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Abstract 
In the recent years, the pursuit intelligent and self-operated machines have increased. 

The human user is to be completely eliminated or minimized as much as possible. It is also 

popular now to observe machines that are able to do variety of tasks, instead of just one.  

  A division of intelligent robotics is autonomous navigation. Google, Tesla, Honda, 

and many other large corporations are trying to master this field, since the search for a self-

driving vehicle is profitable as much as it is difficult.  The research presented in this thesis is 

autonomous navigation for mobile robots in an indoor environment, but not limited to.  

Some explored algorithms focus on navigating in environment that has been already 

explored and mapped. Algorithms such as modified A-Star and goal-based navigational 

vector field were tested for how effectively a path is planned from one point to another. The 

algorithms were compared and analyzed for how well the robot avoided obstacles and the 

length of the path taken. Other algorithms were also developed and tested for navigation 

without a map.  

 The navigational algorithms are simulated on different artificial environments as well 

as on real environments. Machine learning is used to learn and adapt to the robot’s motion 

behaviours, which enables the robot to perform movements as intended by the implemented 

navigational algorithms. Referred to in this thesis as the intelligence engine, a feed-forward 

artificial neural network was created to predict power delivery to the motors. Back-

propagation algorithm is used alongside the neural network to enable supervised learning. 

Similar to human vision, the algorithm relies mainly on image processing to obtain 

data about the surrounding environment. The data human eyes provide helps one perceive 

and understand the surroundings. Similarly, a Kinect sensor is used in this thesis to get 2-

dimensional colour data as well as depth data.   

A program was implemented to process and understand this arbitrary sequential array 

of numbers in terms of quantifiable values. The robot in return is capable of understanding 

target, obstructions, and is capable of navigation. All external data are gathered from one 

optical sensor. Many different algorithms were implemented and tested to efficiently detect 

and track a target. The idea is to make an artificial robot perceive its’ surrounding using 3-

Dimentional image data and intelligently navigate the local surroundings.  
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Chapter 1  
Introduction 

1.1 Idea and Motivation 

Autonomous navigation is one of the major research fields in robotics of this decade. 

It is the idea of self-operated machine that can intelligently navigate a given environment. 

Majority of the machines used today rely on multiple sensors and feed-back designs. 

Autonomous navigation can be achieved through simple proximity sensors, which return a 

value of high if an object is in the range and low if no object is detected. However, a more 

robust design would use highly accurate sensors that can better detect and understand the 

surrounding environment. For example, the navigation can be guided by precise satellite 

information about the surrounding, or multiple high precision sensors attached on the robot 

that can communicate with external sensors from the surroundings. Each such intelligent 

machine has their unique problems and challenges. Usually a machine that is able to perform 

at higher velocities requires expensive, precise, sensors and processors as well as an efficient 

algorithm.  

In 2012, Sergey Brin, founder of Google, announced that the self-driving car will be 

available in 2017 for the general public. Elon Musk, chief executive of Tesla Motors, 

announced that an auto-pilot mode will be available in their cars by the summer of 2015.  

Many other major automotive corporations are taking large steps towards autonomously 

driving vehicles. Autonomous driving is yet another step towards intelligent technology that 

is able to adapt and perform an array of tasks that ensure a successful navigation from one 

point to another. On a smaller scale, there are devices for warehouses and private homes that 

are meant to better ease one’s everyday life. One such technology is the Roomba vacuum 

from iRobot; it is a vacuum that is self-operated to clean the floor. It will navigate around an 

environment such as a room in a house and clean dirt and dust off the floor using sensors that 

can detect collision such as proximity sensors.  
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Another area this type of technology is used is in the military. The military has been 

pursuing autonomous technology for some time now. icasualities.org, stated that in 2010, the 

United States military took 368 fatal casualties just from IED. To deliver supplies, 

transportation, bomb disarming, armed warfare, and many other purposes; the military is in 

dire need for improvements in autonomous navigation. The idea is to go into areas and 

environments that are too dangerous for humans to enter and/or perform tasks. Now Imagine 

an unmanned, intelligent robots doing such tasks as part of a regular routine with no 

supervision. This will save many soldiers’ lives and it will be much cheaper than human 

soldiers for the military to maintain. Many of this already exists in the military, but there is 

always room for improvements and new novel ideas that can add a new layer of efficiency to 

the idea. 

          This thesis is intended to investigate topics for a small scale, indoor, mobile robot 

but, not limited to. The mobile robot is intended to autonomously navigate an environment 

using mainly image processing achieved by the optical sensor data. Having one sensor 

instead of multiple sensors is a cost and energy efficient solution to autonomous navigation. 

However, such a design will need complex algorithms to properly function since one sensor 

is responsible for all necessary data that can be utilized. To achieve this, the final product 

will integrate multiple aspects from different fields of research. The topics consisted of 

choosing the correct optical sensor, tracking and detecting, hardware design, controller 

design, navigation algorithms, and artificial intelligence.  

The topics explored can be implementable on large scale projects with additional 

configuration changes. Each topic can be explored individually for better efficiency; 

however, this thesis focused on the integration of the different topic as a whole to achieve 

autonomous navigation. The overall motivation and idea is to create a pet like robot that will 

perform simple tasks required by the user. The overall algorithm is designed to replicate 

simple form of human like behaviour and logic.  
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1.2 Objectives 

The objective of this thesis was to design a robot capable of the following: 

A. To detect the environment as a visual representation. 

B. To track objects in three dimensional space. 

C. To navigate an unknown environment, unsupervised while avoiding collision. 

D. To navigate to a target in an environment that is already mapped.   

E. To follow or navigate to a target in an un-mapped environment. 

F. To have an intelligent system that is capable of learning robot behaviour over-time. 

G. To have a user interface that is simple and informative.  

H. To have practical and efficient controller designs. 

 

 

1.3 Organization  

First, an introduction on the scope of this thesis was given. Next, background and 

literature review will be discussed for three major topics involved. The core theory of each 

topic will be provided at first with mathematical models and/or pseudo code. The theory will 

be reinforced with novel ideas published by other authors. Chapter 3 will attempt to 

summarize the final design of the robot. It will also provide information about the setup used 

to perform the experiments.  Chapter 4 consists of all the experimental results and 

conclusions drawn. There are five Appendix chapters presented in this thesis. Optical sensor, 

history of robot assembly and design, and controller design and results are all the topics 

explored in the Appendix chapters.  It is important to note that all results were performed and 

obtained from the same computer unless otherwise stated; the specifications can be found on 

Chapter 3. Finally, a conclusion will summarize the important findings of the entire thesis, 

difficulties encountered, and any future work to be done in Chapter 5.  
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Chapter 2  
Background and Literature Review  

This chapter will present the background information of three important topics 

explored in this thesis: optical tracking, navigation, and artificial neural network. Related 

literature topics will also be analyzed in this chapter. 

2.1 Optical Tracking 

Tracking is the displacement of focus in the 3-Dimentional (3D) space as well as the 

displacement in the dimension of time; for if there is no time, there is no motion.  Humans 

and many animals have the ability to follow objects or a region of space. This is no simple 

task, yet humans do it so effortlessly. Historically, this was a very important ability to have 

since majority, if not all the primitive hunting relied upon it. To follow animals or a fish and 

calculate their future trajectory to strike is a skill refined over thousands of years.  This skill 

still plays a major role in everyday life. The ability to track and predict the position of a car 

on a parallel lane and change lane accordingly, the ability to catch a ball flying through the 

air,  the ability to simply focus on any object in the three dimension, are all examples of 

human tracking used daily.  

Tracking is absolutely necessary when navigating. It is a way to keep reference in the 

3D space while in motion. For example an arbitrary table is observed and then the robot has 

moved in a given direction. If the table appears smaller, the robot has moved away, and if the 

table appears larger, then the robot has moved closer. If this relation happens when the robot 

has not moved, it can be concluded that the table has moved instead. Also, if the table is the 

target that the robot needs to navigate towards, it is crucial to have the ability to 

“track/follow” that target.  

To follow a given target, there are two different ways. One is tracking and the other is 

actually detecting. Tracking and detecting are not the same thing, even though they may 

appear to be the same to an observer. Simply stated, tracking is following a region without 

identifying what that region may be while detecting is the ability to recognize that region as 

something. For example, the robot will understand that it is not simply following a region 
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that is pointed towards a table. It will understand that it is following an object previously 

stored in its reference as a table. However, it typically needs more memory and computation 

to actually detect than to track. Section 2.1.1 will explore topics which try to replicate the 

human tracking ability using 2-Dimensional (2D) frames captured in sequence, otherwise 

known as video tracking. Detection as a form of tracking will be explored in term of Hue, 

Saturation, Value (HSV) tracking, colour tracking, and feature detection based tracking. 

Then, motion tracking will be explored in terms of tracking based on change and optical 

flow. 

2.1.1 Colour and HSV Tracking 

Colour detection is one of the simpler means of tracking. It is a filtering process 

where a band-pass filter will only allow certain colour through and block the rest. Therefore, 

this colour can be tracked and redetected through any sequential or non-sequential set of 

frames. That is the basic principle behind colour tracking.  

An image frame consist of three, unsigned integer, 8-bit frames; each for blue, green, 

red (BGR). The 8-bit allows each cell to take up a value ranging from 0 to 255. The BGR 

matrices may be looked at like a tinted window and the ratio of 0 to 255 will be a percentage 

of the tint in a given area. The combination of the three tints can be seen as an image. Figure 

2-1 shows the breakdown of an arbitrary colour frame with a resolution of 25 pixels (5x5). It 

is an example to illustrate the illusion of a BGR frame from the three separate frames. Each 

box/cell represents a pixel of the image. With this information, it is easy to see that there will 

need to be three separate filters for each separate matrix and the combination of the filters 

will result in one final filter. However, a more suitable method is using HSV segmentation. It 

is very similar to BGR, but it has three matrices of hue, saturation, and value, instead of blue, 

green, and red. 
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Figure 2-1: Break-down of an arbitrary BGR image. 

 
Hue represents the colour, which ranges from 0 – 179. Saturation represents amount 

of white that is mixed with that colour, which ranges from 0 – 255. Value represents the 

amount of black that is mixed with that colour, which ranges from 0 – 255. Hue colours 

range as follows: orange is from 0-22, yellow is from 22 – 38, green is from 38 -75, blue is 

from 75 – 130, violet is from 130 – 160, and red is from 160 -179. With the help of 

EMGUCV library, this process is can be coded as shown on Figure 2-2.  Note that there were 

two sliders placed for each filter (H, S, V). This is done to have an upper limit and a lower 

limit for each category, like a band pass filter. “imgProcessed” is the final image where the 

displayed image will show the target in white and all other region in black; refer to Section 

3.1.1. 
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Figure 2-2: C# code of HSV filtering process. 

 

2.1.2 Feature Detection Based Tracking 

Feature detection tracking is essentially a template matching algorithm.  It can be 

done by cropping a targeted area from the previous frame or having a previously stored 

image and matching that to the current frame and future frames to come. This is no simple 

task since to a computer, each frame is a set of numbers and one cannot simply try to match a 

portion of numbers in every frame. Even the smallest angle change or lighting change will 

offset the numbers drastically and the template will no longer match; even if it is looking at 

the exact same image from a slightly different view point. This is where “features” play their 

role. 

 There is no universal definition for a feature. In this context, features are points in an 

image that appear to be the unique part of the image and less likely to change. Features are a 

starting point for many different computer vision applications. It can be said that the 

effectiveness of detection heavily relies on the algorithm’s ability to extract “good” points as 

features. 

 There are many different feature detectors proposed by a number of authors. Some of 

the more popular ones use at least one of the following three classifications; edge, corner, 

and/or blog. Edge detectors such as Canny, and Sobel detect a set of points which have a 

strong gradient magnitude [30]. Corner detectors such as Harris and Stephens, Shi and 

Tomasi, are modified edge detectors. They identify edge in an image and find rapid changes 

public void HSVimage(Image<Bgr, byte> IMAGE) 
{ 
      Image<Hsv, Byte> HSVImage = IMAGE.Convert<Hsv, Byte>(); 
      hsvImage = HSVImage; 
 
      Hsv hsv_min = new Hsv(hueSliderMin.Value, satSliderMin.Value,  

valSliderMin.Value);      
                     
      Hsv hsv_max = new Hsv(hueSlider.Value, satSlider.Value, valSlider.Value);                      
 
      rangeImage = HSVImage.InRange(hsv_min, hsv_max); 
} 
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on that edge to find corners [15]. Blog detection algorithms focus more on identifying local 

maximums in an image, which detect area in an image that are too smooth to detect by other 

detectors. Most of the more accurate detectors use a combination of methods.  

When the features are detected, they will be stored as feature vectors via feature 

extraction or dimensionality reduction. It can also be called descriptors since they describe 

the detected features in a unique form that is easier to identify later.  Matching is essentially 

comparing detected feature descriptors on the current frame with that of a stored model. 

Therefore, once the target is selected by the user, features must be detected and stored as a 

descriptor. Every frame thereafter will have its features detected and described in a vector. 

The two descriptors are then compared via matching, which will yield if the target is in the 

current frame or not. Note that there are many good detectors and descriptors purposed in the 

relevant past for accurate detection. Detectors such as FAST [21], and SURF [26] and 

descriptors such as SIFT [18], SURF [26], BRIEF [43], ORB [22], BRISK [51], and FREAK 

[1]. SURF showed the most accurate performance in different experiments done to test 

accuracy, stability, and compatibility [43, 47, 40].   

2.1.3 Tracking Based on Change 

Tracking based on change is applicable when there is change in the content through 

consecutive frames. It is essentially a way of tracking motion using sequential frames.  The 

algorithm looks at two consecutive frames and identifies any differences found between 

them. Pseudo code of the algorithm is illustrated on Figure 2-3. Note there is a blur applied 

for noise elimination. Blurring methods and how it is done will be explored later in the 

chapter. Near the end of the algorithm, there will be a black and white image. Black pixels 

represent all the area that has no detected motion and white pixels represent all the area that 

has motion. Even with noise compression, there will always be some false detection with 

dust and/or other noise that has not been filtered. For this reason, it is important to only 

detect the largest motion as the accepted motion. To find the largest motion, one must find 

the largest contour around white blobs as illustrated from step 4b, in Figure 2-3.  Contour is 

the edge or outline of an area. A rectangle is then drawn around the largest contour to show 

the user the largest motion detected in consecutive frames.  
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Figure 2-3: Pseudo code for motion tracking algorithm. 

1. Get the current frame. 
 

2. Convert to gray frame. 
a. For i=0; i < every pixel multiplied by a factor of 

three(frame width x frame height x 3): 
i. n=0. 
ii. Pixel (i) + pixel (i+1) + pixel (i+2) / 3. 

iii. Store that value as a single gray pixel(n). 
iv. n=n+1. 
v. i=i+3. 

