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Abstract

Recently, the two-wheeled inverted pendulum has drawn the attention of robotic community
in view of a plethora of applications, such as transport vehicles: Segway, teleconferencing
robots, and electronic network-vehicle. As a widely-used personal transportation vehicle, a
two-wheeled inverted pendulum robot has the advantages of small size and simple structure.
Moreover, with the advent of modern control technology, these kinds of platforms with
safety features and sophisticated control functions can be cost down, so that they have high
potential to satisfy stringent requirements of various autonomous service robots with high
speed. At the same time, it is of great interest from control point of view as the inverted
pendulum is a complicated, strongly coupled, unstable and nonlinear system. Therefore, it
is an ideal experimental platform for various control theories and experiments.

To understand such a complex system, the Lagrangian equation has been introduced to
develop a dynamic model. And following the mathematical model, linear quadratic regulator
control and fuzzy adaptive method are proposed for upright stabilization, velocity control
and position control of the system. However, sometimes these kinds of robots need to move
on a slope, so an advanced linear quadratic regulator controller and a modified fuzzy adaptive
controller have been proposed to achieve position control on a slope for the robot while
stabilizing its body in balance. In addition, trajectory tracking control using proportional
integral derivative control and sliding mode control with fuzzy adaptive backstepping method
is also designed to make the robot autonomously navigate in two dimensional plane.

Simulation results indicate that the proposed controllers are capable of providing appropriate
control actions to steer the vehicle in desired manners. Then, a couple of real time experiments
have been conducted to verify the the effectiveness of the developed control strategies.
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Chapter 1

Introduction

1.1 Overview of Two-Wheeled Inverted Pendulum Robot

The Two-Wheeled Inverted Pendulum (TWIP) is a pendulum vehicle with two wheels and
consists of an inverted pendulum system and a mobile system. Generally, the tilting angle
of the body is detected by a gyroscope and an accelerometer, and to keep itself balanced, a
microcontroller is used to generate Pulse Width Modulation (PWM) signals to each motor.
A motor drives each wheel independently, and the torque from the motors makes the vehicle
move to balance the pitch angle of the pendulum. It can also move along curved paths by
driving the motors at different speeds.

One of the first reported implementations of a TWIP robot was done by Kawamura in
1988 [1]. In 1996, Ha [2] developed an autonomous two-wheeled inverse pendulum type robot,
called the “Yamabica Kurara”. This robot was driven by two independent driving wheels
on the same axle and had a gyro type sensor to measure the inclination angular velocity of
the body. In the same year, Shiroma designed similar robots that coordinated with each
other to carry a load cooperatively [3]. In 2003, Bui [4] developed a welding pendulum that
was able to follow a specified welding trajectory.

Several approaches have been used to stabilize two-wheeled inverted pendulums. In the year
of 2000, Ding used a sliding mode control scheme to deal with parametric and functional
uncertainties [5]. Pathak [6] used partial feedback linearization to design a two level position-
velocity controller in 2005. In 2007, Jeong and Takahashi [7] implemented a Linear Quadratic
Regulator (LQR) state feedback controller for their mobile humanoid experimental robot.
Meanwhile, Li implemented Proportional Integral Derivative (PID) control in an experimental
vehicle with two reference inputs corresponding to a human transport mode and a goods
transport mode [8]. In 2009, Li and Xu implemented an adaptive fuzzy controller, while
Vlassis applied a Monte Carlo expectation-maximization algorithm to achieve balance by
model free reinforcement learning [9]. In 2011, a fuzzy logic controller was designed by
Huang to achieve stabilization and velocity control [10]. A TWIP robot provides massive
opportunities for people to design applications and as a typical nonholonomic system, motion

1
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control of TWIP systems is full of challenge.

Figure 1.1: Segway

The two-wheeled inverted pendulum has been proposed as a portable transporter due to
its high maneuverability and simple structure. It has been suggested as a suitable unit for
office and home environments. Controlling such a system is a challenging problem due to its
nonlinearities and complex dynamics. The modeling of the system is also complex because
of the slipping and rolling constraints of the wheels. In spite of its dynamic complexity,
numerous two-wheeled inverted pendulums have been created by research institutions and
companies.

Figure 1.2: Legway

In 2000, Segway was introduced to the world as the first human transporter, and it was
marketed as the transporter alternative, as shown in Fig 1.1. And there are several different
Segway models. The I167 model is shown in Fig 1.3. In this model, the driver can turn by
twisting a grip located on the left of the handlebar. Another version of the Segway x2 in
Fig 1.4 is intended for off-road use, which has wider tires and higher ground clearance.

Legway robot was designed by Lego company, which is capable of moving on the inclined
surface or even on irregular ground as shown in Fig 1.2. In 2005, a TWIP robot was
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Figure 1.3: Segway HT i167

Figure 1.4: Segway x2 SE

introduced as a service unit for reporting fire and intruders in indoor settings. Similar robots,
such as the uBot series which have been shown in Fig 1.5 and the Segway Robotic Mobility
Platform (Segway RMP) series, continue to be used as mobile research platforms for diverse
studies within the field of robotics. Balance Bot was designed in Brno university. It is a low
cost TWIP robot but can achieve obstacle avoiding.

In recent years, the TWIP has drawn more attention of robotic community in view of a
plethora of applications, such as teleconferencing robots and Electric Networked-Vehicle
(EN-V) shown in Fig 1.7 and Fig 1.8. The telepresence robot shown in Fig 1.6, also called
“Anybot”, has a panel showing the surrounding environment. Personal users can use the
robot to help keep an eye on things when they cannot be there in person. Business clients
can employ Anybot to strengthen in-office collaboration by expanding their employee’s
telecommuting options. More details can be seen in Table 1.1. EN-V is an electrically
powered road vehicle created by Segway and adopted by General Motors as a concept vehicle
representing the future of unban transportation, which is also built on the base of TWIP
characteristics.
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Figure 1.5: uBot-5

Figure 1.6: Anybots

1.2 Modeling of TWIP

Development of a dynamic model is necessary for understanding the physical phenomenon
of a wheeled self-balancing inverted pendulum. Moreover, a dynamic model should be
developed so that the controllers can be properly designed. Many approaches have been
derived to describe a TWIP robot. In [11], a dynamic model of TWIP was constructed in
the Newtonian reference frame using Kane’s method [12]. With the kinematical information
and the nonholonomic generalized active forces obtained, the equations of motion have been
derived. In [13], the mathematical model of the inverted pendulum has been developed
based on Lagrangian formulation. With the system kinetic energy and system potential
energy, the TWIP system dynamics were presented in terms of two differential equations
describing two DOF of the system. Furthermore, in [2], the system was modelled based on
wheels’ axles and its vertical axis. Using Lagrange’s motion equation and linearizing in the
neighbourhood of the upright state, the linearized model was obtained. In [14], the author
used the similar method in [12] and developed a 2 DOF dynamic model for the inverted
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Table 1.1: Anybots Specification

Top speed 5.6 km/h

The maximum vertical height 1.75 m

Display 320*240 mm

Camera 5 megapixels

Battery duration 8h

Weight 16 kg

pendulum on a slope.

To achieve the trajectory tracking control of a TWIP robot, a 3 DOF dynamic model has
to be derived. In [6], the system model of the TWIP robot was described in the following
state-space form using Euler-Lagrange equation.

M(q)q̈ + V (q, q̇) = E(q)τ +AT (q)λ (1.1)

where τ is the control torques, λ is the constraint-force vector and A(q) represents the three
nonholonomic constraints. q is the state variable, which contains the position of the TWIP,
pitch angle and yaw angle of the body.

1.3 Velocity and Position Control

Many different types of control schemes for velocity control and position control of inverted
pendulum robots have been proposed over the years.

In [15], the author created a mathematical model for a nonlinear single link inverted
pendulum-on-cart system by using Lagrange method. Based on Taylor series approximation,
the nonlinear model can be linearized. LQR, double PID and pole placement control methods
were developed to ensure the upright stabilization. The performances of the controllers were
tested by real time experiments, and the LQR controller was more reliable based on the
response time and level of disturbance rejection. In [16], the time specification performance
between LQR controller and PID controller has been compared, and simulation study has
been done in Matlab simulink environment. The results show that LQR produced better
response compared to PID control method.

A similar LQR algorithm was introduced in [17] for the attitude and position control of the
inverted pendulum robot. In this paper, Kalman filter was employed to process the angle
signals from a gyroscope and an accelerometer.

Other control strategies are also proposed, such as sliding mode control and backstepping
control in literature [14,18–23]. In [20], the author aimed to elaborate a control law based
on the combination of backstepping and PID controllers to steer the angle of the body.
It can be concluded that the backstepping method is suitable for this kind of nonlinear
systems. In recent year, an increasing number of approximator-based adaptive control
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Figure 1.7: GMs EN-V Pride

Figure 1.8: GMs EN-V Magic

methods have been developed to extend the applicability of classical backstepping control
scheme without full knowledge of system dynamics and to compensate model uncertainties
as well. In [19], an adaptive integral backstepping controller with the velocity estimator
was constructed to stabilize the wheeled inverted pendulum. To deal with the complex
structure, a non-model-based differentiator based on the adaptive update law was proposed.
The numerical simulation results show the effectiveness of the designed controller, though
there are no signs of real experimental results. In [23], two sliding mode control (SMC)
methods have been proposed for the inverted pendulum system and both of the strategies
were capable of coping with parameter uncertainties and external disturbances.

