. α < 0.99 and β > 2−m′ (i.e., a′ < m′). This means that some FSR initial state
candidates will be obtained, among which the correct one might not exist. In this case, we
will finally have to deal with some state candidates by checking the correctness for each of
them, and if necessary, repeat the whole attack several times, denoted by λ, to guarantee
a high success rate.

We have the following theorem on the various complexity aspects of the 2nd phase of
Algorithm 1 on the generic model.

Theorem 1. Let mi (i ≥ 1) be the length of the divided pieces of the NFSR such that∑
imi ≤ m and κ the weight of the constructed parity-checks to restore the first m1 bits,

then the data complexity is D = d(κ!2m−m1 )1/κ

R · ( 4m′ ln 2
22κε2κ )1/κ, and the time complexity C is

listed according to the above four cases:
I. 2m′(Ω +m12m1) +

∑
(Ωi +mi2mi) + 2(m−

∑
mi)/ε2,

II. 2m′(Ω +m12m1) + 2m′−a′
(∑

(Ωi +mi2mi) + 2(m−
∑

mi)/ε2 + (d+ 4)
)
,

III. λ(2m′(Ω +m12m1) +
∑

(Ωi +mi2mi) + 2(m−
∑

mi)/ε2),

IV. λ(2m′(Ω +m12m1) + 2m′−a′ (
∑

(Ωi +mi2mi) + 2(m−
∑

mi)/ε2 + (d+ 4))),
where β = 2−a′ and Ωi is the number of parity-checks utilized to restore the mi (i ≥ 2) bits
in the multi-pass phase.
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Proof. We focus on the case I, other cases could be treated in a similar way.

For the data complexity, from D = d(ω − 1) + 1 keystream bits, Ω = (ω′κ )
2m−m1 and

ω′ = ω ·R, we have

Ω := ω′
κ

κ!2m−m1
= (ωR)κ

κ!2m−m1
.

On the other hand, as illustrated in section 5.2 and from the classical reasoning in
correlation attacks [7, 18], to identify the correct candidate of the FSR initial state with a
high probability, Ω is usually chosen to be Ω ≥ (2−ε2

F )·2·m′·ln 2
ε2
F

≈ 4·m′·ln 2
ε2
F

. Thus we could
safely set Ω = 4m′ ln 2/ε2F with εF = 2κεκ. Accordingly, D is computed as

D := d · ω = d · (κ · 2m−m1) 1
κ

R
· Ω 1

κ = d(k!2m−m1)1/k

R
· (4m′ ln 2

ε2F
)1/k.

For the time complexity in the case I, we first try all the possible values of the FSR
initial state S0. Based on the parity-checks of Eq.(7), we evaluate the distribution of
(n0, n1, ..., nm1−1)·Ut⊕Zt⊕Vt⊕Bt, t = 1, 2, ...,Ω for each possible value of S0, by searching
over the (n0, n1, ..., nm1−1) of the NFSR initial state, and record those possible FSR initial
state values passing the statistical test in Section 5.2 as the candidates. It is expected that
for the correct value of the FSR initial state S0, there will be a peak in the Walsh spectrum
distribution, otherwise the Walsh spectrum should have some uniform distribution, as
depicted in Figures 3 and 4. The complexity cost during this process is counted precisely
as follows. The preparation of hS0(a) in Section 5.2 will take a complexity of Ω, while its
FWT has a complexity of m12m1 . Recall that this routine has to be repeated for each
guess of S0, which gives 2m′(Ω +m12m1); the left summand is for the determination of
other parts of the NFSR state in the multi-pass phase in a similar way as the first m1 bits
and the final correlation check.

Though the weight κ of the parity-checks is not restricted in Theorem 1, it is expected
that κ takes some small values such as 2 or 4 in the real attack. For the general value of κ,
the desirable parity-checks could be constructed through the match-and-sort approach in
[8] and the k-tree algorithm in [27].

Based on the theoretical framework established in this section, we have the following
design criteria on Grain-like small state stream ciphers modelled in Fig.2.

1. The pseudo-linearity of the output function when combining the input variables
should be avoided.

2. For l-bit security, there should exist no linear approximation with the bias ε for the
state updating function g of the NFSR such that the resultant D < 2l and C < 2l,
where ε,D,C are the same notations as in Theorem 1.