 
3. If it is the first frame, store as previous frame and return. 

 
4. Else store as current frame. 

a. Eliminate noise using a blur convolution. 
i. For every pixel, apply blur mask. 

 
b. Find the absolute difference between the current frame and 

previous frame and store as a new Gray Image. 
i. For every gray pixel, i=0: 

1. Absolute difference frame(i) = Current frame(i) – 
previous frame(i). 

2. If absolute deference frame(i) < 0. 
a. Absolute deference frame(i) * -1. 

 
c. Convert the image to black and white with a threshold value. 

i. For every pixel: 
1. If gray pixel < threshold, pixel = 0. 
2. Else gray pixel > threshold, pixel = 255. 

 
d. Find the largest white, blob or contour. 

i. Find the contour of the first blob. Store its’ area and 
store it as the largest contour. 

ii. Find the next contour and store its area. 
1. If area of the new contour is larger, store it as 

the largest contour.  
iii. Repeat until all contours are analyzed. 

 
e. Draw a rectangle around the largest contour to show the 

largest motion detected. 
 

f. Store current frame as previous frame and return. 
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2.1.4 Optical Flow  

Optical flow is the distribution of apparent velocities produced by the change in 

motion of pixel intensity. It can arise from relative motion with respect to object and the 

viewer [13]. The original concept of optical flow was introduced by a psychologist James J. 

Gibson in 1940s as a means to describe the visual stimuli provided to the animals in motion 

[34]. In the recent past, optical flow has been more involved in robotics applications and 

computer vision applications. It is used in image processing and control of navigation, such 

as motion detection, object segmentations, luminance, and motion compensated encoding 

[40, 56]. In robotic application, it will be an estimation rate of pixel flow through sequential 

frames or video. Due to this, the rate of flow can be represented as an instantaneous velocity 

or discrete image displacement [56]. The focus of this thesis will be isolated more towards 

optical flow as a tracking algorithm. The goal is to track a rectangular area from frame to 

frame.  

Even though it is possible to track every pixel in the frame, it will require an 

abundance of unnecessary computation. Next best option is to track every single pixel in the 

targeted area. However, even this may not be necessary. Tracking a few good pixels within 

the targeted area will be sufficient. How does one determine a good pixel/point compared to 

another? Good feature points must be detected from the targeted area using one of the 

methods suggested in Section 2.1.2. Unlike the tracking based on detection algorithm, the 

features only need to be detected once. Once detected, the optical flow algorithm will track 

those points through consecutive frames. 

2.1.5 Good Feature Detection using Harris Corner Detection  

Harris corner detector is another name for the original algorithm proposed by Chris 

Harris and Mike Stephens in their paper, “A Combined Corner and Edge Detector” [15].  

This is a good feature detector to choose for optical flow since the two algorithms have 

similar calculations. The Harris Corner Detection algorithm finds any change in intensity for 

all directional displacement as shown in Equation (2-1). Where I is intensity, w is the 

window function, w(x,y) is 1 if pixel exist inside the image window and 0 otherwise, x and y 
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are the pixel coordinates, v and u are shifted displacement in orthogonal direction, and E(u,v) 

is the change produced by the shift [15]. 

       ∑                              
   

 

 (2-1) 

A visual representation of the patch shift is illustrated in Figure 2-4. 

 
Figure 2-4: Patch shift to check if corner exists (small square checks change in intensity, E). 

  

Expanding the equation using Taylor series expansion will be an approximation for  

              ⌊
 

 
⌋ 

Where 

(2-2) 
 

   ∑      |
        
        

| , 
(2-3) 

 

and Ix is the derivative of the image in the x direction and Iy is the derivative of the image in 

y direction. To find the directional derivate, a Sobel mask is used in a convolution process of 

the image frame as shown in Equation (2-4).  
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]                 [
    
    
    

]                (2-4) 

  

Finally, the equation for determining if a window can contain a corner was modeled 

based on completing the above calculations. For this equation, traditionally the eigenvalues 

must be found for M: λ1 and λ2. Equation (2-5) presents the Harris corner equation that is 

used to determine if a corner exists depending on the value R. k is the Harris parameter 

constant set by the user, which determines the quality of the corner. 

                   
  (2-5) 

 

If the absolute value of R is small, λ1 and λ2 are small, therefore the region is 

smoother. If R is smaller than zero, then one of the λ values are much larger than the other. 

This means that the region is an edge. When R value is very large, both λ values must also be 

large, which means the region is a corner. However, the determinant and the trace can be 

found without calculating eigenvalues by modifying the already calculated results as shown 

in Equation (2-6) [16]. Pseudo code of this algorithm is listed in Figure 2-5. 

 

                                       ) (2-6) 
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Figure 2-5: Pseudo code Harris corner detection. 

 

1. Acquire color frame. 
 

2. Convert the colour frame to gray frame (refer to Figure 2-3, 
step 2) 

 

3. Compute the first order derivatives of x and y at every pixel 
(Ix and Iy) using the gradient Sobel masks.  

a. Convolution of y-gradient mask of the gray image and 
store as Iy. 

b. Convolution of x-gradient mask of the gray image and 
store as Ix. 

 

4. Compute the products of the derivatives at every pixel. (Ixx = 
IxIx, Iyy = IyIy, Ixy = IxIy) 

a. For 0 to total number of pixels image : i. 
i. Ixx[i] = Ix[i]*Ix[i]. 
ii. Iyy[i] = Iy[i]*Iy[i]. 
iii. Ixy[i] = Ix[i]*Iy[i]. 

 
5. Use Gaussian blur to smooth-out the three matrixes from the 

previous step. 
a. Use convolution with a 5 by 5 Gaussian mask. 

 
6. Calculate the Harris response function R for each pixel. 

a. For 0 to total number of pixels image : i. 
i. R[i] =  𝐼𝑥𝐼𝑥 i   𝐼𝑦𝐼𝑦 i   𝐼𝑥𝐼𝑦 i   𝐼𝑥𝐼𝑦 i    𝑘 𝐼𝑥𝐼𝑥  i   𝐼𝑦𝐼𝑦 i  ) 

1. K  Harris parameter constant 
 

7. Find the maximum Harris value and the minimum. 
a. For every R value : i. (initial Rmax = 0, Rmin =0). 

i. If(Rmax < R[i]) Rmax = R[i]. 
ii. If(Rmin > R[i]) Rmin = R[i]. 

 

8. Use quality of corner formula to pick good corners as the 
feature points.  

a. For every R value : i.  
i. If(R[i] > Rmin + (Rmax - Rmin)*qualityLevel/100. 

1. It is an acceptable corner. 
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There are a lot of convolutions involved in the many of the image processing and 

signal processing algorithms. Convolution is essentiality multiplying all the surrounding 

pixels with the corresponding mask value and adding all of them together; which will 

represent the respective pixel. An algorithm for 2-dimensioanl convolution using a 3x3 mask 

matrix is provided in Figure 2-6 [63].  

 

Figure 2-6: Convolution algorithm. 

 

 The Gaussian mask is also used in Harris corner detection. The 3x3 Gaussian mask 

used is illustrated in Equation (2-6) [48].   

 

[

           
         
           

]  (2-6) 

2.1.6 Optical Flow Model 

Once good features from the targeted area are detected, it can be tracked using optical 

flow. In optical flow, the common assumptions are that the pixel intensities are translated 

from each frame and that the movement from each frame is small [17]. Since optical flow 

For i through every row of image. 

 For j through every columns. 

  For y through every mask rows. 

   For x through every mask columns. 

1. iBoundry = i + y – half of mask columns. 
  jBoundry = j + x – half of mask rows. 

         

2. if(iBoundry >= 0 and iBoundry < rows and jBoundry >= 0 && jBoundry 

< cols ) 
   

 convImage (i,j) += originalImage (iBoundry, jBoundry) * maskMatrix   

(maskRows – y - 1, maskCol – x - 1). 
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calculates relative motion in consecutive frames at a given position; the position of each 

consecutive frame can be labeled as t, and t+  . The intensity translation in 2-D can be 

represented as x+    , and y+       An equation can be modeled to represent the intensity 

(I) translation in space and time with the stated assumptions, as shown in Equation (2-7). 

          (                    )        (2-7) 

Since Taylor series of f(x + a) = f(x) + a  

  
f(x) + higher order terms. Taylor series can 

be applied to Equation (2-7), and the higher order terms can be ignored: Equation (2-8). 

                                
  

  
     

  

  
     

  

  
          (2-8) 

Substitution of Equation (2-7) into Equation (2-8) yields the optical flow equation as 

illustrated below in Equation (2-10). 

   
  

  
     

  

  
     

  

  
   (2-9) 

   
  

  

    

  
 

  

  

    

  
 

  

  
 (2-10) 

  

The derivative of position with respect to time reveals an equation of relative 

velocity. It is also appropriate to represent it as a derivative of time since it is an estimation 

of the future. This equation can then be represented as shown in Equation (2-12); where    is 
  

  
  ,     is   

  
    , and     is   

  
    . 

              (2-11) 

                 (2-12) 

The optical flow equation shown in Equation (2-12) cannot be solved at such a state. 

There are two unknowns, u and v, and only one equation. Dealing with visual motion, such a 

challenge is called aperture problem. 
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2.1.7  Solving the Aperture Problem 

Motion perception is a process of understanding speed and direction of elements in a 

scene based on visual inputs [17, 19, 16]. Aperture problem is explained as if the scene is 

viewed through a small window or an aperture. However, the observed motion direction of a 

contour is ambiguous. Imagine a scene with parallel black lines being viewed through a small 

window. Now imagine the scene moving, and the lines are in motion. It is possible to 

recognize that there is motion, as the lines are appearing and disappearing from the view of 

the window. However, it is impossible to predict which direction the scene is actually 

moving.  To solve such a problem, many different authors proposed different methods [23, 

13, 17, 2]. Lucas Kanade [9] method is a popular method that is simple and efficient. 

2.1.8 Lucas-Kanade Method 

Bruce D. Lucas and Takeo Kanade proposed an idea for stereo image processing in 

1981 and it is still being used in other image processing applications today. It is mostly used 

today as part of optical flow algorithms [9]. The idea is to assume that all local neighbouring 

pixels behave the same way and therefore all flow in a local neighbourhood is constant 

[17,2,9,10]. This method is less sensitive to noise and can solve ambiguity problems like the 

aperture problem. 

 The assumption made for this specific case is that for every feature point detected, all 

neighbouring twenty-five pixels behave the same way. Therefore the optical flow equation 

will go from having one equation and two unknowns to having twenty-five equation and two 

unknowns. This over determined problem can be solved by least squares principle.  Equation 

(2-13), (2-14), and (2-15) illustrates how this method is mathematically implemented.  

[

            

  
              

] [
 
 
]    [

      
 

       
] 

Transpose of A is multiplied on both sides to achieve a square matrix. 

 

(
(2-13) 
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                   (
(2-14) 

[
∑     ∑     
∑    ∑     

] [
 
 
]   [

∑     
∑    

]  (
(2-15) 

One can now solve for the two velocities u and v as illustrated in Equation (2-16) and 

(2-17). 

   
 ∑     ∑      ∑     ∑     

∑    ∑       ∑       
 (

(2-16) 

      
∑     ∑       ∑     ∑     
∑     ∑        ∑       

 (
(2-17) 

These are the final optical flow equations obtained using Lucas Kanade approach. 

This can now be programed to track a region by estimating the chosen pixel velocities. The 

algorithm for this approach is demonstrated on Figure 2-7. 
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Figure 2-7: Algorithm for optical flow-Lucas Kanade. 

1. Get the current frame. 

 

2. Convert to gray frame. 

 
3. If it is the first frame. 

a. Extract the Region of interest (ROI) or targeted area. 

b. Find interesting features (Figure 2-5). 

c. Plot the feature and draw a target rectangle around the target 

to identify the target. 

 
4. If it is not the first frame. 

a. Get a 5x5 window of pixels from the current frame around one 

feature from the previous frame. 

b. Compute the first order derivatives of x and y at those pixels 

(Ix and Iy) using the gradient masks (Figure 2-5, step 3).  

c. Compute the products of the derivatives (Ixx = IxIx, Iyy = IyIy, 

Ixy = IxIy) (Figure 2-5, step 4). 

d. Sum up all the products calculated on the previous steps. 

e. Apply the summed terms to optical flow Equations (2-16) and (2-

17) and find the velocities u and v. 

f. Multiply the velocity by the difference in time between the two 

frames to get displacement of that feature. 

g. Store new feature location and repeat from step 4,a for the 

next feature. 

h. Plot the translated features and draw a rectangle around all of 

them to show the target has shifted. 
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2.2 Navigation  

Navigation is the ability to manoeuvre around a given environment, from one point in 

space to another. This is one of the most important abilities to possess for any autonomous 

vehicle. Avoiding non-ideal situations such as obstacles, bad terrains, and bad illumination, 

are just some of the circumstances that will measure the effectiveness of the robot’s 

navigation ability. Many times, the task of translating its position to a destination position in 

3D space is the real test of this ability. 

Humans perform this complicated task simply throughout their everyday life. For 

humans, a goal location or destination is set in mind. Assuming that one knows where this 

location is with respect to their current location; one will start to make their way towards that 

target. If the human has never navigated the environment in between him/her and the 

destination, it can be assumed that they may encounter some dead ends and incorrect paths. 

Through this process, the human is making an internal map of the local area from their 

perspective. When the human finally arrives at the correct destination, he or she will possess 

at least a partial map of the local area. The next time the human wishes to navigate to an area 

within this partial map, they will plan a path internally to arrive at the destination based on 

navigation time, physical exertion, and other applicable factors. Regardless of the planned 

path or arbitrarily locating, one will avoid obstacles, such as chairs, tables, and any other 

objects that are hindering the path to the destination. 

The upcoming portion of this chapter will attempt to recreate the navigational logic 

process explained above. The navigation is split into two major sections; one will focus on 

navigating on an area that is already mapped and the other will focus on navigating in an un-

mapped area. Different algorithms will be tested for each scenario in simulation on the real 

robot. The process of mapping itself when navigating a non-mapped area is not explored in 

this thesis as it is a very large topic that should be explored individually.  

For the map-based navigational algorithms explored in this thesis, the entire map of 

the local area was provided and assumed to be accessible at all times.  Given the map, 

starting position, and final destination; it becomes a path planning problem. Path planning 

problem can be viewed from many different perspectives. From an artificial intelligence 



30 | P a g e  

 

  

perspective, path planning is the logical actions that transform an initial state to desired state. 

This can be obtained by genetic algorithms [62], machine learning algorithms [3, 67], and 

others of the sort. From a control theory perspective, it becomes more of stability [65], 

feedback, and optimality problem. From video gaming and some robotics perspective, it is 

focused more on motion planning [57, 24, 59, 27], where useful motions are generated based 

on geometric model to navigate from one point to the other.  The implemented algorithms 

focus towards a motion model with respect to regular and irregular environments. For the 

purpose of simulation, the motion of the robot also needed to be modeled.  