Furthermore, in [24–28], a fuzzy logic control scheme has been implemented. In [24], a
two-axis accelerometer and a rate gyroscope were used for collecting the actual angle of the
robot, and the errors of the inverted pendulum’s angle and angular velocity were used as
the inputs to the fuzzy logic controller. The experimental results proved that the proposed
controller can not only balance the angle of the pendulum but also track the desired speed
successfully. An example of using a fuzzy controller to maintain proper control of an inverted
pendulum has been presented in [26]. Control of the system was accomplished by the
corresponding displacement of the carriage. At the stage of building a fuzzy controller, input
and output linguistic variables with the corresponding membership functions and a rule
base have been proposed. And the simulation results showed a relative satisfactory control
performance. A novel design of a two-wheeled double inverted pendulum-like vehicle with
a movable payload was presented in [28]. A hybrid fuzzy logic control approach has been
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adopted to control and stabilize the inverted pendulum robot and different disturbances
were applied to the system to test the robustness of the proposed control strategy.

1.4 Trajectory Tracking Control

The trajectory tracking control is an important part of the controller design for inverted
pendulum robots. Plenty of researchers have devoted lots of time to this area of studies.

The widely used PID controller and LQR controller were studied and implemented in [2,29,30].
PD and PID methods were used to perform a line tracking task in [29]. The reference
trajectory was captured by the camera and detected by image processing. The designed
controller is capable of stable balancing and position tracking. In [2], the author focused
on making the TWIP robot navigate autonomously in two dimensional plane with desired
constant velocity while keeping balanced. A LQR control algorithm was used to keep the
robot upright and track the given speed and trajectory.

The PID controllers have been used in industries as a dominant controller with advantages
of simplicity of implementation and effectiveness of performance. Neural network and fuzzy
method are very good tools for intelligent control under the circumstances with uncertainties
and with no mathematical model. In [31], a neural network technique was applied to control
a 2 Degree of Freedom (DOF) inverted pendulum on a x-y plane. The cart with an inverted
pendulum moves on the x-y plane. Neural network works as an auxiliary controller to
compensate for uncertainties of the system. Also, the controller was tested on the real
inverted pendulum platform and effective experimental results were obtained. A dual-loop
control method to realize the simultaneous balance and trajectory tracking control for the
TWIP vehicle has been proposed in [32].

On the other hand, an adaptive backstepping sliding mode motion controller with fuzzy
logic system has been developed in [33, 34]. Sliding mode control is a leading robust control
technique as it is insensitive to those uncertainties implicit in the input channel, and it
can be a very powerful method to solve the problem of trajectory tracking control in the
presence of disturbances and uncertainties.

1.5 Research Motivation

Given the theory development in [2,4,6], range and variety of modern applications of inverted
pendulum, a TWIP robot with emphasis on controller design is introduced in this thesis.
Two modelling methods will be adopted to describe the TWIP system.

The first control scheme will be based on velocity and position control. Under the inspiration
of [2, 15,35], a LQR controller and a fuzzy adaptive backstpping controller will be utilized
to achieve the velocity control and position control while maintaining the robot upright.
Different from [2], the LQR controller and the fuzzy logic system will also be constructed
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for the inverted pendulum robot on a slope, which meets the practical applications.

Enlightened by [29,31,33], a PID technique and a sliding mode backstepping control with
fuzzy adaptive method will be used to achieve trajectory tracking control. To test the
performance of the controllers, real time experiments will be conducted.

1.6 Thesis Outline

In this thesis, some brief descriptions of a hardware platform used in the experiments are
given in Chapter 2. Chapter 3 introduces two different types of dynamic models. In Chapter
4, several controller strategies are developed and simulation results and experimental results
are also conducted to show the effectiveness of the proposed control methods. Finally,
Chapter 5 provides concluding remarks and some future work.



Chapter 2

Experimental Platform

The goal of this chapter is to describe the experimental setup used to implement the control
strategy on the mobile inverted pendulum robot. It is vital to select the appropriate physical
frames for the TWIP robot. Without a suitable microcontroller, a mobile two-wheeled robot
is not nearly good enough for a complete controller design.

2.1 Platform Overview

Figure 2.1: Experimental Platform

The experimental platform is based on the Balanbot provided by Maker Studio as shown
in Fig 2.1. As you can see, the robot consists of a plastic body frame, two wheels and two
12V Direct Current (DC) motors attached at the bottom of the body frame. Three 3.7V

9
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3000mAh rechargeable batteries are placed at the middle layer of the body frame. The
Arduino UNO microcontroller, the balance shield and Xbee pro S1 wireless communication
module are placed on the top of the frame. Fig 2.2 shows an overview of the experimental
hardware.

Figure 2.2: Overview of the TWIP Robot Hardware

2.2 Main Controller

2.2.1 Arduino Uno R3

Arduino [36] is an open-source microcontroller development board which can be used to read
sensors and control things like motors and lights. This allows one to upload programs to
this board which can then interact with things in the real world. With this, making devices
which respond and react to the world at large is easy.

The Arduino Uno is a microcontroller board based on the ATmega328 which has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz
crystal oscillator, a Universal Serial Bus (USB) connection, a power jack, an In Circuit Serial
Programmable (ICSP) header and a reset button. It contains almost everything needed to
support the main controller.
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Figure 2.3: Arduino Interface

Figure 2.4: Arduino Uno R3

“Uno” means one in Italian and is named to mark the upcoming release of Arduino 1.0. The
Uno and version 1.0 will be the reference versions of Arduino, moving forward. The Uno
is the latest in a series of USB Arduino boards, and the reference model for the Arduino
platform. For a comparison with previous versions, see the Arduino index of boards. The
Arduino Uno R3 is shown in Fig 2.4 and technical specifications are given in Table 2.1. It
is worth mentioning that Arduino is a developed platform which includes various of driver
libraries for diverse sensors and actuators. It is intuitive, free to download, and compatible
with Windows and Mac OS. More than 100 libraries are available for signal analysis and
hardware accessories. The overview of the Arduino Integrated Development Environment
(IDE) is shown in Fig 2.3.
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Table 2.1: Arduino Uno R3

Microcontroller ATmega328

Operating voltage 5V

Input voltage(Recommended) 7-12V

Input voltage(Limits) 6-20V

Digital I/O pins 14

Analog input pins 6

DC current per I/O pin 40mA

DC current for 3.3V Pin 50mA

Flash memory 32 KB of which 0.5KB used by bootloader

SRAM 2KB

EEPROM 1KB

Clock speed 16MHz

2.2.2 Balance Shield

The Balance Shield [37], as shown in Fig 2.5, uses an MPU6050 which is the world’s first
integrated 6-axis motion-tracking device that combines a 3-axis gyroscope and a 3-axis
accelerometer. It connects to the UNO compatible board through the Inter-Integrated
Circuit (I2C) interface. With this sensor, stable angle readings can be collected.

Figure 2.5: Balance Shield

MPU-6050 combines a 3-axis accelerometer and a 3-axis gyroscope on the chip. It offers a
gyroscope with a full-scale range of ±250 degrees/sec, ±500 degrees/sec, ±1000 degrees/sec,
±2000 degrees/sec, and a user-programmable accelerometer with a full-scale range of ±2g,
±4g, ±8g, ±16g. Moreover, there is a configurable digital low-pass filter (DLPF), which
provides a number of cut-off frequencies (see Table 2.2 for details).

The Balance Shield also integrates one L298P for driving motors. The L298P is an integrated
monolithic circuit in a 15-lead Multiwatt and PowerSO20 package. It is a high voltage, high
current dual full-bridge driver designed to accept standard Transistor-Transistor Logic (TTL)
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Table 2.2: Low Pass Filter Specifications for the Accelerometer and Gyroscope

Accelerometer (Fs = 1KHz) Gyroscope

Bandwidth(Hz) Delay (ms) Bandwidth (Hz) Delay (ms) Fs(KHz)

260 0 256 0.98 8
184 2.0 188 1.9 1
94 3.0 98 2.8 1
44 4.9 42 4.8 1
21 8.5 20 8.3 1
10 13.8 10 13.4 1
5 19.0 5 18.6 1

logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors.
Two enable inputs are provided to enable or disable the device independently of the input
signals. The emitters of the lower transistors of each bridge are connected together and
the corresponding external terminal can be used for the connection of an external sensing
resistor. An additional supply input is provided so that the logic can work at a lower voltage.

2.3 Other Parts of the TWIP

2.3.1 Xbee Pro S1

The XBee [38] and XBee-PRORF Modules are engineered to meet IEEE 802.15.4 standards
and support the unique needs of low-cost, low-power wireless sensor networks. The devices
require minimal power and provide reliable delivery of data between devices. The devices
operate within the Industrial Scientific Medical (ISM) 2.4 GHz frequency band and are
pin-for-pin compatible with each other.

Figure 2.6: Xbee Pro S1

Fig 2.6 shows the very popular 2.4 GHz XBee XBP 24-AWI-001 module from Digi. The Pro
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series have the same pinout and command sets as the basic series with an increase output
power of 60 mW. These modules take the 802.15.4 stack (the basis for Zigbee) and wrap it
into a simple to use serial command set. These modules allow a very reliable and simple
communication between microcontrollers, computers, systems, really anything with a serial
port. Point to point and multi-point networks are supported.

2.3.2 12V DC Motor with Encoder

Figure 2.7: 12V DC Motor

This is a gear motor with encoder, model No.GB 37Y3530-12V-251R [39] shown in Fig
2.7. It is a powerful 12V motor with a 43.7:1 metal gearbox and an integrated quadrature
encoder that provides a resolution of 64 counts per revolution of the motor shaft, which
corresponds to 2797 counts per revolution of the gearbox’s output shaft. These units have
a 0.61 inches long, 6 mm-diameter D-shaped output shaft. This motor is intended for use
at 12V, though the motor can begin rotating at voltages as low as 1V. The face plate has
six mounting holes evenly spaced around the outer edge threaded for M3 screws. These
mounting holes form a regular hexagon and the centers of neighboring holes are 15.5 mm
apart, and all the features make the motor being an ideal option for mobile robot project
(see Table 2.3 for details).