Note that in [3], it has been realized that functions involved in Grain-like designs should
have some correlation immunity. A design recommendation in [3] is to replace the feedback
function g of the NFSR in Grain v0 by a 2-resilient function, which refers to correlation
immunity rather than the nonlinearity (and there is a well-known tradeoff between them).
We stress that in the version of Fruit as broken here, the feedback function of the NFSR
follows this recommendation and is indeed 2-resilient, which clearly validates the necessity
of the second design criterion. In addition, the second criteria actually depends on the
concrete evaluation of the data and time complexities depicted in Theorem 1 for the
primitive, which quantifies the amount of nonlinearity needed for a desirable security level
by the complexities of a fast correlation attack.

Further, a new aspect here is that even in the presence of round keys and unknown
counters, such correlations could be effectively exploited. In the following, we will analyze
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the complexities of the attack on Fruit by presenting the exact values of the involved
parameters. Before this, we first illustrate how to restore the 80-bit secret key of Fruit
from the 128 consecutive round key bits.

After we obtained the LFSR and the NFSR initial states in Fruit and the 128 consecutive
round key bits (k′0, k′1, ..., k′127), we continue to recover the 80-bit secret key as follows.
Note that in Fruit, each round key bit is generated by combining 6 bits of the secret key,
which is dependent on the value of Cr. As described in Section 2, Cr is only known in the
first step (130 rounds) of the initialization. After the first 130 rounds, the initialization
enters the second step (80 rounds) where Cr is fed from the LFSR and NFSR, thus is
unknown anymore. Since we have known the initial state (S0, N0) and the round key bits
in one cycle, we will proceed as follows. We run the inverse process of the second step of
the initialization for 80 rounds and derive the internal state of the LFSR and the NFSR at
time t = −80. As we know, all bits of Cr at time t = −80 equal to the corresponding LSBs
of the NFSR except the last bit, accordingly we have only two guesses for the number of
Cr. Recall that the round key bit k′t is generated as

k′t = ksvky+64 ⊕ kpku+72 ⊕ kq+32 ⊕ kr+64,

where the indices sv, y, p, u, q, r are derived from Cr as sv = c0t c
1
t c

2
t c

3
t c

4
t c

5
t , y = c3t c

4
t c

5
t ,

u = c4t c
5
t c

6
t , p = c0t c

1
t c

2
t c

3
t c

4
t , q = c1t c

2
t c

3
t c

4
t c

5
t and r = c3t c

4
t c

5
t c

6
t . Thus we obtain two systems

of equations corresponding to the two guesses of the number of Cr with known 128
consecutive round key bits. Note that by guessing the values of (k64, k65, ..., k79), we could
linearize the round key function at the corresponding time instants and come up with 216

systems with 128 linear equations and 64 unknowns, i.e., (k0, k1, ..., k63). These systems
can be solved by the Gauss elimination within at most 216 × 1283 = 237 basic operations.
For the two guesses of the number of Cr, the complexity is at most 238.

As previously stated, we need to prepare the desirable parity-check relations before
mounting the fast correlation attack on Fruit. As discussed in section 4.2.2, this can be
finished in time C1 +C2 +C3, where C1 = 248.21 ·D, C2 = 252.12 ·ω and C3 = 243 ·(ω′+Ω) =
243 · (7ω + 221.30). Corresponding to the four cases at the beginning of section 5.5, for the
concrete Fruit case, the following four cases are listed when analyzing the time complexity,
which can be applied according to the different conditions and requirements of the attack.
I. α > 0.99 and β < 2−43 (i.e., a′ > 43). The time complexity is C4 +C5 +C6 + 238, where
C4 = 243(221.30 +m12m1), C5 = Ω1 +m12m1 and C6 = 2m2 · 1

ε2 .