2.2.1 Modeling the Differential Steering Robot 

The actual robot uses two separate tank threaded wheels, controlled by two separate 

motors, and motor controllers. The wheels are exactly the same size and are mounted 

mirroring each other.  Therefore, it can be stated that the robot is using a differential steering 

system. A differential steering robot is a robot that uses two independently controlled wheels 

mounted on the same axis for motion [52, 57, 61]; also referred to by some as differential 

drive system. However, vehicles driven by different set of wheels and steered by another set 

can also be referred to as differential drive (rear wheel drive vehicles). To avoid confusion in 

this thesis, it will be referred to as differential steering system. All simulated robot motions 

are based on the differential steering kinematic model derived in the following paragraphs. 

Based on Figure 2-8, it is evident that by varying the ratio of each wheels’ velocity, 

the trajectory can be modeled. The trajectory can be taken with respect to the left wheel, right 

wheel, or the center of the axis [52, 57]. The point of rotation is called instantaneous centre 

of rotation (ICR) and the current center position of the robot is considered as the reference 

point in x and y space. 
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Figure 2-8: Differential steering system trajectory. 

By varying the velocities of both wheels, the trajectory can be modeled, since the rate 

of rotation,   about the ICR, must remain constant for both wheels, as shown in Equation (2-

18) and Equation (2-19). 

            (2-18) 

            (2-19) 

Where b is the distance between the two wheels on the same axis,   is the distance 

from the center of the robot to ICR,    and    are the velocities of the left and right wheels, 

respectively. The trajectory of the turn with respect to “  ” can be found by substituting   

with        to the above equations.  Similarly, by substituting   with  , the trajectory with 

respect to “  ” can be found. For this model, the center of the robot is considered as the best 

choice since that is the reference point. With Equations (2-18) and (2-19), two new equations 

can be calculated to solve for   and   at any instant; refer to Equation (2-20) and Equation 

(2-21). 
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 (2-20) 

  
      

 
 (2-21) 

Both Equations (2-20) and (2-21) translates the motion of the robot to three unique 

situations that a differential steering robot can be in. First, when       ,   will become 

infinite and  will equal zero. In this scenario, the robot is moving either forward or 

backward in a linear path. Second, when        , R will equal zero and the rate of 

rotation will double. In this scenario, the robot will rotate in the same spot and there will be 

no translation in x and y space. The third scenario is when one wheel rotates and the other 

does not. This scenario, ICR will become the position of the stopped wheel and R will equal 

half the robot’s width, 
 

 
.  Achieving the three unique situations however is not always 

practical due to traction, friction, power delivered to the motors, and in-accuracies in the 

sensor data. Many times, a situation very close to the three unique situations are achieved. 

For the purposes of a navigational simulation, it was assumed that the unique situations are 

achievable. 

Now that the robot behaviour is modeled based on each wheel’s velocity, there is a 

need for a motion model based on displacement in the x, y plane. Translation in orientation 

can then be described by the angle  . Assume sampling time is dt,    and    are the current 

position,    is the current orientation, and   is the displacement to ICR from the center of the 

robot. Equation (2-22) describes the new position and orientation at t + dt using the rotation 

matrix.  

[
 
 
 
]  [

                  
                 

   

] [
        

         

  

]    [
           
           

   

] (2-22) 

Assuming that the velocities of each wheel are constant, Equations (2-23), (2-24), and 

(2-25) illustrate the new position and orientation as a function of each wheels’ velocity; 
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                    (2-24) 

                         

  
         

         
      

      

 
                    (2-25) 

Since the actual robot is relatively small, not heavy, and the sampling time is very 

small, acceleration and inertia are ignored for the simulation. Also, the small velocities are 

considered instantaneous. The equations are coded into a function where the program will 

provide the current position and orientation as well as the speed of each wheel based on the 

navigational algorithm. The function will then update the current position and orientation 

based on the velocities of each wheel. 

2.2.2 Modified A-Star (A*) 

A-Star [24, 59, 27, 49] is a well-known path planning algorithm that can be applied to 

geometric space, but not limited to. It is used to find a path from a starting point to a 

destination point. This algorithm will start at the robot’s starting location and expand 

outwards until the destination is reached. Then, it will map the path from the destination to 

the start. 

The simulation is done in grid-block like map. This is further explained in the 

experimental results chapter, Chapter 3. The implemented algorithm starts at the grid-block 

with the robot’s current position, or starting position. This block is considered as the “parent 

block” for the moment. A “parent block” is a block that is currently being analyzed. From the 

parent block, all adjacent blocks, except the diagonal blocks, need to calculate three factors, 

G(gx,gy), H(gx,gy), and F(gx,gy); gx and gy are coordinates of the grid-block location. If the 

adjacent block being analyzed has “non-path” status, that block will be ignored. G(gx,gy) is 
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equal to the distance traveled from the original starting block, also referred to as movement 

cost. H(gx,gy) is the estimated distance to the destination block. It is an estimate since there 

may be obstructions in the path that is not yet calculated. F(gx,gy) is the sum of both 

G(gx,gy) and H(gx,gy) as shown in Equation (2-26). 

  

                            (2-26) 

 

The distances are calculated using “Manhattan method” instead of Euclidean. 

Manhattan distance is the sum of blocks in the x-direction and y-direction. This will save 

computation and it is an estimate regardless. Also, for every analyzed adjacent block, a 

directional vector point towards the parent block must be provided. This is used for tracing 

back the original start position at the end of the algorithm. Once all the calculations are done 

for the applicable diagonal blocks, the parent block will need to be added to the “closed-

blocks” list. Closed-list has all the blocks that have been analyzed as the parent block, 

ensuring no repetition. Now a new parent block will need to be designated and the block with 

lowest F(gx,gy) will be assigned as the parent block. This process will continue until, the 

destination block is analysed. Figure 2-9 shows the process of propagating the “Fgrid” for the 

first eight iterations and the final iteration. “Fgrid” is the 2D matrix that stores all the 

F(gx,gy) block values.   
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Figure 2-9: First eight iterations and the final iteration of Fgrid propagation for the map “Tree-

road” (Appendix C). Start’s at “a” and finishes at “i”. 

 

Now, destination block will need to trace its way back from the destination to the 

starting block by following the direction from every block to its respective parent block. As 

the path is traced back to the original first parent block, each block will be given a number 

higher than the previously occupied block by one. 
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What enabled humans to learn has been a fascinating subject for many centuries until 

recently.  The milestone discovery of the neuron was not accepted until the late nineteenth 

century; it could be argued as the birth of modern neuroscience. How the human brain works 

is a complex topic that is still a mystery in many ways. For the purpose of this thesis, only a 

simple summary of the biological neural network concept will be explored.  

Neurons are made of three major parts; refer to Figure 2-12 for an illustration of a 

biological neuron. The image in Figure 2-12 is taken from Wikipedia. 

 
Figure 2-12: Labeled image of a neuron. 

 

 The dendrites are branches of fibre that connects to other neurons and relays 

messages to the cell body. Cell body controls and directs all activities within the neuron. The 

axon connects to dendrites of other neurons and transmits signals from the cell body. To 

communicate a message, the neuron releases a neurotransmitter into the synapses. Billions of 

neurons are connected together in a very complex network topology to create consciousness. 

These networks formed inside the brain are responsible for learning, idea, emotions, 

personality, and so much more.  

 In an attempt to replicate partial human reasoning and learning behaviour, artificial 

neural networks (ANN) were created. It is first introduced by W. McCulloch and W. Pitts in 

1943 as a mathematical algorithm. It is essentially a statistical learning method based on 

biological neural network to estimate and approximate [42].  

ANN was introduced as a solution to solve challenges encountered with the 

navigation algorithms on the mobile robot. The ANN was responsible for learning the motion 
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behaviours of the robot with respect to the power delivered to each wheel. The ANN used is 

a very simple form of a large division that is AI. 

2.3.1 Artificial Neural Network 

Typical feed-forward (FF) artificial neural network (FFANN) are structured with 

neurons or nodes connected to at least another node in a unique or general topology of 

network; where each connection has a certain weight associated with it. Such networks are 

used for signal prediction, where the signal is time variant and the desired output is a 

prediction at a certain time [53]. This topology can also be used for signal classification such 

as speech recognition, signal production, and optimization [53, 5].  

Each node/neuron has an internal state, which is known as activity level. The 

activation is transmitted by one neuron to another. Usually, each neuron only has one output 

as it only has one activation function, which can then be broadcasted to many more if 

necessary. This creates a product sum network for each neuron that is not in the input layer, 

as shown in Equations (2-27) and (2-28) [42]. “i” is a value associated with the layer, starting 

at 0 at the input layer. The neuron in a given one layer is arranged from 0 to “k” where “k” is 

a real number, kЄR. “w” is the weight associated to each respective connection. 
 

                     ∑                
 

 (2-27) 

 

Where, 

                                        (2-28) 
 

Equation (2-27) is illustrated in Figure 2-13. 

 

 
Figure 2-13: Neuron model 
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There are many different activation functions [50, 42]. For the purpose of this thesis, 

only one activation function was used called the sigmoid or bipolar sigmoid function as 

shown in Equation (2-29). This choice is explained later on this chapter. 

    
        

        
    (2-29) 

 

The network considered for this thesis is static, having no internal time delays and 

generating output immediately for an input signal. The network of neurons is usually 

arranged in layers: input layer, hidden layer, and output layer [50] as illustrated in Figure 2-

14. The hidden layer can have multiple layers if necessary, creating a deep-hidden layer. 

                              

 
Figure 2-14: FFANN layer setup. 

 
Once a network is established, it must be trained with “experience” or datasets. When 

in training, the weights of each connection to the neurons will be adjusted to behave in a 

desired way. There are two approaches to training, supervised training and unsupervised 

training. For this thesis, only supervised training is explored.   

In supervised training, a dataset is provided with the desired output. The system is 

trained in repetition to that dataset by comparing the actual output with the desired output. 

The weights are adjusted through back-propagation algorithm. 

         

  

  Hidden layerInput layer Output layer
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2.3.2 Back-Propagation (BP) 

The back-propagation (BP) algorithm is used to adjust the weights of each connection 

[42, 50, 53]. The idea is a forward propagating network, which propagates the error at output 

backwards throughout the network. Starting at the input layer, signal from the input node(s) 

is/are multiplied by the respective weights associated with the connection and then summed 

together with a bias. This is then supplied as the input to the connecting node in the hidden 

layer as shown in Equation (2-27). The output signal is the activation signal for a given 

neuron, which is multiplied by the connection weight and summed up with all other 

connection activation functions and bias. This will be the input for the next layer, another 

hidden layer or the output layer. Based on the principle w = w +  w, the training process can 

be identified as a process that will minimize the error by altering the weights and bias as 

shown in Equation (2-30). 

      
  

  
    (2-30) 

Where E is the error and w is the associated weight. The error can be viewed as a 

gradient decent on sum squared, where the total in the network can be modeled by the 

Equation (2-31). 

     ∑         
 

 

 (2-31) 

Where    is the associated desired value at the output of the neuron and    is the 

actual output by the activation function at that neuron. The activation function considered for 

the ANN used in this thesis is the bipolar sigmoid function, refer to Equation (2-29). This 

function creates horizontal hyperbolas at y = 1 and y = -1. The function at infinity will only 

get close to the 1 and never equal 1, and at negativity infinity will only get close to -1 and 

never equal -1. This function is plotted between -10 and 10 on Figure 2-15, image acquired 

from wolframAlpha. 
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 Figure 2-15: Bipolar-sigmoid function.  

 

 The back propagation starts initially at the output layer, where the change in weight 

can be represented by Equation (2-32); the notation “o” represents the output layer and “io” 

represents the input at the output layer. 

            
  

   
     

         
  

   
 
   

     
 
     

   
      (2-32) 

 The chain rule expansion can be further broken down into the individual derivatives 

as illustrated in Equations (2-33), (2-34), and (2-35). 
 

  

   
 

  
 
       

  

   
          (2-33) 

 

   

     
  

                             

     
 

      

            

       

           
  

   

     
  

 

 
             (2-34) 
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    (2-35) 

 Therefore, the change in weight at the output layer can be written as Equation (2-36) 

where the equation can be simplified with the constant    to simplify calculations at the 

hidden layer. 

       
 

 
                       

         *   (2-36) 

 At the hidden layer, the change in weight can be represented by Equation (2-37). The 

hidden layer is identified by the notation “h”. 

             
  

   
  

          ∑
  

   
 
   

     
 
     

   
 

    

   

     

   
    (2-37) 

 

The derivative of error with respect to the activation at the output layer and the 

derivative of the activation at the output layer with respect to the input at the output layer are 

already calculated from Equations (2-33) and (2-34). With the Equation (2-36), derivative of 

input at the output layer, and activation at the hidden layer; the Equation (2-37) can be 

simplified and written as Equation (2-39). 
 

     

   
 

          

   
    (2-38) 

      ∑  
 
     

    

   

     

   
 (2-39) 

 The derivative of the input at the hidden layer with respect to the weight at the hidden 

layer will yield the original input itself as demonstrated in Equation (2-40). 
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          (2-40) 

 Similar to Equation (2-36), the activation at the hidden layer with respect to the input 

can be equated as shown in Equation (2-41). 
 

   

   
  

 

 
             (2-41) 

 The entire equation for change in weight at the hidden layer can be written as shown 

in Equation (2-42). 
 

        ∑        
 

 
               (2-42) 

2.3.2 Modeled Network for Supervised Learning 

The problem was that the robot did not behave the way the modeled simulation 

intended it to. As a result, the implemented solution is supposed to learn the navigational 

behaviour of the robot based on data sets measured from the actual robot. This process is 

considered supervised learning, where a data set is trained using an ANN for a certain 

number of iterations. Once trained, it should be able to predict the desired output for a given 

input. The idea is that the ANN will be provided with the positional displacement and 

orientation change intended by the simulated algorithm. The FF network will then predict the 

correct output power to the wheels based on what the FFANN has learned from the trained 

data set and past experience.  

 It is evident that there needs to be three input nodes at the input layer; change in 

angle, change in orthogonal displacement, and change in normal displacement. There should 

be two output nodes at the output layer; each representing the PWM duty ratio that should be 

sent to the microcontroller. With that stated, many different FFANN topologies were tested 

and the one that demonstrated the best result is presented in Figure 2-16.  
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Figure 2-16:  Generated feed-forward artificial neural network for the intelligence engine. 

 

2.4 Literature Review  

Novel ideas from published authors on the two major topics explored above will be 

explored in the following paragraphs. 

N. Nourani-Vatani et al. [46] investigated feature extraction algorithms for optical 

flow tracking. It was suggested that sparse optical flow algorithms, such as Lucas-Kanade[9] 

approach, provide more robustness to noise than dense optical flow algorithms. Spares 

optical flow will estimate the displacement for a selected few pixels instead of an entire 

region. To select these pixels, “good features” (Harris corners[15], Shi-Tomasi, SIFT[18], 

and SURF[26]) were used. The results were analysed and evaluated based on processing 

time, the number of features tracked, and performance in indoor and outdoor environments. 