Table 2.3: Motor Specification

Gear ratio 43.7:1

No-load speed 251 + 10% RPM

No-load current 350mA

Start voltage 1.0V

Stall current 7A

Insulation resistance 20MΩ

EncoderOperating voltage 5V

Encoder type Hall

Encoder resolution 16 CPR(motor shaft)/700 CPR(gearbox shaft)

Weight 205g
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2.3.3 3.7V 3000mAh Rechargeable Batteries

Figure 2.8: Rechargeable Batteries

The Model 18650 3.7V 3000mAh rechargeable lithium batteries as shown in Fig 2.8, have large
capacity and high quality. They have built-in Protection Circuit Board (PCB) protection
boards making them long life batteries. Moreover, there is no memory effect and they can be
recharged up to 1200 times when fully or partially drained. The improved low self discharged
batteries have over current protection and over charge and discharge protection as well.
They are good both in low and high temperature operations. Lastly, they provide excellent
continuous power sources to the device.



Chapter 3

TWIP Dynamics

To steer an inverted pendulum robot, it is necessary to have its mathematical model such
that a model-based controller can be successfully designed in order to achieve desired control
goals. In this chapter, inspired by the work done in [2,6,40–42], two mathematical modelling
methods are introduced. The first model is used for designing velocity control and position
control for a TWIP robot while the second one for trajectory tracking control.

3.1 Dynamic Model with 2 DOF

The coordinate system of the TWIP robot is shown in Fig 3.1, where θ and φ are the rotation
angle of the wheel and the tilting angle of the body, respectively. β is equal to the rotation
angle θ minus the tilting angle φ, which is the wheel’s relative rotation angle to the body [2].
α is the tilt angle of the slope.

Model assumptions are made as follows:

� Wheels do not slip on the slope;

� Body and the wheels are rigid;

� Robot has no lateral sliding.

Before giving a mathematical model for the TWIP robot in Fig 3.1, the physical meaning of
the variables used in the modeling process is given in Table 3.1.

The total kinetic energy can be written into the following form.

16
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Table 3.1: Parameters and Variables

Symbol and unit Parameter and variable name

Mb[kg] mass of the body

Mw[kg] mass of the wheels

Ib rotational intertia of the body

Iw rotational intertia of the wheel

IM rotational intertia of the motor axis

r[m] radius of the wheel

l[m] length between the axle of wheel and gravitational center of the body

µs viscous constant between the wheel axle including motor and gear

µg viscous constant between the wheel and the ground

g[m/s2] gravitational acceleration

τi torque constant of the motor

η reduction ratio of gear

u motor’s input current

T =
1

2
Mwr

2θ̇2 +
1

2
Mb

{[(
θ̇ − β̇

)
l sin ((θ − β) + α)

]2
+
[
rθ̇ +

(
θ̇ − β̇

)
l cos ((θ − β) + α)

]2}
+

1

2
Iwθ̇

2 +
1

2
Ib

(
θ̇ − β̇

)2
+

1

2
IMη

2β̇2

=
1

2
Mwr

2θ̇2 +
1

2
Mb

[(
θ̇ − β̇

)2
l2 + r2θ̇2 + 2rθ̇

(
θ̇ − β̇

)
l cos ((θ − β) + α)

]
+

1

2
Iwθ̇

2 +
1

2
Ib

(
θ̇ − β̇

)2
+

1

2
IMη

2β̇2 (3.1)

The potential energy for the wheels is determined by

Uw = Mwg(r + θr sinα) = Mwgr(1 + θ sinα) (3.2)

The potential energy for the body is given by

Ub = Mbgl(cosφ+ θr sinα) = Mbgl(cos(θ − β) + θr sinα) (3.3)

The total potential energy is calculated as

U = Uw + Ub = Mwgr(1 + θ sinα) +Mbgl(cos(θ − β) + θr sinα) (3.4)

The dissipation energy function is

D =
1

2

(
µsβ̇

2 + µg θ̇
2
)

(3.5)

The external torques can be obtained as below.
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Figure 3.1: Schematic Diagram of TWIP Robot on Inclined Surface

Qβ = ητiu, Qθ = 0 (3.6)

Now, Lagrange’s motion equation can be used to derive the dynamic model of the inverted
pendulum system

d

dt

(
∂T

∂β̇

)
− ∂T

∂β
+
∂U

∂β
+
∂D

∂β̇
= Qβ (3.7)

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+
∂U

∂θ
+
∂D

∂θ̇
= Qθ (3.8)

where

∂T

∂β
= Mbrθ̇

(
θ̇ − β̇

)
l sin (θ + α− β) = Mbrθ̇φ̇l sin (φ+ α) (3.9)

∂T

∂β̇
= −Mblrθ̇ cos (φ+ α)−Mbl

2φ̇+ IMη
2
(
θ̇ − φ̇

)
− Ibφ̇ (3.10)

d

dt

(
∂T

∂β̇

)
= −Mblrθ̈ cos (φ+ α) +Mblrθ̇ sin(φ+ α)φ̇−Mbl

2φ̈

+IMη
2(θ̈ − φ̈)− Ibφ̈

=
[
−Mblr cos (φ+ α) + IMη

2
]
θ̈ −

(
IMη

2 +Mbl
2 + Ib

)
φ̈

+Mblrθ̇ sin (φ+ α) φ̇ (3.11)
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∂U

∂β
= Mbgl sin (θ − β) (3.12)

∂D

∂β̇
= µsβ̇ = µs

(
θ̇ − φ̇

)
(3.13)

∂T

∂θ
= −Mbrθ̇

(
θ̇ − β̇

)
l sin (θ + α− β) = −Mbrθ̇φ̇l sin(φ+ α) (3.14)

∂T

∂θ̇
= Mwr

2θ̇ +
1

2
Mb

[
2l2
(
θ̇ − β̇

)
+ 2r2θ̇ + 2r(2θ̇ − β̇)l cos ((θ − β) + α)

]
+Iwθ̇ + Ibφ̇

= Mwr
2θ̇ +Mb

[
l2φ̇+ r2θ̇ + r(θ̇ + φ̇)l cos (φ+ α)

]
+ Iwθ̇ + Ibφ̇ (3.15)

d

dt

(
∂T

∂θ̇

)
= Mwr

2θ̈ +Mb

[
l2φ̈+ r2θ̈ + rl(θ̈ + φ̈) cos (φ+ α)

]
−
[
r(θ̇ + φ̇)l sin(φ+ α)φ̇

]
Mb + Iwθ̈ + Ibφ̈ (3.16)

=
[
Mbl

2 +Mbrl cos(φ+ α) + Ib
]
φ̈+

[
Mwr

2 +Mbr
2 +Mbrl cos (φ+ α) + Iw

]
θ̈

−Mbr
(
θ̇ + φ̇

)
φ̇l sin (φ+ α) (3.17)

∂U

∂θ
= Mwgr sinα+Mbgl (r sinα− sin (θ − β))

= Mwgr sinα+Mbgl (r sinα− sinφ) (3.18)

∂D

∂θ̇
= µg θ̇ (3.19)

Hence, with (3.7) and (3.8), the dynamics of a TWIP on the slope is derived as follows:

(
IMη

2 +Mbl
2 + Ib

)
φ̈+
[
Mblr cos (φ+ α)− IMη2

]
θ̈−Mbrθ̇φ̇l sin(φ+α)−Mbgl sinφ−µs(θ̇−φ̇)

= −ητiu (3.20)

[
Mbl

2 +Mbrl cos(φ+ α) + Ib
]
φ̈+
[
Mwr

2 +Mbr
2 +Mbrl cos(φ+ α) + Iw

]
θ̈−Mbrφ̇

2l sin(φ+α)
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+Mwgr sinα+Mbgl(r sinα− sinφ) + µg θ̇ = 0 (3.21)

The nonlinear model of the TWIP robot can be linearized based on Taylor series approxima-
tion

f (φ) = f (φ0) + (φ− φ0) f ′ (φ0) + ...+
(φ− φ0)n

n!
fn (φ0) (3.22)

The overall goal is to keep the robot rod in a vertical position with φ = 0 (or near 0). The
linearization might be performed about this point of equilibrium. Under these conditions,
sinφ ≈ φ and cosφ ≈ 1, the linear model of the two-wheeled inverted pendulum can be
yielded from (3.20) and (3.21).

(
Mbl

2 + Ib + η2IM
)
φ̈+

(
Mbrl cosα− η2IM

)
θ̈ −Mbglφ+ µs

(
φ̇− θ̇

)
= −ητiu (3.23)

(
Mbrl cosα+Mbl

2 + Ib
)
φ̈+

(
Mbr

2 +Mwr
2 +Mbrl cosα+ Iw

)
θ̈ +Mwgr sinα

+Mbgl (r sinα− φ) + µg θ̇ = 0 (3.24)

When the inclination angle of the slope α is equal to zero, the following nonlinear dynamics
of the TWIP on a flat plane can be obtained.

(
IMη

2 +Mbl
2 + Ib

)
φ̈+

(
Mblr cosφ− IMη2

)
θ̈ −Mbrθ̇φ̇l sinφ−Mbgl sinφ− µs(θ̇ − φ̇)

= −ητiu (3.25)

(
Mbl

2 +Mbrl cosφ+ Ib
)
φ̈+

(
Mwr

2 +Mbr
2 +Mbrl cosφ+ +Iw

)
θ̈ −Mbrφ̇

2l sinφ

−Mbgl sinφ+ µg θ̇ = 0 (3.26)

Using the same method as in (3.22), the linear model of the TWIP on a flat plane is given as

(
IMη

2 +Mbl
2 + Ib

)
φ̈+

(
Mblr − IMη2

)
θ̈ −Mbglφ− µs(θ̇ − φ̇) = −ητiu (3.27)

(
Mbl

2 +Mbrl + Ib
)
φ̈+

(
Mwr

2 +Mbr
2 +Mbrl + Iw

)
θ̈ −Mbglφ+ µg θ̇ = 0 (3.28)
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3.2 Dynamic Model with 3 DOF

To achieve the trajectory tracking control, another model which is described in a 3 DOF
motion dynamic equation is chosen as follow.