II. α > 0.99 and β > 2−43 (i.e., a′ < 43). The time complexity is C4 + 243−a′(C5 + C6 +
132) + 238.
III. α < 0.99 and β < 2−43 (i.e., a′ > 43). The time complexity is λ(C4 +C5 +C6) + 238.
IV. α < 0.99 and β > 2−43 (i.e., a′ < 43). The time complexity is λ(C4 + 243−a′(C5 +
C6 + 132)) + 238.
Based on this classification, we list two sets of parameters. The first set of parameters
are chosen as follows. Set m1 = 21, i.e., we divide the NFSR into two parts of length 21
bits and 37− 21 = 16 bits, respectively. Let ω = 216.35 and D = 128(ω − 1) + 1 = 223.35.
By using the 7 best linear approximations for g, we can construct ω′ = 7 · ω = 219.16

parity checks containing the full NFSR initial state variables, from which we can construct
another Ω = ω′2 · 2−(16+1) = 221.32(> 4×43×ln 2

(2−7.2)2 ) parity checks containing only the first 21
variables of the NFSR initial state. We set a threshold T = 213.45 when recovering the
LFSR initial state. In this case, we have α = 0.999978 (> 0.99) and β = 2−38.65 (> 2−43),
which accords with the above case II. The number of parity-checks needed for recovering
the first 21-bit of the NFSR initial state is computed as Ω1 = 8m1 ln 2/ε2F = 221.26. Finally,
the time complexity is C , C1 + C2 + C3 + C4 + 243−a′(C5 + C6 + 132) + 238 = 271.56,
equivalent to 271.56

210+4 = 263.82 Fruit encryptions. We also have another set of parameters:
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m1 = 23, m2 = 14, ω = 215.34, D = 222.34, ω′ = 218.15, Ω = 221.30(> 4×43×ln 2
(2−7.2)2 ), T = 213.45,

α = 0.999961 (> 0.99) and β = 2−39.20 (> 2−43). With these parameters, the time
complexity for recovering the 80-bit secret key of Fruit is 270.55, equivalent to 262.81 Fruit
encryptions.

6 The Experimental Results
To validate the theoretical analysis of our attack, we have made practical experiments
on a reduced version of Fruit. Similarly there are five parts involved: a 19-bit LFSR
whose state at time t is denoted by St = (st, st+1, ..., st+18), a linked 18-bit NFSR
whose state at time t is denoted by N t = (nt, nt+1, ..., nt+17), a 37-bit fixed key register,
and two counter registers: a 6-bit counter Cr = (c0t , ..., c5t ) and a 7-bit counter Cc =
(c6t , ..., c12

t ), allocated for the round key function and for the initialization/keystream
generation, respectively. The 19-bit LFSR is updated independently and recursively as
st+19 = st ⊕ st+3 ⊕ st+7 ⊕ st+17. The 18-bit NFSR is updated recursively by a non-
linear feedback function g defined as nt+18 = k′t ⊕ st ⊕ c9t ⊕ g(N t), where g(N t) =
nt ⊕ nt+5 ⊕ nt+10 ⊕ nt+12nt+3 ⊕ nt+2nt+13nt+15, and c9t is the 3-th LSB of the counter
Cc. Define the values of sv, y, u, p, q, r from Cr as sv = c0t c

1
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4
t , y = c2t c
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4
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5
t , then the round key bit k′t is generated as

k′t = ksvky+30⊕kpku+34⊕kq+15⊕kr+30. Given the internal state at time t, the filter function
h produces ht = nt+1st+15 ⊕ st+1st+2 ⊕ nt+15st+7 ⊕ nt+13st+11 ⊕ st+6st+13st+18, and the
keystream bit is generated as zt = ht ⊕ st+16 ⊕ nt ⊕ nt+4 ⊕ nt+7 ⊕ nt+10 ⊕ nt+12 ⊕ nt+17.

Our fast correlation attacks on the reduced version of Fruit have been fully implemented
in C language on one core of a single PC, running with Windows 7, Intel Core i3-2120 CPU
@ 3.30 GHz and 4.00GB RAM. In general, the experimental results match the theoretical
analysis quite well.