The conclusion suggested that in ideal conditions, there is very little performance difference. 

However, given abnormal environments, there was a considerable change in performance. 
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The paper showed that simpler feature extraction methods, such as canny edge or Harris 

corner feature extraction, provided the best results. Also, feature extraction methods only 

showed slight improvements in error elimination compared to random feature seeding. 

Random feature seeding is selecting random pixels as one of the tracked pixel. 

In this thesis, only indoor environment was tested. Harris corner was used as the 

feature extraction method alongside a spares optical flow process. However, the accuracy of 

each pixel tracked was not measured. Instead a median-mean filtering solution was 

implemented in Section 3.1.5 to reduce the noise detected. 

E. Patel and D. Shukla [23] compared different optical flow methods to determine the 

speed of a moving object in sequence of a video frame.  Optical flow Lucas-Kanade[9] and 

Horn-Schunck was used to track an object by plotting a rectangle around the tracked region. 

The speed was then calculated by the displacement of the object with respect to frame rate.  

Lucas-Kanade algorithm performed very well when tested with noise, but failed to produce 

as many density flow vectors as Horn-Schunck. Lucas-Kanade had an average angular error 

of 4.3 degrees in comparison to that of Horn-Schunck which was 9.8 degrees. The author 

also tested a combined algorithm alongside Lucas-Kanade and Horn-Schunck algorithm. The 

combined algorithm combined the local and global flow, yielding a slightly smaller average 

angular error of 4.2. The author proposed pyramids as a future implementation to reduce the 

error. 

In this thesis, the sequence of frames will be noisy due to the motion of the mobile 

robot. With that said, the Lucas-Kanade was used for the purpose of this thesis. It was more 

resistant to noise challenges and required less computation than the combined algorithm. The 

combined algorithm would be more ideal for a dense flow tracking, however, a sparse 

approach was used in this thesis. 

A study was done to track large motion in objects with irregular shapes using 

contours by J. W. Choi et al. [35]. The idea was to track contour by having an active contour 

model. The featured points (“snake points”) on the next frame will be defined by the change 

in curvature of the object in the current frame. The optical flow is then calculated at that 

location. To filter noise and any inaccuracies, two sequential edge frames were compared and 



47 | P a g e  

 

  

morphology was created; which then works with optical flow to find the activation contour. 

The experiments showed that it was accurate in tracking fast moving, irregular objects. 

However, further research needs to be done to limit motion blur at high speeds to increase 

accuracy. 

This approach is similar to the tracking based on motion used in this thesis. However, 

examined literature above [35] compares the two consecutive edge frames to eliminate noise 

from non-motion objects in the frame. It then uses dilation to increase the area of the leftover 

contour. Optical flow was then used to track the points placed over the resulting contour 

image. This thesis did not focus on tracking complex objects based on contours, instead, the 

target was identified as a rectangular shape and majority of the motion of the “good feature 

points” was translated on to all the feature points; refer to Section 3.1.5. This approach is also 

capable of tracking irregular shaped objects as well as normal geometric objects. Many of the 

irregular shaped objects produced better results because they had drastic change in pixel 

intensity. 

C. Cheng and H. Li [16] also pursued in a search to find the most accurate feature-

based optical flow computation, analysing scatter brightness, edge acquisition, and feature 

orientation. The results were based on six test images, all of which are drastically different. 

The results published showed that image patches with significant brightness variation were 

the most accurate. It was proposed that scatter brightness and/or edge acquisition can be used 

to improve accuracy on feature extraction. 

For this thesis, the target may be any arbitrary object or region in space. However, if 

the target is chosen by the user for effective tracking, a target with diversity of intensity 

should be chosen. Scatter brightness was not used as part of the algorithm in this thesis. 

Instead of edge acquisition, corners were used as the feature points in this thesis for even 

better tracking results. 

Optical flow was used in a video surveillance application system for tracking moving 

objects from a sequence of video frame [19]. This paper experimented on “abrupt change 

video” as well as “gradual change video” to explore the optical flow method, Horn-Schunck, 

with region filtering.  It seemed from the results obtained by this paper that dynamic 
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threshold with exponential decaying as part of the filter worked best; yielding the most 

amounts of detections (60) as well as precision (0.91).  It was no surprise that the abrupt 

change video had half as much (35) detections as the gradual change video (60) as optical 

flow works best in small change scenarios. 

Research done in Lingaya’s university [45] showed a different approach to tracking. 

They used "Sum of Absolute Difference” (SAD) algorithm for motion detection and tracking. 

They were using a fixed camera to detect moving objects, and its location with the help of 

background subtraction, edge detection, and segmentation.  It was evident that this algorithm 

needed to have a fixed background as well as a camera that did not move. From there, the 

sequential frame was subtracted to find the new object in the new frame. This object was 

then tracked throughout the frames until it was no longer in the current frame. Working with 

a static camera, displacement was easily calculated. 

A similar approach was taken in “tracking based on change” portion of this thesis. 

Unfortunately, the application is only applicable when the mobile robot is stationary. When 

the mobile robot is in motion, the entire frame is detected as motion.  

Fragments-based similarity measurement as a tracking tool was analyzed by Jun 

Shang [37].  The target and the reference were divided into several fragments of the same 

size. Then, the average intensity of the patches was compared with respect to the overlapped 

smaller patches.  Color and spatial information were encoded to track non-ridge object under 

complex background by comparing global similarity and local similarity. This algorithm was 

found to be sensitive to the size of the patches, the number of the searched rectangles, and the 

initial actual position of the object.  The best results found in this paper came from a soccer 

sequence of frames with 0.11 seconds as the average tracking time per frame at a scale of 

40x40. The worst results also came from the soccer sequence of frames with 1.33 seconds as 

the average tracking time per frame at a scale of 8x8. 

Particle swarm optimization is also a great candidate for visual tracking. X. Cheng et 

al. [69] proposed an approach called visual tracking based on particle swarm optimization 

framework using SIFT[18] features.  Also using, multiple fragments in a candidate target 

region to cope with the problems of particle occlusions, illumination changes, and large 
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motion changes of the tracked region. The experiments results showed that this algorithm 

was capable of performing in complex environments with occlusions. How the results were 

measured was confusing to understand. However, it was evident that the higher the number 

of swarm particles, the lower the error.  

Fragmentation and swarm optimization was not used in this thesis. However, it is a 

good topic to explore as future work to be done on this project. 

S. Avidan used an interesting approach to tracking. Ensemble tracking [58] views 

tracking as a binary problem where a collection of “weak” classifiers are trained online to 

distinguish between background and object. In return, a product of one “strong” classifier is 

created. Furthermore, week classifiers can be added or removed at any time to compensate 

for any new information or change in the tracked object. A classifier in this context can be 

viewed as a threshold definition that fits a corresponding object.  It estimates the next 

possible location based on a confidence map and average shift. The results published by the 

paper shows a lot of promise in this area of research as it is reliable in variety of scenarios. 

However, this process does require access to faster computational tools and an online 

network. It is also one of the more complicated algorithms to solve a simple tracking 

problem.  It is more suited as a detecting and learning algorithm than a tracking algorithm 

applicable for this thesis. For this reason, this approach was ignored for the purpose of this 

thesis at this time. However, if the mobile robot is controlled by a powerful external 

processing unit, it may be an applicable topic to pursue, falling under possible future work 

category. 

A paper was published by H. Joshi, demonstrating path planning for autonomous 

robot using image processing [27]. The paper focused on navigation in space exploration 

type environmental scenario using A-star algorithm. Obstacles were detected based on a form 

of contour detection algorithm. This paper only focused on planning the path; no simulations 

were done for actual navigation. A gridded approach was taken to plan the path, yielding 

better computation. 

A slightly modified A-Star algorithm was explored in a science direct journal by F. 

Duchon et al. [24]. Similar to [27], a gridded method was used for the development of the 
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algorithm. Modified algorithms in this literature includes, Theta-Star, Phi-Star, A-Star-

Rectangular Symmetry Reduction (RSR), and A-Star-Jump Point Search (JPS). The 

algorithm was judged based on computational time and path optimality. It is important to 

note that this literature only explored the path planning aspect and not navigation and SLAM. 

Basic Theta-Star is a modification to A-star algorithm. It ignores the next position to be 

navigated to, if a more future position is visible from the current location. Phi-Star algorithm 

is an extension to Theta-Star. This algorithm records the local predecessor as well as the 

angles to each block. RSR algorithm is a pre-processing step which eliminates symmetries in 

the generic A-Star algorithm. It was concluded in the journal [24] that A-Star-JPS was the 

best algorithm for finding the shortest path. JPS is a method of cropping the neighbourhood 

blocks that are already evaluated and then choosing a block that is accessible to all cropped 

blocks. However, with higher computational time provided, it was stated that Theta-star 

algorithm may be more superior [24]. 

This thesis also explores the possibility of using a modified version of A-star 

algorithm as the path planning algorithm for map-based navigation scenario. A gridded 

approach was also used in this thesis similar to the previous literature [24, 27]. JPS and RSR 

are both good modifications. However, this thesis used a slightly different modification that 

evaluated the surrounding, applicable navigational blocks. The modification applied chooses 

the diagonal option that can combine two separate movements into one diagonal motion; 

refer to Section 3.2.2.  

Navigational algorithms are not always intended for mobile robots; it is also used in 

graphical simulation such as video games. One such approach explained it in terms of 

directing a crowd using navigational fields, by P. Gweosdek et al. [54]. The idea of this 

approach is to guide multiple objects in a path using a guidance field; it is a local collision-

avoidance method for navigation with a goal. The algorithm generates the navigational field 

and uses a variant of Dijkstra’s to propagate navigation cost values; similar to the cost factor 

from the A-Star navigation implemented in this thesis. Many simulation results were shown, 

in which the method was deemed effective. One of the best contributions of this method is 

that it may be used as a global model where many objects can be guided with one method. 
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  J. Hagelback proposed another similar method to [54], where a potential field is used 

for navigation, from the very popular game StarCraft [31]. It is a strategy game based on 

building massive army and dominating your opponent. Dealing with many objects trying to 

navigate to different positions simultaneously; it is evident that global type navigation was 

needed.  It stated that A-Star algorithm did not cope well in dynamic environments provided 

in the game. Therefore, a combined A-star and potential field algorithm was implemented. 

The algorithm can be viewed as a 3D fabric of space, where obstacles are hills and empty 

paths are valleys and gravity is the guiding force that is exerted on the navigating object. 

Therefore, the object is guided through the empty space towards the goal. 

 J. Vascak proposed an idea that combined potential field, neural network, and fuzzy 

logic [32]. The experiment was approached as a parking problem; where a robot must park 

itself in an empty parking slot. The approaches are based on numerical values that are 

derived from metaphors existing in the real world. The paper presented a lot of areas to be 

improved as part of future work. 

 In this thesis, a global potential field algorithm that is similar to the previously 

examined literature [31,32,54] was tested. GBNVF resembles derivation of the algorithm 

proposed in [54]. A part of J. Vascak’s resembles a version of the approach taken for the 

non-mapped navigational option. However, instead of using a fuzzy-neural system to control 

the turning of the robot, another algorithm was developed and tested based on obstacles at 

different angles with respect to the robot. ANN was used as the intelligence engine that is 

capable of learning the navigation motion behaviours of the actual robot and sending the 

correct power to each wheel, ensuring the turning angle is the desired angle intended by the 

navigational algorithm. Unlike [31], no attempts to combine modified A-Star and GBNVF 

was made in this thesis as the implemented algorithm was sufficient for the task at hand.  

An article published in Neurocomputing by A. Prieto et al. suggested a method of 

classifying the motion behaviour from groups of robots [5]. They attempted to create a 

cognitive model that understands local events surrounding the robot using visual information 

as the input to an artificial neural network . The objective was to classify the type of motion a 

group of agents perform. The hybrid method implemented was called automatic neural-based 



52 | P a g e  

 

  

pattern classifier (ANPAC). The idea was to model a system that varied the size of the ANN 

based on the learning results of that network and an advisor module that adjusted the pre-

processing parameters. The motion is analyzed through camera on the robot, which is then 

analyzed to classify motion patterns. ANPAC is an un-supervised learning algorithm which 

uses many pre-processing steps before the ANN step to constantly update the parameters at 

different layers proposed. 

Un-supervised learning proposed in the literature above is effective and novel. ANN 

learning is only a small portion of the entire algorithm. The proposed algorithm was effective 

in learning any external motion patterns. In this thesis, the focus was on learning the motion 

behaviour of the mobile robot with respect to power delivered to each motor driver. Such a 

challenge can be solved with un-supervised learning. However, it is unnecessarily complex. 

In this thesis, the learning was done through supervised learning to achieve satisfactory 

results. Since the behaviour of only one robot needs to be learned, the algorithm can adjust to 

the motion data-set obtained from the mobile robot. Therefore, only the ANN step was used 

in FF and BP was used as a means to update weights. However, an un-supervised learning 

algorithm can be used in conjunction to the tracking algorithm to predict the motion of the 

target for future work. 

S. P. Day and M. R. Davenport proposed a continuous-time approach to a neural 

network (NN) that learned through back-propagation and used adaptable time delays to 

improve performance [53]. The authors proposed that the implemented technique can be used 

in signal prediction, signal production, and spatio-temporal pattern recognition and is also 

possible to parallelized through hardware and multi-dimensional training signal.  The idea 

was to predict the future input of a Mackey-Glass signal by providing the current input of the 

signal. Mackey-Glass signal is a non-linear time delay signal, making it difficult to predict. 

Results showed a successful algorithm amongst usefulness of other things such as 

momentum and network configurations. Momentum is a method applied usually to speed up 

the learning rate. It acts like a controller that will either speed up or slow down the change in 

weight in a given direction. 



53 | P a g e  

 

  

In this thesis, BP is a major part of the learning algorithm implemented. No variable 

time delay between connections was programed however. The network topology proposed in 

the literature above is large. Instead in this thesis, a smaller network topology was used with 

some hidden nodes only connected one of the output node. The results observed from the 

network can be observed in Section 4.3. 
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Chapter 3  
Experimental Setup  

This chapter will illustrate the final design of the robot and the setup used to obtain 

experimental data. 

3.1 Final Robot Design  

The robot construction can be viewed as a rectangular prism of dimensions 0.43m by 

0.15m by 0.29m. The wheels are extended a little past the robot body, so that the robot will 

be able to climb over any small terrain with ease. The overall design is inspired from an 

armoured, tank. The body is constructed with aluminum. The optical sensor was attached to 

the back of the robot, on an elevated plane. The optical sensor is erected 0.61m above the 

floor to help with the fact that Kinect cannot measure depth under 0.8m. By the concept of 

Pythagorean Theorem, the visual floor in front of the robot is 0.75m. This enables the robot 

to identify obstacles closer to the robot. Also, having the Kinect at the back will ensure that, 

when in forward motion, the first point of contact will be the tank wheels. This makes it 

easier to manure over terrain and small obstacles.  