Figure 3.2: Free Body Diagram of the TWIP

Fig 3.2 shows the body diagram of the TWIP whose mathematical model has been established
in detail in [6]. In order to briefly recall the dynamic model, Table 3.2 lists all the symbols
and their definitions. With the Euler-Lagrange equation, the dynamic model of the inverted
pendulum robot has been described in [41].

Define the following notations and the augmented vector x,

qr =


x
y
ψ
φ

 (3.29)

V =

 φ̇
v

ψ̇

 =

 ωφ
v
ω

 (3.30)

x =

[
qr
V

]
(3.31)

The following model for the TWIP shown in Fig 3.2 is taken from [33].
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Table 3.2: Parameters and Variables

Symbol and unit Parameter and variable name

Ixx, Iyy, Izz Moment of inertia of the pendulum body with respect to the x,y,z axis

vr[m/ sec] reference linear velocity

ωr[m/ sec] reference angular velocity

R[m] radius of both wheels

cx, cz the center of mass of the vehicle is at coordinate OGb = (cx, 0, cz) in β

ur, ul input control applied to the right motor and the left motor

Iwa, Iwd moment of inertia of a wheel about its axis and about a diameter

θr, θl[rad] angles of the right and left wheel

ψ[rad] yaw angle

Mb[kg] mass of the pendulum body

Mw[kg] mass of the each wheel

φ[rad] tilt angle of the inverted pendulum

b[m] half of the distance between both driving wheels

(x, y)[m/ sec] position of the inverted pendulum

v, ω linear velocity and angular velocity of the inverted pendulum

ẋ =f(x) + g(x)u (3.32)

with f(x) and g(x) being defined below.

f(x) =

[
f1(x)
f2(x)

]
, g(x) =

[
g1(x)
g2(x)

]
, u =

[
ur
ul

]
(3.33)

where

f1(x) =


v cosψ
v sinψ

ψ̇

φ̇

 (3.34)

f2(x) =

 f21(x)
f22(x)
f23(x)

 (3.35)

g1(x) =


0 0
0 0
0 0
0 0

 (3.36)

g2(x) =

 g21(x) g21(x)
g22(x) g22(x)
g23(x) −g23(x)

 (3.37)
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f21(x) =
1

Dα
(sin(2φ)ψ̇H̄) +

1

Dα
(M2

b c
2
zR

2 sin(2φ)(φ)2)

+
1

2Dα
(−2M2

bR
2cz − 4IwaMbcz − 4MwR

2Mbcz)g sinφ (3.38)

f22(x) = K2
φψ̇ +

1

2Dα
(M2

b c
2
zR

2g sin(2φ))− IyyMbR
2cz

Dα

− 1

4Dα
R2M2

b c
3
z sin(φ)φ̇2 (3.39)

f23(x) = − 1

Gα
(Ixx − Iyy)R2 sin(2φ)φ̇ψ̇ − 1

Gα
Mbc

2
zR

2 sin(2φ)φ̇ψ̇

− 1

Gα
(sin(φ)R2Mbczvψ̇) (3.40)

g21(x) =
1

Dα
(MbR

2 + 2MwR+ 2Iwa +Mb cos(φ)czR) (3.41)

g22(x) = − R

Dα
(Mb cos(φ)czR+ Iyy +Mbc

2
z) (3.42)

g23(x) =
Rb

Gα
(3.43)

The detailed expressions for Dα, Gα, Kφ and H̄ are shown as follows:

Dα = M2
b cos2 φc2zR

2 + ((−M2
b − 2MwMb)c

2
z − 2IyyMw − IyyMb)R

2

−2Mbc
2
zIwa − 2IyyIwa (3.44)

Gα = (−Mbc
2
z + Izz − Ixx)R2 cos2 φ+

(
Mbc

2
z + Ixx + 2Iwd

)
R2 (3.45)

+2b2MwR
2 + 2b2Iwa (3.46)

Kφ =
(−4IyyMbR

2cz − 3R2M2
b c

3
z +MbR

2cz(Ixx − Iyy)) sinφ

4Dα

+
(MbR

2cz(Ixx − Izz) +R2M2
b c

3
z) sin 3φ

4Dα
(3.47)
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H̄ =
1

2
MbR

2Izz + IwaIzz −MwR
2Ixx − IwaIxx

−Mbc
2
zMwR

2 −Mbc
2
zIwa −

1

2
MbR

2Ixx +MwR
2Izz (3.48)



Chapter 4

Controller Design

In this chapter, various control methods are discussed. Under the inspiration of the
[2, 19,29,43–45], the controllers are mathematically derived.

The proposed control strategies are tested by simulations and then put into real time tests.
Both the simulation results and experimental results are being reviewed at the end of each
section.

4.1 Velocity and Position Control on a Slope

The purpose of this section is to derive the control law to make the TWIP robot track the
desired speed and stop at a given point while keeping balance of its body.

4.1.1 LQR Control

At this stage, LQR control is implemented. The LQR theory has been one of the oldest and
most mature state space design methods with the development of modern control theory. It
is a powerful technique used in control system design for complex systems.

In practical applications, robots are often required to drive on a non-flat plane, e.g, on the
slope. Because of the influence of the angle of the slope, when the inverted pendulum cart
becomes stable on this non-flat plane, the pitch angle of the body will not be zero anymore.

In this section, the LQR control strategy for the TWIP robot on a slope is developed firstly.
By setting the slope angle to zero, the LQR controller for the TWIP robot on a flat plane
can be obtained.

25
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Controller Design

In order to transform (3.23) and (3.24) to the state space representation, define the state
variable

x =

 φ

φ̇

θ̇

 (4.1)

and define the following matrices

[
a11 a12
a21 a22

]
=

[
Mbl

2 + Ib + η2IM Mbrl cosα− η2IM
Mbrl cosα+Mbl

2 + Ib (Mb +Mw)r2 +Mbrl cosα+ Iw

]
(4.2)

[
b1
b2

]
=

[
−ητi

0

]
(4.3)

[
c1
c2

]
=

[
−Mbgl µs −µs
−Mbgl 0 µg

]
(4.4)

[
d1
d2

]
=

[
0

(Mw +Mbl) gr sinα

]
(4.5)

Then, it follows from (3.27) and (3.28) that

[
φ̈

θ̈

]
=

[
a11 a12
a21 a22

]−1(
−
[
c1
c2

]
x−

[
d1
d2

]
+

[
b1
b2

]
u

)
=

[
ā11 ā12 ā13
ā21 ā22 ā23

]
x +

[
d̄1
d̄2

]
+

[
b̄1
b̄2

]
u (4.6)

By differentiating x, taking the equation above into consideration, the following equation
can be derived.

ẋ = Ax +D +Bu (4.7)

where
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A =

 0 1 0
ā11 ā12 ā13
ā21 ā22 ā23

 , (4.8)

B =

 0
b̄1
b̄2

 , (4.9)

D =

 0
d̄1
d̄2

 (4.10)

By setting ẋ = 0 and θ̇ = θ̇ref , it follows from (4.7) that the steady state can be determined
by

 0
0
0

 =

 0 1 0
ā11 ā12 ā13
ā21 ā22 ā23

 φs
0

θ̇ref

+

 0
d̄1
d̄2

+

 0
b̄1
b̄2

us (4.11)

By solving (4.11), it is obtained that φs and us satisfy the following equations.

φs =

(
ā23b̄1 − ā13b̄2

)
θ̇ref + b̄1d̄2 − b̄2d̄1

ā11b̄2 − ā21b̄1
(4.12)

us =
(ā11ā23 − ā13ā21) θ̇ref + ā11d̄2 − ā21d̄1

ā21b̄1 − ā11b̄2
(4.13)

Now, define ∆x = x− xs and ∆u = u− us with

xs =

 φs
0

θ̇ref

 (4.14)

Then, the following state equation for ∆x and ∆u can be obtained by differentiating ∆x.

∆ẋ = A∆x +B∆u (4.15)

A LQR controller with an integrator is constructed below. In order to introduce integral
control to the LQR controller, define a new state variable z as

z =

∫ t

0
(θ̇ − θ̇ref )dt (4.16)
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The augmented control system is represented as follows:

∆ ˙̂x = Â∆x̂ + B̂∆û (4.17)

where

∆x̂ =

[
∆x
z

]
,∆û = ∆u (4.18)

Â =

[
A 0
C 0

]
, B̂ =

[
B
0

]
(4.19)

C =
[

0 0 1
]

(4.20)

The quadratic performance index function with respect to ∆x̂ and ∆û is given as

J =

∫ ∞
0

(∆x̂T Q̂∆x̂ + ∆ûT R̂∆û)dt (4.21)

where Q̂ = Q̂T ≥ 0 (positive semi-definite) and R̂ = R̂T > 0 (positive definite) are weighting
matrices. Linear quadratic regulators consist in finding a state feedback gain K̂ such that
the cost function J is minimized. K̂ can be determined by

K̂ = R̂−1B̂T P̂ (4.22)

where P̂ is a symmetric positive definite solution to the following Riccati equation.

P̂ Â+ ÂT P̂ + Q̂− P̂ B̂R̂−1B̂T P̂ = 0 (4.23)

As a result, the control input is given by

u = us − k̂1(x− xs)− k̂2
∫ t

0
(θ̇ − θ̇ref )dt (4.24)

where K̂ =
[
k̂1 k̂2

]
with k̂1 being a 1x 3 matrix and k̂2 being a 1x1 matrix.