There are 3 linearly independent linear approximations for g having the largest bias
of 2−2.4, i.e., nt ⊕ nt+5 ⊕ nt+10, nt ⊕ nt+5 ⊕ nt+10 ⊕ nt+12 and nt ⊕ nt+5 ⊕ nt+10 ⊕ nt+3.
In our experiments, we first verified the validity of the recovery of the LFSR initial state.
To achieve this, we need to carry out a sort-and-merge procedure in theory to reduce the
effective length of the NFSR initial state. Actually we have done some experiments on
this issue which confirmed the fact that for x randomly generated vectors, there are an
expected number of x2/2y+1 pairs which collide on some specified y positions. Thus we
ran the experiments as follows. Set ω = 26.94. Note that the round key function has a
cycle of length 64, we first generated D = 64(ω − 1) + 1 = 212.93 keystream bits from
an initial state with the last 10 bits (n8, n9, ..., n17) of the NFSR initial state being fixed
and the 19 bits of LFSR initial state (s0, s1, ..., s18) and the first 8 bits (n0, n1, ..., n7)
of the NFSR initial state being randomly generated, using the RC4 cipher. Next, we
exhaustively search over all the 219 guesses of the LFSR initial state, and for each guess,
we express each NFSR state variable n18+i, i = 0, 1, ..., D − 1, as a linear combination
of the variables (n0, n1, ..., n7) with the known keystream bits following the induction
method in section 4.1. Thus, for each guess of the LFSR initial state, we constructed
3 · ω = 28.52(> 4×19×ln 2

(2×2−2.4)2 ) parity checks only containing the variables (n0, n1, ..., n7).
Further, for each possible 19-bit LFSR initial state, we applied FWT to evaluate the parity
check equations for all the patterns of (n0, n1, ..., n7), and recorded the maximum value of
Walsh transform denoted by S(s′0, s′1, ..., s′18). We set a threshold T = 26.3 and the guesses
(s′0, s′1, ..., s′18) are chosen as the LFSR initial state candidates when S(s′0, s′1, ..., s′18) > 26.3.
The probability that the correct guess and the wrong guess is chosen as a candidate is
0.9996(> 0.99) and 2−15.65, respectively. Next, we proceed to recover the NFSR state using
the obtained LFSR initial state candidates. For each candidate, we evaluate the parity
check equations for all the patterns of (n0, n1, ..., n7), and the one with the maximum value
of Walsh transform is chosen as the NFSR initial state candidate. On average, we obtained
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10 state candidates for (s0, s1, ..., s18) and (n0, n1, ..., n7). For each of these candidates,
we checked the validity of the state and the recovery of the 64 consecutive round key
bits by a method similar to Algorithm 2. The estimated time complexity of the above
process is 230.23. In the simulation, we finally identified the round key bits in a cycle
within a few hours. From the round key function, the round key bit k′t is generated as
k′t = ksvky+30 ⊕ kpku+34 ⊕ kq+15 ⊕ kr+30. By guessing the values of (k30, k31, ..., k36), we
come up with 27 systems with 64 linear equations and 30 unknowns, i.e., (k0, k1, ..., k29).
These systems can be solved using a non-optimized method with at most 27 × 643 = 225

basic operations, which could be safely ignored when comparing with the complexity in
the previous steps.

7 Conclusions
In this paper, we have studied the security of Grain-like small state stream ciphers by
fast correlation attacks, the classical cryptanalytic method against LFSR-based stream
ciphers. A generalized model of such primitives is defined and a formal framework for fast
correlation attacks utilizing the divide-and-conquer strategy on the model is presented with
a thorough theoretical analysis. It is shown that if the non-linear combining function has
some pseudo-linear property when combining the input variables from the cascaded internal
state, then such an attack would be applicable in principle. This results in two general
design criteria for such small state stream ciphers to achieve the desirable security. Both do
hold irrespective of the specifics of round key generation. One is that the pseudo-linearity
of the output function when combining the input variables should be strictly avoided; the
other is to prevent the good linear approximation of the NFSR state updating function.
As an application, we broke Fruit, a tweaked version of Sprout, in 262.8 Fruit encryptions,
given 222.3 keystream bits for all the keys, which clearly violates the 80-bit security claim.
Our results have been verified in experiments on a small-scale version of Fruit. Our attack
becomes inefficient for Grain v1 because the length of the LFSR is already 80-bit and
is not applicable to Plantlet and Lizard so far for the lack of the pseudo-linearity of the
output functions in both. We believe that our work will be helpful in understanding the
security of such small state primitives and useful for the upcoming designs.
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