The optical sensor base was implemented with two degrees of rotary freedom. Figure 

3-1, (b) displays the vertical rotary joint and Figure 3-1, (c) displays the horizontal rotary 

joint. The two motors used were Maxon 343100. These motors are small in size and are able 

to produce power of 22 watts. Figure 3-1, (a) displays the final version of the robot.  
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Figure 3-1: Robot, version two. (a) View of the entire model. (b) Vertical rotary joint with a 

potentiometer. (c) Horizontal rotary joint with a potentiometer. 

 

Many different GUIs were used throughout the building process. New layout and 

options were added or deleted with every edition. The final version of the GUI built and used 

is demonstrated in Figure 3-2. 

 
Figure 3-2:  GUI for the robot. 

    
(a)                                          (b)                                          (c) 
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3.2 Parts Used for the Final Version of the Robot  

All the parts used in the final version of the robot are listed in Table 3-1.  The block 

diagram of the robot is shown in Figure 3-3. 

Table 3-1 Parts used in the robot 

Part Name Description   Voltage (V) 

Maxon Motor T-05  This motor was used to control 
horizontal rotation of the Kinect.   

12 

2-Maxon 343100 
Motors  

More efficient motors from the previous 
motors. They are used to control both 

wheels.   

12 

Maxon 343100 Motor This motor is used to control the vertical 
rotation of the Kinect. 

12 

2-Potentiometer To estimate the directional angle that the 
Kinect is facing (horizontal and vertical). 

3.3 

TI-Digital signal 
processor (DSP) 

The microcontroller that controls the 
motor driver and the communication 

from the on board computer. 

3.3 

Kinect sensor with 
ARM DSP 

Main sensor used for colour, depth, and 
sound information, 

12 

 



57 | P a g e  

 

  

 
Figure 3-3:  Block diagram of the robot. 

 

3.3 Central Processing System 

Lenovo Y570 laptop was used as the main computing and decision making system. 

The system specifications are listed below. Note that this is the system that all simulations 

and tests are performed on unless otherwise stated.  

• Central processing unit (CPU)   Intel Core i7-2670QM CPU @ 
2.20GHz       .                                                    Boost @ 2.99GHz. 

• Random access memory (RAM)       8.00 GB. 

• Graphics processing unit (GPU)      NVIDIA GeForce GT 555M. 

• 64-bit operating system, windows 7. 
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3.4 Simulation Setup 

For all optical tracking algorithms explored, the experimental setup used one 

Microsoft Kinect sensor and the CPC.  

Environments were created for simulating the navigation algorithm. The 

environments modeled are often referred to as maps in this thesis. The maps are created as a 

picture (.PNG) file with arbitrary space and obstacles. Some are created with large open areas 

for easy navigation and some are created with very narrow areas. All the maps experimented 

on are provided in Appendix C. Note that all graphical simulations are done using MATLAB 

R2013. 

Before the implementation of the algorithms, the maps must be set up in a way that is 

understandable by code. This was achieved by converting the maps to gray scale, where gray 

(0-254) will be areas that are un-navigable and whites (255) navigable, open space.  

The robot’s size is programed to have equal x, y dimensions based on the robot’s 

largest side. This will ensure that if the robot must rotate on its center, the extra room 

programed will give the necessary space to avoid collision. It is almost like creating a bubble 

around the robot that is slightly bigger than the robot and using that bubble as the safety 

region. A line is drawn from the center of the robot outwards to demonstrate the current 

orientation of the robot. Figure 3-4 shows the robot in its starting position and orientation, in 

the map “Tree-road”, where the destination is highlighted with a “red star”. From here, the 

robot must find its way to the destination; this is where path planning algorithms are utilized. 

 
Figure 3-4: Illustration of one of the maps with the robot at a starting location and 

orientation, and the destination is shown as a “red-star”. 
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 As shown in Figure 3-4, the robot has a size that is larger than a pixel. Therefore, it is 

unnecessary, and sometimes incorrect to calculate the path for every pixel. With the 

consideration of the robot’s size and to minimize computation, the map should be gridded 

into sub-portions. Keeping each grid size slightly larger than that of the robot, the map was 

divided into a 16 by 16 grid map.  For each grid, 8 by 8 pixels were given one value which is 

the average value of all the pixel intensities within the grid. This value was then divided by 

64 and rounded to normalize the integer value to 0,1,2,3, and 4; where 4 is almost completely 

white pixels, and 0 is completely black pixels. Equation (3-1) describes this grid calculation; 

where A is the average value, x and y are the pixels inside the grid, gx and gy are the grid 

coordinate, i is the intensity value of the pixel, and N is the number of pixels in one row or 

column. Since it is an integer, any decimal value will be cut-off, hence the addition of 0.5 to 

round up any number that is 0.5 higher than its whole value (3.5 = 4, while 3.4 =3). 

 

               
 

   
∑       

 

   
 (3-1) 

 
Figure 3-5 displays the same map as Figure 3-4 with the new gridded values displayed on 

each grid. 

 
Figure 3-5: Illustration of one of the maps that is gridded and given a value from 0 to 4. 
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It is evident from Figure 3-5 that blocks with a value of 4 are the ideal “stepping” or 

“driving” regions; all other regions have a higher chance of collision. Implemented 

algorithms considered only blocks with a value 4 as navigable space.  

For navigation algorithm tested on the actual robot, the robot was placed on a smooth 

floor with obstacles. Obstacles are any 3D objects that hinder the motion of the robot. They 

may vary in size, weight, and shape. 

The intelligence engine was setup as a software addition to the implemented 

navigation algorithm. No additional hardware or environment setup was required to test the 

ANN.    

The simplified version of the entire algorithm implemented on the robot is presented 

in Figure 3-6 as a flow chart. 
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Figure 3-6: Simplified flow chart of the software algorithm implemented on the robot. 
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3.5 Software Libraries 

There are two software libraries used for this project, EMGUCV and Kinect SDK. 

EMGUCV is an open source, computer vision, library that is a cross platform .NET wrapper 

for OpenCV.  This library is great in assisting with image processing tools such as real-time 

image drawing, generic image classes, automatic garbage collection, XML serialization, and 

pixel operation. 

The second library used was the Microsoft Kinect SDK (MKSDK). MKSDK 

provides the tools and application program interface (API) that is native and updated to 

develop application with Kinect. It is also a key tool in acquiring colour, depth, sound, and 

other embedded sensor data from the Kinect sensor.  
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Tracking through HSV filtered detection is fast and effective. However, it is very 

limited in the sense that the target has to be primarily one colour. Also, the background 

cannot have anything of the same colour or there will be a false target. With lighting change 

or change in the angle the light hits the target, the observed colour of the target changes and 

this process will no longer accurately track or detect. This makes HSV approach useful in a 

very narrow range of situations.  

4.1.2 Feature Detection Based Tracking 

The SURF algorithm was implemented on the central processing computer (CPC) 

(refer to Section 3.3) and tested for performance time and accuracy. The set of experiments 

were performed on mostly modeled images that were cropped out of the original background 

images. The results are shown in Table 4-1. The images of the actual test can be found in 

Appendix A.  

Table 4-1: SURF performance on models cropped from the loaded image 

Image set (appendix A) Accuracy  Time (milliseconds) Resolution 

Image set 1.0 accurate 343 640x480 

Image set 2.0 accurate 1287 720x540 

Image set 3.0 accurate 119 260x188 

Image set 4.0 accurate 937 800x530 

Image set 5.0 accurate 9416 2560x1600 

 

As expected, these experiments proved that SURF detections were accurate. When 

the same test was performed on a video stream presenting an object in the real world, the 

results were not good. Even though there was almost no false detection, many times, there 

was no detection. Many of the detection were only possible when the object was very close 

to the camera, approximately taking up 50% of the image frame. The object must have a flat 

surface facing the camera and the texture of the object must be “non-smooth” for better 

detection. The SURF algorithm implemented was also not fast enough on the CPC to have 30 
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Frames per Seconds (FPS) frame rate (FR). To achieve 30 FPS, the object must be detected 

within 33 milliseconds at the latest. As shown in Table 4-1, the detection times were longer 

than 33 milliseconds; even for identical models. Therefore, feature based detection as a 

tracking algorithm was not ideal. However, it can be used as a means to identify a target once 

the mobile robot is very close to target. 

4.1.3 Tracking Based on Change 

Tracking based on change algorithm explored in Section 2.1.3 was implemented and 

tested as shown in Figure 4-2. 

 

Figure 4-2: Image of GUI with detected motion. For this demonstration, a phone was held and 

shaken by hand. The top left image is the original image. The bottom right is the 

gray scale image. Top right image is the blurred, black and white image. The 

bottom left is the final image with the detected motion. 

 

 

This method of tracking is ideal for detecting motion in the environment. However, 

one of the biggest problems with this method is that it only detects and tracks motion. 

Therefore, it will not work on a moving platform. To detect motion, the camera must be 
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placed in a stationary platform so that all other motion in the environment can be detected. If 

the camera is on a moving platform, such as a robot, the entire frame will be perceived as 

motion due to change relative to the motion of the robot. Therefore, the algorithm was used 

as a method to obtain the original target, when the robot is stationary. For example, in “find 

me mode”, the user can shake an object, which will become the target. Once the target has 

been initialized; other tracking methods like optical flow can track the target thereafter. 

4.1.4 Optical Flow  

At first, this method was not working as predicted. Even though Lucas Kanade [9] 

approach reduces noise levels, it was still far too noisy for accurate tracking. Also, one or 

more features will not behave like the majority of the features within the target. These 

uncertainties made the new targeted area increase in size over time and not accurately follow 

the target. An illustration of this is shown in Figure 4-3. 
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Original target. 4 seconds after detection. 

2 seconds after detection.  3 seconds after detection. 

Figure 4-3: Inaccuracies in the implemented optical flow tracking. 

 

The blue dots are the features detected then tracked. A red rectangle is drawn around 

all the features to represent the target as a whole. It is evident that the algorithm is not yet 

complete.   

 

4.1.5  Implemented Solution to the Optical Flow Tracking Error 

To solve this problem, one must filter out the features that are moving inaccurately 

and while keeping the features that are functioning well.  Another way is to detect the 
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features that are moving accurately and superimpose those translations on the features that 

are not performing accurately. This can be achieved by identifying the translation from the 

majority of the features and imposing those on every feature.  

 One cannot simply find the average of every detected feature translation and use that 

as the translation for all features. This will also give false translations over longer period of 

time, especially if the feature detection count is low. This was fixed by taking the median of 

all the current translation and averaging a body of features surrounding the median value. 

Then the translation of all the features was changed to the calculated accurate translation. 

This resulted in the best possible translation of the target. 

 To find the median, a sorting algorithm was used. For this thesis, the “bubble sorting” 

[60] algorithm was used. This algorithm compares adjacent pairs and swaps accordingly. It is 

looped through until the algorithm is able to go through all the adjacent values without 

having to swap once. The final addition to the optical flow algorithm is provided in Figure 4-

4. 

 This final algorithm performed extremely well comparatively. It was accurate, fast, 

and used very little processing time. The recorded FR was still 30 FPS on average. The 

results from the final optical flow algorithm are provided on Figure 4-5. The target was 

tracked accurately through long periods of time and near the boarders of the frame. With a 

compromising note, if the object moves further away, the targeted area will not get smaller 

with this algorithm and there is more probability for false tracking at that point. However, a 

robot is more likely to detect a target and move closer to the target. Therefore, the target is 

more likely to appear bigger on the frame and not smaller. The targets tested did not have to 

be any given shape or colour, it can be an arbitrary region in the 3D space. With that given, it 

is recommended that the target occupies at least 10% of the full size of the frame for good 

tracking. 
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Figure 4-4: Filtering algorithm used as an addition to the optical flow algorithm for more 

accurate tracking. 

  

1. For each feature point, find the translation from previous 
frame to the current frame. 

a. deltaX[i] = currentFeature[i] – previousFeature[i] 
b. deltaX[i] = currentFeature[i] – previousFeature[i] 

 
2. Use bubble sort to sort all the translations. 

a.  While swap is true  
i. For every delta value 

1. If deltaX[i] > deltaX[i+1], swap values. 
2. If deltaY[i] > deltaY[i+1], swap values. 

 

3. Find the average of the middle three values for x and y 
translations. 

a. deltaX[center-1]+ deltaX[center]+ deltaX[center+1]/3. 
b. deltaY[center-1]+ deltaY[center]+ deltaY[center+1]/3. 

 

4. Impose that translation on every feature point and draw a 
rectangle around them. 

a. currentFeature[i]= previousFeature[i]+new translation. 
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Originally detected target. Tracked target after 2 seconds. 

Tracked target after 15 seconds. Tracked target after 60 seconds. 

Figure 4-5: Performance of the implemented final optical flow algorithm. 

 

4.2 Navigation 

In this portion of the chapter, the experimental results of the topics explored in 

Section 2.2 will be presented. Experimental setup of the simulated map based navigation is 

explained in Section 3.4. 
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4.2.1 Modified A-Star (A*) 

Modified A-Star Algorithm, Fgrid propagation and path numbering explained in 

Section 2.2.2 is displayed on Figure 4-6, (b). The corresponding path plotted on the map is 

shown in Figure 4-6, (a). 

     
(a) 

                     
(b) 

Figure 4-6: (a) A-Star path plotted. (b) The corresponding matrix to the path. 

 

 It is evident from Figure 4-6 (a) that there are some points that can be navigated 

diagonally for an even faster path. To navigate diagonally at these scenarios; the robot checks 

the 8 blocks around its current block before moving to the next listed position on the path. It 

then chooses the block with the lowest number. This will ensure that the robot can take 

advantage of diagonal navigational opportunities, as illustrated on Figure 4-7.   

 

 

 

Figure 4-7: Diagonal navigation. 
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The diagonal navigation source code is provided in Figure 4-8. Note that “rPath” is 

the planned path matrix from Figure 4-7 (b), “pos” is the current position, and” nxtPos” is the 

possible next coordinate to move towards.  

 

Figure 4-8: Diagonal navigation source code. 

 

 The velocities of the wheels were adjusted accordingly to first turn towards the next 

chosen point and navigate to it.  

Four different maps were experimented on; each map had different sets of starting 

and ending points. The maps are named “Tree-road”, “Maze”, “Simple-line”, and “Simple-

circle”.  “Maze” and “Tree-road” are maps that are hard to navigate. They have dead-ends, 

sharp edges, multiple path options, and narrow areas. “Simple-circle” and “Simple-line” are 

much easier to navigate comparatively. They have large navigational spaces and very simple 

obstructions.   

The experiments observed computation time for path planning, number of iterations 

taken to navigate to the target, and navigational time. Navigational results for every map 

using modified A-Star path planning are provided in Appendix C.  Table 4-2 lists all the 

numerical results for modified A-Star path planning algorithm.  