The block diagram of the close-loop system for the velocity and position control is shown in
Fig 4.1.
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Figure 4.1: Block Diagram for LQR Control

Simulation Results

In this section, the performance of the velocity control and position control will be represented
via simulation results. After several times of testing, a couple of relative satisfactory gains
have been obtained.

By selecting Q̂ and R̂ as

Q̂ =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 , R̂ =
[

1000
]

(4.25)

the gain matrix K̂, as a result, can be calculated as

K̂ =
[
−15.2 −4.5 −0.35 −0.32

]
(4.26)

In this simulation, the reference pitch angle, angular velocity of the body and the wheel
speed are assumed as φs ≈ 12.5 deg, φ̇s = 0 deg /s and θ̇ref = 250 deg /s.

The simulation results represented in Fig 4.2 indicate the fast convergence in φ, φ̇, and θ̇.
The pitch angle of the body can be stabilized within 5 seconds, and it takes about 2 seconds
for the angular velocity to the desired value. The convergence time of θ̇ is about 7 seconds,
meanwhile, θ̇ settles at 250 deg /s which matches the assumption.
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Figure 4.2: Simulation Results of LQR Control for the TWIP on a Slope

Experimental Results

In order to test the real time performance of the proposed LQR controller, several experiments
have been done on the real system.

In the experiments, the tilting angle of the slope is 15 degrees. The desired pitch angle
of TWIP robot can be obtained from (4.12), φ′ = 12.5 degrees. The desired speed for the
wheel is set to 250 deg/s and the given distance is set to 0.6 meters. The gain coefficients
used here are the same as the ones used in the simulation. At the beginning of the test, the
TWIP robot has been running in a straight line at a speed of 250 deg/s while keeping itself
upright. When the robot reached the set point of 0.6 meters, it would stop at the given
point for 5 seconds, and then, run back to the starting point.

From the experimental results shown in Fig 4.3, the TWIP robot could track the desired
speed with small error and travel back and forth between the starting point and the given
point, in the meantime, keep the pitch angle about 12.5 degrees.

4.1.2 Fuzzy Adaptive Backstepping Control

Recently, fuzzy logic controllers (FLCs) have been used widely for nonlinear system control
since they possess a simple structure and good approximation performance. Apparently,
these FLCs have attracted increasingly attention in solving practical complex problems and
successfully applied to many nonlinear systems.
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Figure 4.3: Experimental Results of LQR Control of TWIP on a Slope

Controller Design

Motivated by [35,43,46–50], a backstepping control with fuzzy adaptive method has been
proposed to handle the nonlinearities. The fuzzy adaptive method is proposed to learn the
uncertain terms on-line, thus achieving adaptive capability.

A fuzzy logic controller consists of four parts: the knowledge base, the fuzzifier, the fuzzy
inference engine, and the defuzzifier. The knowledge base is composed of a collection of
fuzzy IF-THEN rules in the following form

Rk : IF x1 ∈ Ak
1,x2 ∈ Ak

2, · · · ,xn ∈ Ak
n, THEN y ∈ Bk (4.27)

where x =
[
x1 x2 · · · xn

]T
is the input vector, y is the output variable, µAk

i
(xi) is the

fuzzy membership function of fuzzy set Aki , µBk(y) is the fuzzy membership function of
fuzzy set Bk, k = 1, 2, · · · , N with N being the number of the IF-THEN rules.

By using singleton fuzzifier, product inference engine, and center average defuzzification,
the fuzzy logic system can be formulated as follows:

y∗ =

∑N
k=1 ȳk[Π

n
i=1µAk

i
(xi)]∑N

k=1[Π
n
i=1µAk

i
(xi)]

(4.28)

where ȳk is the maximum value of µBk(y), that is, ȳk = maxy∈R µBk(y).
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Define the fuzzy basic function as

ξk(x) =
Πn
i=1µAk

i
(xi)∑N

k=1[Π
n
i=1µAk

i
(xi)]

, k = 1, 2, ...., N (4.29)

Then, the fuzzy logic system can be rewritten as

f(x) = ŜT ξ(x) (4.30)

where Ŝ =
[
ȳ1 ȳ2 · · · ȳN

]T
and ξ(x) =

[
ξ1(x) ξ2(x) · · · ξN (x)

]T
.

In this thesis, the following trapezoidal membership function is used to reduce the computa-
tion burden.

µ(x; a, b, c, d) =



0, x < a or x > d
x− a
b− a

, a ≤ x ≤ b
1, b ≤ x ≤ c

d− x
d− c

, c ≤ x ≤ d

(4.31)

It follows from (3.20) and (3.21) that the nonlinear model of the system can be rewritten as

[
φ̈

θ̈

]
=

[
a11 a12
a21 a22

]−1(
−
[
c1
c2

]
+

[
b1
b2

]
u

)
= −

[
a11 a12
a21 a22

]−1 [
c1
c2

]
+

[
a11 a12
a21 a22

]−1 [
b̄1
b̄2

]
u (4.32)

= F +Gu (4.33)

where

[
a11 a12
a21 a22

]
=

[
IMη

2 +Mbl
2 + Ib Mbrl cos (φ+ α)− IMη2

Mbl
2 +Mbrl cos (φ+ α) + Ib (Mb +Mw)r2 +Mbrl cos (φ+ α) + Iw

]
(4.34)

[
b1
b2

]
=

[
−ητi

0

]
(4.35)

[
c1
c2

]
=

[
−Mbrθ̇φ̇l sin (φ+ α)−Mbgl sinφ− µs(θ̇ − φ̇)

−Mblrφ̇
2 sin (φ+ α) +Mwgr sinα+Mbgl (r sinα− sinφ) + µg θ̇

]
(4.36)

F =

[
F1

F2

]
= −

[
a11 a12
a21 a22

]−1 [
c1
c2

]
G =

[
G1

G2

]
=

[
a11 a12
a21 a22

]−1 [
b̄1
b̄2

]
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Firstly, considering the angle of the body produces

(
ẋ1
ẋ2

)
=

(
x2

G1u+ F1

)
(4.37)

where

x1 = φ, x2 = φ̇

Here, c1 and c2 are considered as unknown, so the nonlinear function F is assumed to be
unknown which can be estimated by the following fuzzy logic system

F1 = ŜT ξ + ε (4.38)

where ε is the approximation error, which is bounded by a positive constant εmax, that is
ε ≤ εmax.

In this thesis,

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9]
T (4.39)

where

ξ1 =
µN (φ)µN (φ̇)

D
, ξ2 =

µN (φ)µZ(φ̇)

D
, ξ3 =

µN (φ)µP (φ̇)

D

ξ4 =
µZ(φ)µN (φ̇)

D
, ξ5 =

µZ(φ)µZ(φ̇)

D
, ξ6 =

µZ(φ)µP (φ̇)

D

ξ7 =
µP (φ)µN (φ̇)

D
, ξ8 =

µP (φ)µZ(φ̇)

D
, ξ9 =

µP (φ)µP (φ̇)

D

and

D = µN (φ)µN (φ̇) + µN (φ)µZ(φ̇) + µN (φ)µP (φ̇)

+ µZ(φ)µN (φ̇) + µZ(φ)µZ(φ̇) + µZ(φ)µP (φ̇)

+ µP (φ)µN (φ̇) + µP (φ)µZ(φ̇) + µP (φ)µP (φ̇)

The fuzzy sets N,Z,P are defined for φ and φ̇ as shown in Fig 4.4 and Fig 4.5.

The fuzzy rule base for the nonlinear term is given as follows:
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Figure 4.4: The Fuzzy Set for φ

Figure 4.5: The Fuzzy Set for φ̇

R1 : IF φ ∈ N, φ̇ ∈ N, THEN y ∈ B1

R2 : IF φ ∈ N, φ̇ ∈ Z, THEN y ∈ B2

R3 : IF φ ∈ N, φ̇ ∈ P, THEN y ∈ B3

R4 : IF φ ∈ Z, φ̇ ∈ N, THEN y ∈ B4

R5 : IF φ ∈ Z, φ̇ ∈ Z, THEN y ∈ B5

R6 : IF φ ∈ Z, φ̇ ∈ P, THEN y ∈ B6

R7 : IF φ ∈ P, φ̇ ∈ N, THEN y ∈ B7

R8 : IF φ ∈ P, φ̇ ∈ Z, THEN y ∈ B8

R9 : IF φ ∈ P, φ̇ ∈ P, THEN y ∈ B9

Then, with (4.38), (4.37) can be rewritten as

[
ẋ1
ẋ2

]
=

[
x2

G1u+ ŜT ξ + ε

]
(4.40)
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The block diagram of the adaptive fuzzy logic estimator is shown in Fig 4.6.

Figure 4.6: Fuzzy Logic Estimator

By using backstepping, a fuzzy adaptive controller is designed as follows.

Step 1

Define the tracking error for pitch angle

e1 = x1 − φs (4.41)

where φs is the steady state for the pitch angle. By setting φ̇ = 0, φ̈ = 0, and θ̈ = 0, it
follows from (3.21) that φs can be calculated as

φs = arcsin
Mwgr sinα+Mbglr sinα+ µg θ̇ref

Mbgl
(4.42)

The following positive definite Lyapunov function is introduced.

V1 =
1

2
e21 (4.43)

Differentiating it with respect to time gives

V̇1 = e1x2 = −k1e21 + e1 (x2 − α1) (4.44)

where α1 is a virtual control defined by

α1 = −k1e1 (4.45)
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with k1 being a positive gain.