  

for j=pos(1)-1:pos(1)+1 
    for k=pos(2)-1:pos(2)+1     
        if (k>0)&&(k<gridDim)&&(j>0)&&(j<gridDim) 
            if(rPath(k,j)>0) 
                if (rPath(k,j)< nxtPos(1)) 
                    nxtPos(1)= rPath(k,j); 
                    nxtPos(3)=j*8-4; 
                    nxtPos(4)=k*8-4;  
                end 
            end 
        end 
    end 
end 
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Table 4-2: Modified A-Star results for different maps and navigational coordinates. 

Maps Start position 
(x,y) 

End position 
(x,y) 

Path planning 
computation 

time (s)  

Number of 
iterations  

Navigational 
time (s)  

Tree-road 23,115 115,15 0.034 287 45.460 

23,115 60,11 0.033 265 38.610 

115,115 20,20 0.039 218 27.178 

75,20 20,115 0.034 308 49.732 

Maze 32,100 115,20 0.039 457 102.099 

16,25 115,30 0.042 326 58.651 

115,115 20,20 0.063 409 118.891 

20,20 20,115 0.039 294 47.156 

Simple-circle 15,100 115,35 0.034 197 22.923 

50,115 50,20 0.048 231 29.767 

115,60 20,75 0.044 308 55.621 

20,20 115,115 0.040 238 31.636 

Simple-line 30,30 115,115 0.055 283 42.467 

30,30 115,75 0.025 121 20.187 

15,100 20,20 0.037 146 24.031 

15,100 115,32 0.038 135 22.680 

 

The implemented algorithm navigated to the target from the starting point on every 

attempt. The computation time for path planning was very low, which is low enough so that 

if necessary, path planning can be done every few frames. However, the path planned was 

not always the shortest path. This is even more evident in the “simple” maps. Also, the 

algorithm did not always behave well in sharp corners as the robot sometimes collided with 

some sharp corners. To avoid this in real situations, the safety bubble radius could be 

increased and/or the grid size could be changed. 
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4.2.2 Goal Based Navigational Vector Field  

GBNVF algorithm explained in Section 2.2.3 is demonstrated as a vector field on the 

map below, Figure 4-9. 

 
Figure 4-9: Illustration of the vector field created for the map Simple-circle with an arbitrary   

destination. 

For navigation, the vector magnitude is used as a speed controller. The controller 

output is obtained by multiplying the current wheel speed with the magnitude of the vector 

that the robot is currently occupying. The vector direction is used to correct the robot’s 

current direction. This in return ensures that the robot is driving slower around smaller areas 

and faster in open areas. 

This path planning algorithm is tested on the same maps as the modified A-Star 

algorithm, with the same starting positions and destinations. The results are displayed on 

Table 4-3. The actual images of the navigation itself are provided in Appendix C. 
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Table 4-3: GBNVF results for different maps and coordinates. 

Maps Start position 
(x,y) 

End position 
(x,y) 

Path planning 
computation 

time (s)  

Number of 
iterations  

Navigational 
time (s)  

Tree-road 23,115 115,15 0.046 280 134.689 

23,115 60,11 0.046 184 78.204 

115,115 20,20 0.045 243 110.604 

75,20 20,115 0.045 217 95.699 

Maze 32,100 115,20 0.043 154 62.620 

16,25 115,30 0.048 158 64.987 

115,115 20,20 0.047 358 160.133 

20,20 20,115 0.033 262 97.594 

Simple-circle 15,100 115,35 0.035 145 44.465 

50,115 50,20 0.044 158 54.453 

115,60 20,75 0.046 120 34.972 

20,20 115,115 0.048 187 69.436 

Simple-line 30,30 115,115 0.036 163 68.711 

30,30 115,75 0.035 85 23.744 

15,100 22,22 0.046 156 57.419 

15,100 115,32 0.044 129 38.362 

 

The algorithm navigated to the target for every scenario provided. The path planning 

computational time was very low. There were little to no collision scenario. The algorithm 

can be improved by having more grid blocks; an additional algorithm can also be added to 

have vectors at the edge blocks of every obstacle for better performance.  

The two algorithms, A-Star and GBNVF, were compared on computation time, 

navigational time, and number of iterations taken. The graphs are provided on the following 

figures: Figure 4-10, Figure 4-11, and Figure 4-12. Each series in the graphs represents 

navigation from one location to a destination per map. 
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Figure 4-10: Comparison of A-Star and GBNVF by number of iterations taken to navigate. 

 

 
Figure 4-11: Comparison of A-Star and GBNVF by navigational time. 
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Figure 4-12: Comparison of A-Star and GBNVF by computational time. 

 

From the comparison of the number of iterations taken, it is evident that GBNVF 

required fewer steps for almost every scenario. When comparing computational time, 

modified A-Star algorithm performed slightly better. The modified A-Star algorithm also has 

better navigational time in comparison with the GBNVF for the tested maps. However, when 

comparing the actual navigations on the maps, the GBNVF algorithm performed more stable 

while the modified A-Star algorithm seemed aggressive at time. The modified A-Star 

algorithm also had many collision scenarios near edges.  Overall, GBNVF algorithm with 

some minor modifications can be argued as the better suited path planning algorithm for the 

real robot, if the local map, position, and orientation were provided.  

4.2.3 Non-Map Based Navigation (NMBN) 

The algorithms explored and tested in this portion of the thesis are modeled based on 

the assumption of having no map, or positional data for the robot.  For simulation purposes, 

simple maps are experimented on. However, the robot does not comprehend its surrounding, 

except for what is directly visible to it. The experimental setup for the simulations on the 

explored algorithms was the same as the MBN setup, refer to Section 3.4. The simulated 

algorithm was implemented on the actual robot after.  
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4.2.4 Follow the Target 

The “follow mode” is responsible for following a target. The idea is to navigate 

quickly and make the displacement between the target and the robot equal the threshold limit. 

Once the robot is at the threshold distance away from the target, the goal is to maintain that 

distance. An algorithm based on the horizontal position of the target is implemented to turn 

the robot towards the target. Once the target is centered, the robot drives forward based on a 

PID controller. If the displacement between the target and the robot is larger than 2.5 meters 

the robot will drive at the set max speed. If the displacement is smaller than 2.5 meters, the 

PID controller will decrease the speed proportionally until the distance is smaller than 1.0 

meter. At that point, the robot must stop. The ideal distance to follow the target is therefore 

between 1.5 meters and 1.0 meters.  

4.2.5 Avoid Obstacles  

This algorithm is responsible for avoiding all obstacles in the local area when in 

motion. There is no target destination to be reached and the robot is arbitrarily navigating the 

local area. An algorithm such as this can be used when the local area is getting mapped. 

This algorithm works by measuring the displacements at different regions of the 

frame. The frame is divided into seven different rectangular regions, each varying in size. 

The average distance is calculated for each of the region to have one crisp value per region. 

Figure 4-13 shows a frame with arbitrary obstacles and how the regions are divided. The 

regions all have the same height. Horizontally, they are 50, 40, 30, 80, 30, 40, and 50 pixels 

wide from left to right, respectively. Each region is divided to compensate for noise from the 

depth data and to emphasize the importance of the respective regional data. For example, the 

depth information directly in front takes priority over other directions. 
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Figure 4-13: Left: Demonstration of how a frame is divided to find a crisp value for each region. 

Right: GUI representation from the robot’s perspective. 

 

Each region can be viewed as a “range finder” of a given area. Using each of the 

range values, an algorithm can be written to avoid all obstacles. The algorithm is modeled by 

Equations (4-2) and (4-3). Note that the seven range finders are labeled L1, L2, L3, C, R3, 

R2, and R1 from left to right respectively. pR and pL are the power given to the right and left 

motors, respectively. sr is the speed-ratio to control the speed of the robot. I, J, K, L, and M 

are all tuning variables. 

Check = R1 && R2 && R3 && L3 && L2 && L1 
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On the actual robot, a minimum of 85% PWM to each wheel was necessary to 

achieve a stationary turn from stop, on a smooth floor.  
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This algorithm was modeled and simulated on a sample map to observe the robot 

avoiding collision. The results can be seen in Figure 4-14. Note that the lines are drawn in 

front of the robot representing the visual range finders. 

   
Figure 4-14: Robot using the avoid algorithm to navigate around arbitrary obstacles. 

 

The simulations were successful in avoiding collision in the simulated scenarios. The 

simulation even performed well in navigating out of a local minimum scenario, as shown on 

the left, Figure 4-14. The same algorithm was then implemented on the real robot with 

different values for the tuning parameters. 

4.2.6 Navigate to Target  

“Simple-navigation mode” is responsible for navigating to a target at a calculable 

distance away while avoiding basic obstacle(s). This is a combination of “follow target” and 

“avoid obstacles” algorithms. The main problem is that the robot cannot deviate too far from 

the target angle when avoiding an obstacle. This is because if the target is lost from the 

frames, the robot will not be able to redetect. This would mean that the target must be visible 

at all times and the turning trajectory must be small. Due to this, the avoid algorithm is 

modified by an auto-correcting factor that finds the difference in the target angle and current 

orientation, as illustrated in Equation (4-4). Where   is the current angle and   is the target 

angle, ar is the angle correcting ratio, and overall speed-ratio, sr, is controlled by the 
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ineffective. Also, the power delivered to each wheel is not an accurate representation of the 

power sent.  

A solution was implemented to fix this problem without changing every navigational 

algorithm simulated. The implemented solution is an intelligence engine that learns the 

behaviour of the robot and adjusts the PWM applied to the motor accordingly to produce 

positional and orientation translation desired by the algorithm.  

4.3 Intelligence Engine (IE) 

The training dataset was measured by applying a certain PWM value to each wheel 

and measuring the normal displacement, orthogonal displacement, and the change in angle. 

The change in time was set to a constant. These values were then normalized to have a value 

between -1 and 1. The same PWM values were tested for both wheels separately. Figure 4-16 

shows the normalized PWM values applied to both wheels and Figure 4-17 shows the 

normalized displacement values for the corresponding iteration. The x-axis presents the 

corresponding iteration set for both graphs. 
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4.4 Conclusion 

In this chapter, many different means of optically detecting and tracking methods 

explored in Chapter 2 were tested. Many different applicable algorithms were demonstrated 

and tested. First, re-detection on every frame as a primary means of tracking a target was 

tested. However, there were many drawbacks including higher computation, limited 

targeting, and inaccuracies. They may be integrated with the main algorithm for a more 

refined flexible algorithm.  

HSV and colour detection was a fast and efficient method of tracking a single target. 

However, the colour of the target must consist of primarily one colour. The background 

cannot contain the same colour as the target or there will be a false target. Also, if there is a 

change in lighting in the local area or change in the angle of light reflection, the target’s 

colour was perceived inaccurately. Since this was the targeting solution implemented by the 

previous student, it was important to explore the possibilities of this algorithm. With many 

drawbacks however, HSV tracking was not deemed to be effective as the main tracking 

method. 

Feature detection was another tracking method explored. SURF was chosen to be the 

main algorithm tested in this area. Though SURF showed great accuracy at closer ranges; it 

failed to produce the same results for targets at far. It also required an abundance of 

computation time using a single processor. Due to the large computation time required by 

SURF, it was not possible to achieve, 30 FPS FR. It was evident that SURF as a tracking 

algorithm was not the most optimal option as the main tracking method. 

Non-detection means of tracking was also tested on this chapter. These types of 

methods tested in this chapter used more satisfactory amount of computation. 

Tracking based on motion was a good algorithm that detected the largest motion in 

the frame. However, it only tracked the largest motion, making any large motion the only 

possible target. It also required a stationary base to detect motion. If the base were to move, 

the entire frame was in motion from the camera’s perspective. This causes some major 

inaccuracies. One of the major drawbacks is that, it will not be able to track a target that is 

stationary. For user friendly interfacing, this algorithm is used as a pre-processing algorithm 
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for identifying the target. When the robot is stationary, the user can shake an object and the 

robot will perceive it as the target. Optical flow algorithm is used to further track that object. 

A more optimal method tested was optical flow. However, it was a combination of 

different algorithms that made this method very successful. First, by not tracking the optical 

flow of the entire frame, large amounts of computations were saved. Use of Harris corner 

algorithm to detect good feature points in a given targeted area enabled the optical flow 

algorithm to only track a few tens of points instead of hundreds or even thousands of points. 

Then Lucas-Kanade method helped solve the aperture, ambiguity problem. Finally, an 

algorithm was implemented to eliminate noise and inaccurate tracking by following the 

majority of the flow direction. 

  It produced very accurate results when tracking many arbitrary targets. There were 

minimal restrictions to choosing the target. As long as it was an appropriate sized target 

(original target size is at least 10% of the frame) and not completely smooth in texture, it can 

be tracked.  It can be concluded that Harris corner-Optical flow-Lucas Kanade with median-

mean motion filtering algorithm is the best suitable main tracking algorithm for this thesis. 

At closer ranges, SURF algorithm can be used for target identification. 

 For MBN, two different algorithms were tested; modified A-Star algorithm and goal-

based navigational vector field simulations were done on the same maps with identical 

starting and destination positions. The results showed that both algorithms performed well 

enough to plan a path that will lead that robot to the final destination. Modified A-Star 

algorithm had better navigational times as well as computational time in comparison to the 

GBNVF. However, modified A-star algorithm sometimes collides with edges and didn’t 

necessarily find the shortest path given a simple navigational area. GBNVF algorithm 

performed slightly faster in when comparing the number of iterations. GBNVF also required 

a slightly heavier computation load due to calculating the entire map. However, when 

comparing the navigation simulated on the maps, GBNVF performed more stable and 

appeared more reliable. GBNVF can also be used as an environment for multiple robots 

navigating in the same environments. Analyzing the two algorithms, it can be argued that 

GBNVF is a slightly better approach to navigation for the purposes of this thesis.  
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The NMBN algorithms explored worked well in simulation. When applied to the 

actual robot, they did not perform as predicted due to the dynamics of the robot.  

A FFANN topology was proposed as a suitable solution and trained on a dataset 

measured from the robot. The dataset contained change in orientation angle, displacement in 

parallel direction, and displacement in the perpendicular direction for a set of different PWM 

inputted. The obtained data proved that the robot behaved in a non-linear fashion and non-

symmetrical.  

 The created FFANN was programed along with the BP algorithm. In fact, many 

different models were tested and the one with the best results was presented. For more 

accurate results, the dataset was split in half and trained separately. The weights of the 

connections from each training set were stored separately. Based on the directional value 

from the change in angle at the input node, the corresponding set of connection weights was 

chosen.  

The intelligence engine was tested for accuracy by providing the change in angle, 

parallel displacement, and perpendicular displacement at the input layer. The IE behaved in 

an acceptable way for the tested scenarios only. It is still not clear if the ANN will behave as 

intended for other situation due to lack of data from the results. It should be further expanded 

and tested for accuracy in other situations, as part of future work.  
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Chapter 5  
Conclusion     

5.1 Conclusion 

 Different methods of optically detecting and tracking were tested. Many different 

applicable algorithms were demonstrated and tested. Results from detection methods showed 

that they were not the most appropriate methods for the task at hand.  

HSV and colour detection was considered ineffective to be the main tracking 

algorithm. Feature detection based SURF algorithm was proved to be accurate in 2D 

scenarios at close ranges. When dealing with 3D objects in 3D space, it did not perform 

accurately. It also required more computation power, which required more than 33 

milliseconds to process. This means the next frame obtained will have to wait to be 

processed, dropping the FR below 30 FPS. 

Non-detection methods of tracking performed well with respect to computation 

required. Motion tracking algorithm tested produced good results. However, it was only able 

to tracking anything in motion. It was also incapable of functioning when the mobile robot is 

in motion. Therefore the algorithm was used as a pre-step to tracking a given object. An 

object can be shaken in front of the robot and it will identify that object as the target, if the 

robot is in “find me mode”. The detected target is then taken over by the implemented optical 

flow algorithm. 

A combination of Harris corner detector, Lucas-Kanade, optical flow with median-

mean filtering algorithm produced the best results for tracking. The algorithm was capable of 

tracking any objects in 3D space. There were minimal restrictions to choosing the target. As 

long as it was an appropriate sized target and not completely smooth in texture, it can be 

tracked.  In addition, different controllers for stable and fast tracking were tuned and tested to 

help the tracking algorithm maintain a visual reference pass the original borders. 

The navigational ability of the robot in different environments was also tested. For 

MBN, two different algorithms were tested: modified A-star algorithm and GBNVF. A-Star 

algorithm sometimes collided with edges and didn’t always find the shortest path. The 
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GBNVF algorithm had a higher computational time since it calculated paths to the 

destination from every position of the map. GBNVF was also slightly faster based on the 

iterative steps.  In comparison to the simulated modified A-Star algorithm, the GBVF 

algorithm can be argued as the better option for this thesis.  

  Navigate to the target and avoid obstacles algorithms performed well in simulation. 

When the algorithms were retuned and tested on the actual robot, it did not perform as 

expected. A solution was to learn the robot’s behaviour to perform motion as desired by any 

simulated algorithm. As a solution, a FFANN was created using BP algorithm to update the 

weight. Once this network was trained, it was implemented as the intelligence engine that 

provided the correct PWM values. The performance of the intelligence engine was 

satisfactory for the few scenarios tested. More testes need to be done to show that the 

intelligence engine is capable of adapting and performing in different environments and 

situation.  

  There were difficulties and challenges encountered throughout this thesis. Some of 

which were due to the structure and design of the physical robot. Sometimes, one motor will 

receive much more power than the other, causing one wheel to not move at times. The screws 

became unsecured faster than expected. The robot body was designed in a way that was not 

easy to assemble and disassemble.  

 This thesis required topics from a variety of fields. One must be familiar with 

electrical engineering when dealing with the circuitry and embedded system design. The 

programing aspects, including tracking and navigation, can be considered as software 

engineering and computer science. This thesis also considered designing, building, and 

tuning controllers such as fuzzy, PID, and ANN. At some point, parallel computing was 

considered to optimize the implemented algorithms. However, it was abandoned due to time 

restrictions. Overall, this thesis required learning an array of topics and integrating them 

together. 
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5.2 Future Work  

The research and experiments done in this thesis covered many arrays of topics. Each 

topic can be focused on separately to optimize the implemented solutions or even find 

alternative solutions that may be more efficient for the task at hand.  

This thesis is intended for a mobile robot. Therefore, the entire algorithm should be 

transferred onto a more compact processing system or a micro-processing system. Mobile 

phones are capable of having up to eight cores, processing at more than 2.0 GHz each. 

Transferring the algorithm in a capable compact system will save a lot of power and the 

difference in weight.  

An additional algorithm can be implemented to map the local area as the mobile robot 

navigates around. 

Fragmentation and swarm optimization are good areas to look into for optimizing the 

optical tracking algorithm. 

Another area for improvement is parallelizing the entire algorithm. An algorithm 

capable of parallel computation can exploit the different processing cores available in the 

CPU or the General Purpose Graphical Processing Unit (GPGPU). 
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Appendix A 
Images Used for Optical Tracking 

Images Used for Testing SURF Performance: 

1.  

2.   
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3.   
 

4.   

5.  
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Appendix Chapter B 
Controller Design and Results  

B.1 Introduction  

The isolated closed-loop systems from the robot were perceived to be non-time 

dependant and linear. Therefore, the closed-loop system can be modeled in the Laplace 

domain as illustrated in Equation (B-1) [29]. 

      
        

                
 (B-1) 

Where H(s) is the closed-loop transfer function (output/reference), C(s) is the controller 

transfer function, P(s) is the transfer function of the plant to be controlled, and F(s) is the 

feedback transfer function from the output sensor. The closed-loop block diagram is 

displayed on Figure B-1. 

 

Figure B-1: Closed-loop system block diagram. 

 

B.2 Version One 

For version one of the robot, controllers were only tested for optical sensor tracking 

control for horizontal displacements. First, a proportional (P) controller was implemented, 

followed by a Proportional-Integral (PI) controller, and then a Proportional-Integral-

Derivative (PID) controller was implemented. Finally, a fuzzy controller was implemented. 

The object of the controller is to take the tracked/detected target and center it in the image 
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frame. A faster performing controller will aid the tracking algorithm by “cushioning” the 

velocity of the target’s motion. However, with an unstable controller, it will hinder the 

tracking performance drastically, so stability is emphasized. The feedback used is the 

observed location of the target from the optical sensor. The controller modeling and results 

obtained can be seen in the following section. It is also important to note that all tuning were 

done, except for the fuzzy controller, based on Table B-1 [33]. 

 

Table B-1: Effects based on gains from the different parameters 

Parameters Rise time  Over-shoot  Settling time SSE Stability 

Kp Decrease  Increase Small change Decrease Decrease 

Ki Decrease Increase Increase Eliminate Decrease 

Kd Small Change Decrease Decrease No change improvable 

B.2.1 Proportional (P) Controller 

Proportional controller is the simplest controller implemented. It takes the feedback 

from the optical sensor and compares to the reference location (160 pixels). The feedback is 

the horizontal center of the tracked target. The difference from the reference and the observed 

will then be multiplied by a proportional gain (Kp). Proportional term is modeled in Equation 

(B-2) and Equation (B-3). 

             (B-2) 

             (B-3) 

 With that given, an algorithm can be implemented in code to replicate this controller, 

refer to Figure B-2. The output will be the PWM sent out to the DSP. 
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Figure B-2: C# code of proportional controller. 

 

 The value for Kp was experimented with to obtain smooth tracking. The best results 

were with Kp =0.5.  The results obtained can be seen on the graph below, Figure B-3. The 

steady-state error was 5-10 pixels. 
 

 
Figure B-3: Proportional controller response for horizontal tracking. 

 

B.2.2 Proportional-Integral (PI) Controller 

In addition to the proportional term, an integral term was added in the hopes of 

eliminating the steady-state-error (SSE). The integral term here is the sum of the 
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public short Pcontroller(double refference, double feedBack, double Kp) 
{ 
    double feedBackError = refference - feedBack; 
    short outPut = (short)(feedBackError * Kp); 
 
    if (outPut > 100) { outPut = 100; } 
    else if (outPut < -100) { outPut = -100; } 
 
    return outPut; 
} 
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instantaneous error over time, multiplied by the integral gain. The new controller equation is 

illustrated in Equation (B-4) and Equation (B-5). 

               ∫       
 

 

 (F-4) 

             
      

 
 (F-5) 

 This controller was implemented through code; refer to Figure B-4. The output is sent 

to the DSP as the respective PWM value. 

 

 Figure B-4: C# code of proportional-integral Controller.  

 

Values for Kp, and Ki were experimented with; Kp=1.0 and Ki=0.01 provided the 

best possible result for this controller implementation. The results are illustrated in Figure B-

5. The SSE disappeared and the settling time was acceptable but, there was some overshoot.  

public short PIcontroller(double refference, double feedBack, double Kp, 
double Ki) 
{ 

float feedBackError = (float)(refference - feedBack); 
double P = feedBackError * Kp; 
 
I += feedBackError; 
 
double outPut = P + I*Ki; 
 
if (outPut > 100) { outPut = 100; } 
else if (outPut < -100) { outPut = -100; } 
 
return (short)outPut; 

} 
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Figure B-5: Proportional-integral controller response for horizontal tracking. 

 

B.2.3 Proportional-Integral-Derivative (PID) Controller 

The PI controller results were not ideal due to the over-shoot, so a derivative 

component was added to the controller to have a more stable convergence. The idea is to 

calculate the derivative of the error over time and multiply it by the derivative gain (Kd). The 

derivative component is added to the previous controller equation; refer to Equation (B-6) 

and Equation (B-7). 

               ∫       
 

 
    

 

  
      (B-6) 

             
      

 
           (B-7) 

The new PID equation is implemented in code as shown in Figure B-6.  
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Figure B-6: C# code of PID controller. 

 

From the most appropriate setting, Kp = 1.0, Ki = 0.01, and Kd = 0.05. The results are shown 

in Figure B-7. 

 
Figure B-7: Proportional-integral-derivative controller response for horizontal tracking. 
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public short PIDwithTime(double refference, double actual, double Kp, double Ki, 
double Kd, double dt) 
{ 
 
    errorPID = refference - actual; 
    double P = errorPID * Kp; 
 
    iPID += errorPID*dt; 
 
    double D = (errorPID - preError)/dt; 
 
 
    short outPut = (short)(P + iPID * Ki + D * Kd); 
 
    if (outPut > 100) { outPut = 100; } 
    else if (outPut < -100) { outPut = -100; } 
 
    preError = errorPID; 
 
    return outPut; 
} 
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 Compared to the other two controllers (P and PI), PID produced the best results for 

this isolated system. There was no noticeable SSE, and the convergence was fast and stable. 

One more controller that is unlike the last three was implemented to check if the system 

reacts any better to that.  

B.2.4 Fuzzy Logic Controller 

Fuzzy logic was first proposed in 1965 by Lotfi A. Zedeh from the University of 

California. In his paper, he proposed the idea of paradigm, which is rules and regulations that 

define the boundaries for successful problem solving. The first simulated fuzzy system was 

implemented in Japan in 1985 to control a rail way system. Unlike the classical controllers 

explored above, fuzzy logic controllers analyze analog input in terms of logical variables 

between 0 and 1 [14]. These logic values are based on “human language” rules which are 

converted into mathematical equivalent. Fuzzy logic controllers are very flexible in the sense 

that they can work with problems that have incomplete or inaccurate data.  

 A fuzzy controller consists of three major processes; fuzzifier, fuzzy inference engine 

(FIE), and defuzzifier. Figure B-8 illustrates a block diagram of this process. 

 
Figure B-8: Block diagram of a fuzzy control system. 

 

 Fuzzifier is responsible for taking a crisp input and converting it to a fuzzy input so 

that the fuzzy inference engine can process it. Fuzzifiers map a crisp point to a fuzzy set as 

illustrated in Figure B-9.   

          to a fuzzy set U   x 
Figure B-9: Fuzzifiers process. 
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There are different fuzzifiers that can be used to determine how the input is 

converted. For this controller, a singleton fuzzifier was used, which is defined in Equation 

(B-8).  

      {
         

        
 (F-8) 

The input membership function created for this controller using a singleton fuzzifier 

is shown in Figure B-10. 

 NB exists from -1 to -0.2. 

 NS exists from -1 to 0. 

 Z exists from -0.2 to 0.2. 

 PS exists from 0 to 1. 

 PB exists from 0.2 to 1. 

 
Figure B-10: Input membership function, version one. 

 

 The fuzzy input can now be sent to the fuzzy inference engine. FIE is a computing 

framework based on fuzzy set, and reasoning rule base [51]. Fuzzy rule base is a set of rules 

that are modelled as “If, then” layout. For example, if input1 is NB and input2 is PB, then 

output is PS. The FIE then combines all the rules using product, min, or max operations to 

predict the strength of each rule. This generates an output membership function accordingly 

as shown in Figure B-11.  
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 Figure B-11: Fuzzy inference engine block diagram. 

 

 For this controller, twenty five rules were applied based on two inputs, error (e) and 

change in error (ce), as shown in Table B-2. Based on the rules, an output membership 

function is created as shown in Figure B-12. Appendix B displays graph and performance of 

the inference engine based on the given rule base. 

 

Input fuzzy set 

1. Rule  

2. Rule 
…  
n. Rule 

 

Output   fuzzy set 

Defuzzifier 
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Table B-2: Rule base for fuzzy controller, version one. 

e/ce NB NS Z PS PB 

NB N N N Z P 

NS N N N Z P 

Z N Z Z Z P 

PS N Z P P P 

PB N Z P P P 

 

 
Figure B-12: Output membership function, version one. 

 

 Finally, a defuzzifier must be used to take the output fuzzy set and convert it to a 

crisp set. The defuzzifier used for this controller is center of average (COA) defuzzifier. It 

finds the center of all the areas and finds the average based on the weight of each area. It is 

also called center of area defuzzifier.  

 The entire controller can be modeled by Equation (B-9). 

 

               a  ……a           
                    …     

 
 

   
∑   ̅̅ ̅̅   ∏  

  
      

     
   

∑    ∏  
  

      
     

   

  (F-9) 

Where,                                       

                                                                   
                                                   (F-10) 
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 This controller is modeled in code (source code for this controller is provided at the 

end of this chapter) and tested for performance. The results were acceptable. The settling 

time was very fast and there were no overshoots, but the target did not center perfectly in the 

frame. There was a small SSE about 3 to 8 pixels. Figure B-13 displays the system response 

of the targeting system when fuzzy controller is used. 

 
Figure B-13: Fuzzy controller response of horizontal tracking, version one. 

 

 Results from horizontal position of the target (pixels) and the PWM (%) response 

over time are illustrated in Figure B-14. 

Figure B-14: Horizontal position and PWM over time using fuzzy controller, version one. 
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B.3 Version Two 

 Version two of the robot will need to control the horizontal and vertical position of 

the target. Based on the performance from version one, it can be concluded that either a PID 

or a fuzzy controller should be ideally implemented.  Given the completely different physical 

design, new parameters should be entered for satisfactory performance of the controllers.  

B.3.1 Horizontal Target Position Controller, Version Two 

 The PID controller was re-tuned for the new horizontal-camera controller. The new 

design has a higher load for the horizontal controller and due to the added length of the 

“camera stand height”; there were some vibrational noise at higher speeds. By experimenting 

with different parameters, satisfactory values were found for Kp, Ki, and Kd; Kp = 0.85, Ki = 

0.085, and Kd = 0.08. The step response of the controller is illustrated in Figure B-15. There 

was a small SSE of 3-5 pixels on average, which is acceptable for this implementation. 