Define z2 = x2 − α1, then

ż2 = ẋ2 − α̇1 = G1u+ ŜT ξ + ε+ k1x2 (4.46)

Step 2

Define a positive Lyapunov function V2

V2 = V1 +
1

2
z22 +

1

2
S̃TΓS̃ (4.47)

where S̃ = Ŝ − S, and Γ is a positive definite matrix.

The derivative of V2 with respect to time becomes

V̇2 = −k1e21 + e1z2 + z2ż2 − S̃TΓṠ

= −k1e21 + z2(e1 +G1u+ ŜT ξ + ε+ k1x2)− S̃TΓṠ

= −k1e21 + z2(e1 +G1u+ ST ξ + ε+ k1x2)− S̃T (ΓṠ − z2ξ)
= −k1e21 + z2(e1 +G1u+ ST ξ + k1x2)− S̃T (ΓṠ − z2ξ) + z2ε (4.48)

The following adaptation law is introduced

Ṡ = Γ−1z2ξ − σS (4.49)

where σ is a positive constant.

Then, (4.48) can be rewritten as

V̇2 = −k1e21 + z2(e1 +G1u+ ST ξ + k1x2) + S̃TσS + z2ε

= −k1e21 + z2(e1 +G1u+ ST ξ + k1x2) + S̃TσŜ − S̃TσS̃ + z2ε (4.50)

Using Young’s inequality xT y ≤ 1
2x

Tx+ 1
2y

T y gives

S̃TσŜ ≤ 1

2
S̃TσS̃ +

1

2
ŜTσŜ (4.51)

and
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z2ε ≤
1

2
z22 +

1

2
ε2 (4.52)

Substituting (4.51) and (4.52) into (4.50) yields

V̇2 ≤ −k1e21 + z2(e1 +G1u+ ST ξ + k1x2)−
1

2
S̃TσS̃

+
1

2
ŜTσŜ +

1

2
z22 +

1

2
ε2 (4.53)

To get the control law, set

u = − 1

G1
(e1 + ST ξ + k1x2 +

1

2
z2 + k2z2)

= − 1

G1

[
e1 + ST ξ + k1x2 +

1

2
(x2 + k1e1) + k2(x2 + k1x1)

]
(4.54)

Using (4.54), (4.53) can be simplified as

V̇2 ≤ −k1e21 − k2z22 −
1

2
S̃TσS̃ +

1

2
ŜTσŜ +

1

2
ε2

≤ −aV2 + b (4.55)

where

a = min{2k1, 2k2,Γ−1σ}

b =
1

2
ŜTσŜ +

1

2
ε2

As a result, all the signals in V2 are bounded [51]. The detailed discussion for this result is
given in [52]. Therefore, the error terms in V2 are bounded.

Since the adaptive backstepping controller is derived for the body angle, the controller is
needed to stabilize the wheel angle. Motivated by [19], a PD-type controller is employed to
complete the velocity control of the TWIP robot.

The whole adaptive controller is given as follows:
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u = − 1

G1

[
e1 + ST ξ + k1x2 +

1

2
(x2 + k1e1) + k2(x2 + k1e1)

]
+ kpe(t) + kd

de(t)

dt
(4.56)

where e(t) = θd − θ(t).

Simulation Result

The simulation results for the fuzzy adaptive backstepping with PD control on a slope are
shown in Fig 4.7. The gain coefficients of k1, k2, kp, kd used for the simulation are found by
the trail and error method. The values are k1 = 10, k2 = 13, kp = −0.01, kd = −0.09. In
this simulation, the initial tilting angle is set to be φ(0) = 0 deg. The desired pitch angle
of the robot is set to 12.5 degrees, the desired angular velocity of the wheel θ̇ref is set to
be 180 deg /s, respectively. For the TWIP robot to run at reference speed, the pitch angle
and angular velocity displacement stabilization takes approximately 1.5 seconds. For speed
stabilization, it takes 5 seconds for the wheeled inverted pendulum to come to the desired
angular velocity.

Figure 4.7: Simulation Results of Fuzzy Adaptive with PD Control on a Slope
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Experimental Results

In this experiment, a test of travelling back and forth on the slope with angle of 15 degrees
has been conducted. The gain coefficients are k1 = 10, k2 = 13, kp = −0.01, kd = −0.09,
which are the same as the ones used in the simulation. The experimental results shown in
Fig 4.8 prove a functional control scheme for the inverted pendulum robot. The desired
speed is 180 deg/s and the given position to stop is 0.75 meters away from the starting point.
From the graphs, the pitch movements are controlled within 5 degrees and the angular
velocity is pretty much locked onto the desired speed.

Figure 4.8: Experimental Results of Fuzzy Adaptive Control of TWIP on a Slope
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4.2 Velocity and Position Control on a Flat Plane

4.2.1 Controller Design

When the slope angle α is equal to zero, the problem can be treated as controller design on
a flat plane.

LQR Control

Substituting α = 0 into (4.2) yields

[
a11 a12
a21 a22

]
=

[
Mbl

2 + Ib + η2IM Mbrl − η2IM
Mbrl +Mbl

2 + Ib (Mb +Mw)r2 +Mbrl + Iw

]
(4.57)

[
d1
d2

]
=

[
0
0

]
(4.58)

Because of the slope angle α is changed, it is obvious that φs and us will be changed.

φs =

(
ā23b̄1 − ā13b̄2

)
θ̇ref + b̄1d̄2 − b̄2d̄1

ā11b̄2 − ā21b̄1
(4.59)

us =
(ā11ā23 − ā13ā21) θ̇ref + ā11d̄2 − ā21d̄1

ā21b̄1 − ā11b̄2
(4.60)

Then, the output of the proposed LQR controller (4.24) can be updated as

u = us − k̂1(x− xs)− k̂2
∫ t

0
(θ̇ − θ̇ref )dt (4.61)

Simulation Results

The simulation results for LQR control of the TWIP robot on a flat plane are shown in Fig
4.9.

By selecting Q̂ and R̂ as

Q̂ =


100 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , R̂ = 480
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K̂ as a result, can be calculated as

K̂ =
[
−11 −1.7 −0.05 −0.045

]
The reference tilting angle, angular velocity of the body and the wheel speed are assumed as
φs ≈ 0 deg, φ̇s = 0 deg /s and θ̇ref = 180 deg /s. The simulation results represented in Fig
4.9 indicate the fast convergence in φ, φ̇, and θ̇. Both the angle and the angular velocity of
the body can be stabilized within 7.5 seconds. And the convergence time of θ̇ is about 8
seconds, meanwhile, θ̇ settles at 180 deg /s which matches the assumption.

Figure 4.9: Simulation Results of LQR Control For the TWIP

Experimental Results

In this experiment, the TWIP robot was placed on the ground. The desired rotation velocity
of the wheel is set to 180 deg/s and the given distance is set to 1 meter. The gain coefficients
used here are the same as the ones used in the simulation. At the beginning of the test, the
robot has been running in a straight line at a speed about 180 deg/s while keeping itself
upright. After the robot travelled the given distance of 1 meter, the reference speed was
reversed to -180 deg/s, making the inverted pendulum cart return to the starting point and
keep stable. From the experimental results shown in Fig 4.10, the TWIP robot could track
the desired speed with small error and travel back and forth between the starting point and
the given point, in the meantime, keep the tilting angle about 0.
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Figure 4.10: Experimental Results of LQR Control for the TWIP
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Fuzzy Adaptive Control

When α = 0, from (4.42), φs can be derived as

φs = arcsin
µg θ̇ref
Mbgl

(4.62)

The tracking error is updated as

e1 = x1 − φs

Using the similar method, the fuzzy adaptive control law can be developed as below.

u = − 1

G1

[
e1 + ĈT ξ + k1x2 +

1

2
(x2 + k1e1) + k2(x2 + k1e1)

]
+ kpe(t) + kd

e(t)

dt
(4.63)

Simulation Results

For the fuzzy adaptive backstepping with PD control on a flat plane, the gain coefficients
are k1 = 30, k2 = 33, kp = −0.1, kd = −0.9, which are found by the trial and error method.
In the simulation, the reference pitch angle and angular velocity of the body are both set
to 0, and the angular velocity of the wheel is set to 180 deg/s. The results from Fig 4.11
indicates the fast convergence in φ, φ̇ and θ̇.

4.2.2 Experimental Results

In this experiment, a similar back and forth test has been conducted on a flat plane
for the fuzzy adaptive backstepping controller. The experimental results shown in Fig.
4.12 prove a functional control scheme for the inverted pendulum robot. The desired
speed is 180 deg/s and the given position to stop is 1 meter. The gain coeffcients are
k1 = 30, k2 = 33, kp = −0.1, kd = −0.9. From the graphs, the pitch movements are
controlled within 5 degrees and the rotation angular velocity is pretty much locked onto the
desired speed.
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Figure 4.11: Simulation Results of Fuzzy Adaptive with PD Control

Figure 4.12: Experimental Results of Fuzzy Adaptive with PD Control
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4.3 Trajectory Tracking Control

This section presents the control scheme of the wheeled inverted pendulum robot to perform
a trajectory tracking control task.

4.3.1 PID Control

Controller Design

The goal of the wheeled mobile robot is to control the pitch angle φ to be upright while the
robot tracking the desired trajectory.

The center of the mass of the TWIP robot is assumed to be located on the center of the
wheel axis, and the following relationship can be obtained

 ẋ
ẏ

ψ̇

 =

 cosψ 0
sinψ 0

0 1

[ v
ω

]
(4.64)

where ψ is the yaw angle of the TWIP robot and x, y are the coordinates of the position.
The relationship between the Cartesian velocities and wheel angular velocities is shown as
below.

[
v
ω

]
=

[
R
2

R
2

R
L −R

L

] [
θ̇R
θ̇L

]
(4.65)

where R is the radius of the wheel and L is the distance between two wheels. θ̇R is the
angular velocity of the right wheel and θ̇L is the angular velocity of the left wheel. Combining
(4.80) and (4.81) yields

 ẋ
ẏ

ψ̇

 =

 R
2 cosψ R

2 cosψ
R
2 sinψ R

2 sinψ
R
L −R

L

[ θ̇R
θ̇L

]
(4.66)

By the inspiration of the [29], the following PID controller is derived based on (4.66).

uφ = kpφφ+ kdφφ̇ (4.67)

uv = kpvev + kiv

∫
evdt (4.68)
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uψ = kpψeψ + kiψ

∫
eψdt+ kdψ

eψ
dt

(4.69)

where

ev = vd − vcar, eψ = ψd − ψcar, vd is the desired speed of the wheel, vcar is the actual wheel
speed, ψd is the desired heading angle, and ψcar is the actual heading angle.

Then, the control inputs of the right and left wheels are given by

uR = uφ + uv + uψ

uL = uφ + uv − uψ (4.70)

Fig 4.13 shows the block diagram for PID control .

Figure 4.13: Block Diagram for PID Control
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Experimental Results

The experimental results shown in Fig 4.14 and Fig 4.15 prove a functional control scheme for
the inverted pendulum robot. Controller gains listed in Table 4.1 are used for experimental
studies, which are found by trial and error. The reference trajectory is a circle with a radius
of 0.6 meters and the desired speed is 180 deg/s. It takes about 36 seconds for the TWIP
robot to complete the given circular trajectory. The balancing angle is well maintained
within ±5 degrees as shown.

Table 4.1: Controller Gains

P D I

Angle 25.0 3.0 0.0

Velocity -25.0 0.0 -0.005

Yaw -8.0 -0.03 -0.001

Figure 4.14: Circular Trajectory Tracking for PID Control
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Figure 4.15: Experimental Results of PID Control
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4.3.2 Sliding Mode Control with Fuzzy Adaptive Backstepping Method

This section presents a sliding mode controller with fuzzy adaptive backstepping method for
trajectory tracking of a TWIP robot. A decoupling approach is proposed to decouple the
dynamic model of the TWIP robot such that the controller can be synthesized using sliding
mode and backstepping control in both kinematic and dynamic levels. The fuzzy adaptive
method is proposed to deal with the uncertain terms.

Sliding Mode Backstepping Controller Design

With the transformation of the torques Cψ and Cy into the wheel torques ur and ul, it can
be obtained that

u =

[
ur
ul

]
=

[
0.5 0.5
0.5 −0.5

] [
Cψ
Cy

]
(4.71)

V̇ =

 ω̇φ
v̇
ω̇

 = f2(x) + g2(x)

[
0.5 0.5
0.5 −0.5

] [
Cψ
Cy

]

=

 f21(x)
f22(x)
f23(x)

+

 g21(x) 0
g22(x) 0

0 g23(x)

[ Cψ
Cy

]
(4.72)

To formulate the problem, let x̃(t) and ỹ(t) and ψ̃(t) be the differences between the real
position x(t), y(t) and ψ(t) and the reference trajectory.

x̃(t) = xr (t)− x(t), ỹ(t) = yr(t)− y(t), ψ̃(t) = ψr(t)− ψ(t) (4.73)

From (3.30), the linear velocity v(t), the angular velocity ω(t) and the angular velocity of
the pitch angle ωφ(t) are regarded as virtual control. On one hand, in order to stabilize the
pitch angle of the body, it is easy to design the virtual control.

ωφ(t) = λ1(φ) = −kφφ (4.74)

On the other hand

 e1(t)
e2(t)
e3(t)

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 x̃
ỹ

ψ̃

 (4.75)
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where e1(t) is the tangential error, e2(t) is the normal error and e3(t) is the orientation error.

Differentiating the error vector produces

 ė1
ė2
ė3

 =

 ωe2 − v + vr cos e3
−ωe1 + vr sin e3

ωr − ω

 (4.76)

Define a new auxiliary variable ē3(t)

ē3(t) = e3 + k3e2 (4.77)

Taking the time derivative of ē3(t) yields

˙̄e3 = ė3 + k3ė2 = ωr − ω + k3(−ωe1 + vr sin e3) (4.78)

Choose the following Lyapunov function

V1 =
1

2
e21 +

1

2
e22 +

1

2
ē23 +

1

2
φ2 (4.79)

The derivative of V1 can be expressed as

V̇1 = e1ė1 + ė2e2 + ē3 ˙̄e3 + φωφ

= e1 (ωe2 − v + vr cos e3) + e2 (−we1 + vr sin e3)

+ ē3 [ωr − ω + k3 (−ωe1 + vr sin e3)]− kαα2

= e1(vr cos e3 − v) + ē3

[
ωr − (1 + k3e1)ω + k3vr sin e3 +

e2vr sin e3
ē3

]
− kφφ2 (4.80)

To stabilize the e1, e2, ē3, the following control laws for v and ω are proposed,

v = λ2 = vr cos e3 + k1e1 (4.81)

ω = λ3 =
1

1 + k3e1

(
k2ē3 +

e2vr sin e3
ē3

+ k3vr sin e3 + ωr

)
(4.82)

Substituting (4.81) and (4.82) into (4.80) gives
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V̇1 = −k1e21 − k2ē23 − kφφ2 (4.83)

To steer the TWIP robot to track the desired heading angular velocity, from (4.72), the yaw
rate controller can be designed based on the following yaw motion model.

ω̇ = f23 (x) +
Rb

Ga
Cy (4.84)

Define the sliding surface Sη as below.

Sη = ω − λ3 (4.85)

Differentiating Sη gives

Ṡη = ω̇ − λ̇3 = f23(x) +
Rb

Ga
Cy − λ̇3 (4.86)

Consider the Lyapunov function as

V2 =
1

2
S2
η (4.87)

Differentiating it with respect to time gives

V̇2 = SηṠη

= Sη

[
f23 (x) +

Rb

Ga
Cy − λ̇3

]
(4.88)

Let the yaw rate control law be

Cy =
Ga
Rb

[
−f23 (x) + λ̇3 − kηω1sgn (Sη)− kηω2Sη

]
(4.89)

such that,

V̇2 = −kηω1|Sη| − kηω2S2
η ≤ −kηω1|Sη| (4.90)

A torque control law for Cψ can be determined by using the following simplified and coupled
2-state equation
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[
ω̇φ
v̇

]
=

[
f21(x)
f22(x)

]
+

[
g21(x)
g22(x)

]
Cψ (4.91)

The following two first-layer sliding surfaces are defined as

Sφ = ηφ = ωφ − λ1

Sv = ηv = v − λ2 (4.92)

whose derivatives are respectively given by

Ṡφ = ω̇φ − λ̇1 = f21(x) + g21(x)Cψ − λ̇1

Ṡv = v̇ − λ̇2 = f22(x) + g22(x)Cψ − λ̇2 (4.93)

And the second-layer sliding surface is defined as

S1 = r1Sφ + r2Sv (4.94)

where r1 and r2 are two real parameters.

To stabilize the S1, the following Lyapunov function candidate is chosen

V3 =
1

2
S2
1 (4.95)

whose time derivative is

V̇3 = S1Ṡ1

= (r1Sφ + r2Sv)
[
r1

(
f21 (x) + g21 (x)Cψ − λ̇1

)
+ r2

(
f22(x) + g22(x)Cψ − λ̇2

)]
(4.96)

from which the control law for Cψ can be derived as

Cψ =
1

r1g21(x) + r2g22(x)

[
−r1f21 (x)− r2f22 (x)− r1kφφ̇+ r2λ̇2 −Ks1sgn (S1)−Ks2S1

]
(4.97)
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such that,

V̇3 = −ks1|S1| − ks2S2
1 ≤ −ks1|S1| (4.98)

Sliding Mode with Fuzzy Adaptive Backstepping Controller Design

A sliding mode control with fuzzy adaptive backstepping is proposed to handle the non-
linearities. The unknown nonlinear terms can be estimated by the following fuzzy logic
systems

f23(x) = CT1 ξ1 + ε1 (4.99)

r1f21(x) + r2f22(x)− r1λ̇1 − r2λ̇2
r1g21(x) + r2g22(x)

= CT2 ξ2 + ε2 (4.100)

where ε1 and ε2 are the approximation errors, which are assumed to satisfy |ε1| ≤ gymax 3

and |ε2| ≤ gymax 4.

Then,

Ṡη = ω̇ − λ̇3 = f23 (x) +
Rb

Ga
Cy − λ̇3 = CT1 ξ1 + ε1 +

Rb

Ga
Cy − λ̇3 (4.101)

C̃T1 = CT1 − ĈT1 (4.102)

Define the following Lyapunov function candidate

V2 =
1

2
S2
η +

1

2
C̃T1 Γ1C̃1 (4.103)

whose time derivative is given by

V̇2 = Sη

(
CT1 ξ1 + ε1 +

Rb

Ga
Cy − λ̇3

)
− C̃T1 Γ1

˙̂
C1

= Sη

[(
C̃T1 + ĈT1

)
ξ1 + ε1 +

Rb

Ga
Cy − λ̇3

]
− C̃T1 Γ1

˙̂
C1

= Sη

(
ĈT1 ξ1 + ε1 +

Rb

Ga
Cy − λ̇3

)
+ SηC̃

T
1 ξ1 − C̃T1 Γ1

˙̂
C1

= Sη

(
ĈT1 ξ1 + ε1 +

Rb

Ga
Cy − λ̇3

)
+ C̃T1

(
Sηξ1 − Γ1

˙̂
C1

)
(4.104)
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Using the inequality A+B ≤ A+ |B|, one obtains

V̇2 = Sη

(
ĈT1 ξ1 +

Rb

Ga
Cy − λ̇3

)
+ Sηε1 + C̃T1

(
Sηξ1 − Γ1

˙̂
C1

)
≤ Sη

(
ĈT1 ξ1 +

Rb

Ga
Cy − λ̇3

)
+ |Sη||ε1|+ C̃T1

(
Sηξ1 − Γ1

˙̂
C1

)
≤ Sη

(
ĈT1 ξ1 +

Rb

Ga
Cy − λ̇3

)
+ |Sη|gymax 3 + C̃T1

(
Sηξ3 − Γ1

˙̂
C1

)
(4.105)

from which, the control law can be rewritten as follows:

Cy =
Gα
Rb

(
λ̇3 − ĈT1 ξ1 − gymax 3sgn(Sη)− kη3sgn (Sη)− kη4Sη

)
(4.106)

˙̂
C1 = Γ−11 Sηξ3 (4.107)

From (4.106) and (4.107), (4.105) can be expressed by

V̇2 ≤ −kη3|Sη| − kη4S2
η (4.108)

On the other hand,

S1 = r1Sφ + r2Sv (4.109)

Substituting the proposed fuzzy logic function into Ṡ1 yields

Ṡ1 = r1

[
f21(x) + g21(x)Cθ − λ̇1

]
+ r2

[
f22 (x) + g22(x)Cψ − λ̇2

]
= [r1g21 (x) + r2g22 (x)]Cψ + r1f21(x) + r2f22(x)− r1λ̇1 − r2λ̇2
= [r1g21(x) + r2g22(x)]

(
Cψ + CT2 ξ2 + ε2

)
(4.110)

Then, the following Lyapunov function candidate is proposed

V3 =
1

2
S2
1 +

1

2
C̃T2 Γ2C̃2 (4.111)

which leads to
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V̇3 = S1Ṡ1 − C̃T2 Γ2
˙̂
C2

= S1 [r1g21(x) + r2g22(x)] (Cψ + CT2 ξ2 + ε2)− C̃T2 Γ2
˙̂
C2

= S1[r1g21(x) + r2g22(x)][Cψ + (C̃T2 + ĈT2 )ξ2 + ε2]− C̃T2 Γ2
˙̂
C2

= S1[r1g21(x) + r2g22(x)]
(
Cψ + ĈT2 ξ2 + ε2

)
+ C̃T2

{
ξ2S1 [r1g21(x) + r2g22(x)]− Γ2

˙̂
C2

}
(4.112)

Using the inequality A+B ≥ A− |B|, one obtains

S1

(
Cψ + ĈT2 ξ2 + ε2

)
= S1(Cψ + ĈT2 ξ2) + S1ε2

≥ S1(Cψ + ĈT2 ξ2)− |S1||ε2|

≥ S1
(
Cψ + ĈT2 ξ2

)
− gymax 4|S1| (4.113)

Note that,

r1g21(x) + r2g22(x) can be made negative if both r1 and r2 are properly chosen.

Moreover, from (4.112), it follows that

V̇3 ≤ [r1g21(x) + r2g22(x)][S1(Cψ + ĈT2 ξ2)− gymax 4|S1|]

+ C̃T2 {ξ2S1[r1g21(x) + r2g22(x)]− Γ2
˙̂
C2} (4.114)

Then, the control law can be derived as

Cψ = −ĈT2 ξ2 − k3sgn(S1)− ks4S1 + gymax 4sgn(S1) (4.115)

˙̂
C2 = Γ−12 ξ2S1 [r1g21(x) + r2g22 (x)] (4.116)

(4.114) can be simplified as

V̇3 ≤ [r1g21(x) + r2g22(x)]
[
−(k3 + gymax 4)|S1| − ks4S2

1

]
(4.117)

where
(k3 + gymax 4) < 0, ks4 < 0 (4.118)
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Figure 4.16: Circular Trajectory Tracking

As a result,
V̇3 < 0 (4.119)

Then, the control inputs of the right and left wheels are given by

ur = 0.5Cψ + 0.5Cy (4.120)

ul = 0.5Cψ − 0.5Cy (4.121)

which can be derived from (4.87) Fig 4.17 shows the block diagram for the proposed sliding
mode fuzzy adaptive control.
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Figure 4.17: Block Diagram for Sliding Mode with Fuzzy Adaptive Control

Simulation Results

Fig 4.16 and Fig 4.18 present the simulated results of the sliding mode fuzzy adaptive
controller for tracking a circle. In the simulation, the desired speed is set to be π

30m/s
and the desired yaw rate is set to be π

13.5rad/s. The radius of the circular trajectory is
0.45 meters. The parameters are k3 = −2, ks4 = −1, r1 = −25, r2 = 3, kη3 = −2, kη4 =
−5, gymax 3 = 1, gymax 4 = 1. It turns out that the proposed controller guarantees that the
wheeled inverted pendulum robot is able to track the desired trajectory, desired speed and
yaw angle while keeping body to be upright.

Figure 4.18: Simulation Results of Sliding Mode Fuzzy Adaptive Control
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Experimental Results

In order to explore the real time performance of the sliding mode fuzzy adaptive controller,
the experiment is performed on the TWIP platform. Fig 4.19 shows the actual trajectory of
the TWIP. Other experimental results are shown in Fig 4.20. The desired linear velocity is
chosen as 0.1 m/s. And the gain coefficients are chosen as k3 = −2, ks4 = −1, r1 = −25, r2 =
3, kη3 = −2, kη4 = −5, gymax 3 = 1, gymax 4 = 1. It can be observed that the inclined angle is
maintained around 0, and the speed is controlled to be about 0.1 m/s.

Figure 4.19: Circle Trajectory Tracking for Sliding Mode Fuzzy Adaptive Control

From the experimental results, it is evident that the proposed sliding mode fuzzy adaptive
control method could ensure that the inverted pendulum system is able to achieve the
expected tracking trajectory task with small errors.
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Figure 4.20: Experimental Results of Sliding Mode Fuzzy Adaptive Control



Chapter 5

Conclusion

5.1 Achievements of the Thesis

In this thesis, a trajectory tracking task with velocity and position control has been considered,
and various controllers have been investigated and implemented to steer a TWIP robot.

Prior to the controller design, two different dynamic models have been introduced. It is a
vital step to derive the mathematical model in order to accomplish a good control scheme.
However, most of the existing works ignore the kinetic energy produced by the motors during
building the dynamics. In this thesis, the motor kinetic energy has been considered as a part
of the total kinetic energy. Based on Lagrange’s motion equation, the dynamic model with
2 DOF is derived for the velocity control and position control. To achieve the trajectory
tracking control scheme, another model with 3 DOF is also introduced.

Later on, aiming at steering the robot to run at desired speed and keep itself upright, a LQR
controller and a fuzzy adaptive backstepping controller have been employed. The proposed
fuzzy logic control design is carried out to approximate the uncertainties.

To suit the needs of the practical applications, an advanced LQR controller and a new fuzzy
adaptive backstepping controller have been proposed to stabilize the inverted pendulum
robot on a slope.

The trajectory tracking controller is designed after achieving a stable velocity and position
control. The sliding mode backstepping control and fuzzy adaptive method have been syn-
thesized to achieve self-balancing and motion tracking of desired trajectory. The adaptation
laws of the proposed system are derived based on Lyapunov stability analysis.

Through the simulation results, the proposed controllers have been shown useful and effective
in providing appropriate control actions to steer the vehicle.

The experimental tests demonstrate that the proposed controllers are straightforward to
implement and exhibits good tracking performance.

60
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The following comparisons are made in order to evaluate the performance of the LQR
controller, the fuzzy adaptive controller, the PID controller and the sliding-mode with fuzzy
adaptive controller. In Table 5.1, the average absolute error of the pitch angle of the body
and the average absolute error of the rotation angular velocity for LQR controller and fuzzy
adaptive controller are given. The results indicate that the performance of the fuzzy adaptive
controller is a little bit better than the LQR controller on both a flat plane and a slope.

Table 5.1: Average Absolute Error of Pitch Angle and Rotation Angular Velocity

Control method Pitch angle Angular velocity

LQR control on a flat plane 3.225 deg 25.5 deg/s

Fuzzy adaptive control on a flat plane 3.024 deg 20.6 deg/s

LQR control on a slope 0.975 deg 50 deg/s

Fuzzy adaptive control on a slope 0.765 deg 22.32 deg/s

As for the trajectory tracking control, the average absolute error of the displacement on
x axis and y axis is shown in Table 5.2. From the table, it can be confirmed that the
performance of the sliding-mode with fuzzy adaptive controller is much better than the PID
controller.

Table 5.2: Average Absolute Error on X Axis and Y Axis

Control method x axis y axis

PID 0.072 m 0.076 m

Sliding-mode 0.027 m 0.030 m

5.2 Future Work

Probing deeper, the results in this thesis also provide a strong foundation for future work.
Several new areas can yet be explored and many opportunities for extending the scope of
this thesis remain. Moreover, some improvements can be enriched to my thesis. This section
presents some of these directions.

� The trajectory tracking control should be implemented on a slope. The dynamic
models used in Chapter 2 is obtained by omitting the spinning motion. However, a
more complicated dynamic equation is necessary since both roll and yaw angles are
required when the inverted pendulum robot spinning on a non-flat plane.

� A more extensive and complex membership function should be embedded into the
fuzzy logic systems. Due to the limitation of the computational power, a trapezoidal
membership function is used in the proposed fuzzy adaptive controllers. And more
fuzzy rules can also be added to improve the accuracy of the estimations.

� The performance of the traditional controller is below expectations when the wheeled
inverted pendulum robot running under different travelling conditions. Hence, one
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should take more uneven terrains into consideration in system modelling and controller
design.



Appendix A

C Language Flow Chart
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