 

 

Figure B-15: Horizontal position and PWM over time using PID controller, version two. 
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B.3.2 Vertical Target Position Controller, Version Two 

 Unique to this design, there is vertical position controller. This vertical freedom was 

controlled by a motor mounted vertically, with a worm gear. Though this design ensured that 

the vertical base is fixed when there is no power, it also required higher revolution speeds to 

create small displacement in the vertical position. Similar to the horizontal position 

controller, the PID controller was retuned until satisfactory results were obtained.  The 

results for the vertical position controller is illustrated in Figure B-16 with Kp = 1.5, Ki = 

0.01, and Kd = 0.07. 

 

Figure B-16: Vertical position and PWM over time using PID controller, version two. 
  

 The position used as the reference was the vertical midway point; 120 pixels. There 

was an acceptable SSE of 1-3 pixels. With the combination of the two controllers, the overall 

target centering performed well at high and low speeds.  At high speeds, there were small 

vibrational noises causing minor oscillation. At low speeds, the position controller was very 

stable and acceptable. 

 The speed controller was also a PID controller. It adjusts the maximum power 

delivered to the motor based on how far the robot is from an obstacle.  

-150

-100

-50

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

time (mS) 

Vertical Position Controller Step Response 

Target (pixels)

PWM (%)



106 | P a g e  

 

  

B.4 Additional Information (graphs and code for Fuzzy controller) 

Fuzzy Rule Based Output Graph (version one): 
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Fuzzy Inference Engine Process (version one): 

 
 

Fuzzy Controller Source Code (version one): 

double[] inputCenters = new double[5] { -100, -4, 0, 4, 100 }; 
double[] outputCenters = new double[3] { -20, 0, 20 }; 
 
double[] outputLimmitNB = new double[3] { -100, 20, 0 }; 
double[] outputLimmitZ = new double[3] { -20, 0, 20 }; 
double[] outputLimmitPB = new double[3] { 0, 20, 100 }; 
 
double prevValue = 0; 
public short fuzzyController(double currentValue, double reference) 
{ 
    double outputValue = (currentValue-reference)/1.6; 
 
 
    double iNB = inputNB(outputValue); 
    double iNS = inputNS(outputValue); 
    double iZ = inputZero(outputValue); 
    double iPS = inputPS(outputValue); 
    double iPB = inputPB(outputValue); 
 
    double[] array1 = { iNB, iNS, iZ, iPS, iPB }; 
 
    double changeInValue = (outputValue - prevValue) / 2; 
    prevValue = outputValue; 
    double max1 = 0; 
    double max2 = 0; 
 
    for (int i = 0; i < 5; i++) 
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    { 
        if (max1 < array1[i]) max1 = array1[i]; 
    } 
 
    double ciNB = inputNB(changeInValue); 
    double ciNS = inputNS(changeInValue); 
    double ciZ = inputZero(changeInValue); 
    double ciPS = inputPS(changeInValue); 
    double ciPB = inputPB(changeInValue); 
 
    double[] array2 = { ciNB, ciNS, ciZ, ciPS, ciPB }; 
 
 
    for (int i = 0; i < 5; i++) 
    { 
        if (max2 < array2[i]) max2 = array2[i]; 
    } 
 
 
    double[] centers = new double[5] { -1, -0.5, 0, 0.5, 1 }; 
    double[] cuCenter = new double[25] { -20, -20, -20, 0, 20, -20, -20, -20, 0, 20, - 

20, 0, 0, 0, 20, -20, 0, 20, 20, 20, -20, 0, 20, 20, 20 }; 
    double yStarN = 0; 
    double yStarD = 0; 
    short yStar = 0; 
 
    for (int i = 0; i < 5; i++) 
    { 
        for (int x = 0; x < 5; x++) 
        { 
            yStarN += cuCenter[x + 5 * i] * (array1[i] * array2[x]); 
            yStarD += (array1[i] * array2[x]); 
        } 
    } 
 
    yStar = (short)(-5 * (yStarN / yStarD)); 
 
 
    return yStar; 
} 
 
//Fuzzy membership set for 5-membership system INPUT 
double inputNB(double value) 
{ 
    if (value >= inputCenters[1]) return 0; 
    else return -(value + -inputCenters[1]) / (inputCenters[1] - inputCenters[0]); 
} 
double inputNS(double value) 
{ 
    if (value >= inputCenters[2]) return 0; 
    else if (value < inputCenters[2] && value > inputCenters[1]) return -(value) / 
(inputCenters[2] - inputCenters[1]); 
    else return (value + -inputCenters[0]) / (inputCenters[1] - inputCenters[0]); 
} 
double inputZero(double value) 



109 | P a g e  

 

  

{ 
    if (value <= inputCenters[1] || value >= inputCenters[3]) return 0; 
    else if (value < inputCenters[2] && value > inputCenters[1]) return 
((inputCenters[2] - inputCenters[1]) + value) / (inputCenters[2] - inputCenters[1]); 
    else return (inputCenters[3] - value) / (inputCenters[3] - inputCenters[2]); 
} 
double inputPS(double value) 
{ 
    if (value <= inputCenters[2]) return 0; 
    else if (value < inputCenters[3] && value > inputCenters[2]) return value / 
(inputCenters[3] - inputCenters[2]); 
    else return (inputCenters[4] - value) / (inputCenters[4] - inputCenters[3]); 
} 
double inputPB(double value) 
{ 
    if (value <= inputCenters[3]) return 0; 
    else return (value - inputCenters[3]) / (inputCenters[4] - inputCenters[3]); 
} 
 
 
 
//Fuzzy membership set for system OUTPUT 
double outNB(double value) 
{ 
    if (value >= outputLimmitNB[2]) return 0; 
    else if (value >= outputLimmitNB[1] && value < outputLimmitNB[2]) return -(value / 
(outputLimmitNB[2] - outputLimmitNB[1])); 
    else return 1; 
} 
 
double outZero(double value) 
{ 
    if (value <= outputLimmitZ[0] || value >= outputLimmitZ[2]) return 0; 
    else if (value < outputLimmitZ[1] && value > outputLimmitZ[0]) return (value + 
outputLimmitZ[1] - outputLimmitZ[0]) / (outputLimmitZ[1] - outputLimmitZ[0]); 
    else return (value) / (outputLimmitZ[2] - outputLimmitZ[1]); 
} 
 
double outPB(double value) 
{ 
    if (value <= outputLimmitPB[0]) return 0; 
    else if (value <= outputLimmitPB[1] && value > outputLimmitPB[0]) return (value / 
(outputLimmitPB[2] - outputLimmitPB[1])); 
    else return 1; 
} 
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Appendix C 
Navigation Maps and Code 

Original Maps: 
Tree-road 

 
 

Maze 

 

Simple-line

 
 

Simple-circle
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Modified A-Star Navigational paths from Table 6-1:  
Tree Road: 

 
Start (23,115), Destination (115,15) 

 
 

Start (23,115), Destination (60,11) 

 
 

Start (115,115), Destination (20,20) 

 

Start (75,20), Destination (20,115) 
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Maze: 

 
Start (32,100), Destination (115,20)

 
 

Start (23,115), Destination (60,11)  

 

Start (115,115), Destination (20,20) 

 

Start (20,20), Destination (20,115) 
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Simple Line: 

 
Start (30,30), Destination (115,115)

 

 

Start (30,30), Destination (115,75)

 

Start (15,100), Destination (20,20) 

 

Start (15,100), Destination (115,32)
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Simple Circle: 

 
Start (15,100), Destination (115,35) 

 

 

Start (50,115), Destination (50,20) 

 

Start (115,16), Destination (20,75)

 

Start (20,20), Destination (115,115)
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GBNVF source code: 
function path = GApotentialField(pos,des,gridDim) 
global Roi; 
disFromTarget = zeros(gridDim, gridDim, 'int8'); 
selected = zeros(gridDim, gridDim, 'int8'); 
dirPath = zeros(gridDim, gridDim, 'int8'); 

  
xd=des(2); 
yd=des(1); 

  
%calcluate navigational steps from destination 
disFromTarget(xd,yd)=1; 
disFromTarget(xd-1,yd)=2; 
disFromTarget(xd+1,yd)=2; 
disFromTarget(xd,yd-1)=2; 
disFromTarget(xd,yd+1)=2; 
disFromTarget(xd-1,yd+1)=3; 
disFromTarget(xd+1,yd+1)=3; 
disFromTarget(xd-1,yd-1)=3; 
disFromTarget(xd+1,yd-1)=3; 

  
selected(des(2),des(1))=1; 

  
i=1; 
j=1; 
count=0; 
while(1) 
 if(Roi(i,j)==4) 
    if(selected(i,j)~=1) 
        if(disFromTarget(i,j)~=0)  
          selected(i,j)=1;  
          for y = 1:3 
            for x = 1:3 
                if(disFromTarget(i+x-2,j+y-2)==0) 
                    if(y==2)&&(x~=2) 
                        disFromTarget(i+x-2,j+y-2)=disFromTarget(i,j)+1; 
                    elseif(y~=2)&&(x==2) 
                        disFromTarget(i+x-2,j+y-2)=disFromTarget(i,j)+1; 
                    end  
                end 
            end; 
          end 

  
        end 
    end 
 else 
     selected(i,j)=1; 
     disFromTarget(i,j)=100; 
 end 

  
   if(i==gridDim) 
       if(j==gridDim) 
           j=1; 
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       end 
       i=1; 
       j=j+1; 
   else 
       i=i+1; 
   end 
   count=count+1; 
   if(count==(6000)) 
      break;  
   end 
end 
%end calc. navigation  

  
%generate vector field 
global vecField; 
global rPath; 
vecField = zeros(gridDim, gridDim,2,'double'); 
for j=1:gridDim 
    for k=1:gridDim 
        if(disFromTarget(k,j)~=100) 
            xL=double(disFromTarget(k-1,j)); 
            if(xL==100.0)xL=double(disFromTarget(k,j)+1.1);end 
            xR=disFromTarget(k+1,j); 
            if(xR==100.0)xR=double(disFromTarget(k,j)+1.1);end 
            hor=double(xL-xR); 

             
            xU=disFromTarget(k,j-1); 
            if(xU==100.0)xU=double(disFromTarget(k,j)+1.0);end 
            xD=disFromTarget(k,j+1); 
            if(xD==100.0)xD=double(disFromTarget(k,j)+1.0);end 
            ver=double(xU-xD);  

             
            vecField(k,j,1) = (atan2(ver,hor)); 
            vecField(k,j,2) = hypot(hor,ver); 

             
        end 
    end 
end 

%end vector field. 

 
rPath=disFromTarget; 

return ; 
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GBNVF Navigational paths: 
Tree Road: 

 
Start (23,115), Destination (115,15) 

 
 

 

Start (23,115), Destination (60,11) 

 
 

Start (115,115), Destination (20,20) 

 

Start (75,20), Destination (20,115) 
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Maze: 

 
Start (32,100), Destination (115,20) 

  
 

Start (23,115), Destination (60,11) 

 

Start (115,115), Destination (20,20) 

 

Start (20,20), Destination (20,115) 
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Simple Line:  

 
Start (30,30), Destination (115,115) 

 
 

Start (30,30), Destination (115,75) 

  

Start (15,100), Destination (20,20) 

 

Start (15,100), Destination (115,32) 
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Simple Circle: 

 
Start (15,100), Destination (115,35) 

 

 

Start (50,115), Destination (50,20) 

 

Start (115,16), Destination (20,75) 

  

Start (20,20), Destination (115,115) 
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Appendix Chapter D 
Optical Sensor 

D.1 Introduction   

The optical sensor is the major sensor involved in this project. It is intended that the 

robot visually observes the world around it and understands it similar to how humans 

perceive their respective surroundings.  Humans perceive combinations of the three primary 

colours; red, yellow, and blue. The ability of color vision is possible from the cells in the 

eyes called cones. There are three types of cones and each one activated by different 

wavelengths of light. When a spectrum of visual light hits one’s eyes, the three cones relay a 

message to the brain which then combines the signals into one perception. This perception is 

the sense humans refer to as color vision. Each cone is able to detect approximately one 

hundred shades of the color, thus enabling humans to see one million colours. Some 

scientists argue that humans can see more shades but most agree that the visual wavelength is 

from 700 nanometers (nm) to 400 nm. 

A simple RGB camera will output an array of three values per pixel; the intensity of 

red, green, and blue in every pixel. This will solve the problem of perceiving colours of the 

world like any humans.  However, humans observe the world in three dimensions and depth 

perception is absolutely important when navigating.  This chapter explores the possibilities in 

choosing an appropriate sensor that is capable of capturing colour and relative depth 

information from the surrounding. Topics explored in the chapter consist of stereo-vision and 

infrared cameras.  

D.2 Stereo Vision 

          Stereo vision is the process of recovering depth from camera images by comparing two 

or more views of the same scene.  Binocular stereo is most appropriate for this case. It uses 

two images of the same scene that are separated horizontally. It then calculates the 

displacement of each pixel with respect to the displacement of the two cameras, which will 

output a depth value for that pixel. Although this is a good method to obtaining 3-D point 

cloud data and it is relatively cheap to implement, it will have to be calibrated almost every 
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time there is a reset and environment change. There is also processing overhead from the two 

frames of the same scene. Another solution is using infrared (IR) enabled cameras. 

 

D.3 Infrared Enabled Cameras 

           Most Infrared enabled cameras (IRC) are able to detect infrared portion of the 

wavelength. They are able to convert infrared energy into electronic signal which can then be 

processed and viewed. Though infrared cameras are generally used to identify the level of 

heat present in an area, in the recent past, IRCs have been modified and used as a device that 

is capable of measuring distance/displacement. Many are able to detect depth for every pixel 

with very little processing and calibration needed. There are three IRC that seemed suitable 

and most applicable for the task at hand. Prime Sense Sensor (PSS), Intel’s Creative Camera 

(ICC), and Microsoft’s Kinect Sensor, each of which has user friendly software support and 

developmental kits intended for entertainment and research purposes. These three sensors are 

compared in the Table D-1 with system specifications and available Natural User Interface 

(NUI) libraries [44,8]. 
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Table D-1: Optical infrared sensor comparison 

DEVICES PRIME SENSE 
SENSOR 

INTEL’S 
CREATIVE 
CAMERA 

KINECT SENSOR 

Frame rate 60 frames per 
second (FPS) 

maximum. 

30 frames per 
second (FPS) 

maximum. 

30 frames per second 
(FPS) maximum. 

Colour camera 
Resolution  

640x480 pixels at 
30 FPS. 

1280x720 pixels at 
30 FPS. 

640x480 pixels at 30 
FPS or 1280x960 
pixels at 12 FPS. 

Depth Camera 
Resolution 

640x480 pixels at 
30 FPS. 

320x240 pixels at 
30 FPS. 

320x240 pixels at 30 
FPS. 

Depth range 0.8m – 3.5m 0.15m – 0.99m 0.8m - 4m 

Horizontal angle 
range 

57.5 degrees (°) 73 degrees (°) 
diagonal field view  

57 degrees (°) 

Vertical angle range 45 degrees (°) - 43 degrees (°) 

Supported Operating 
systems 

Windows, Linux. Windows. Windows 

Available major SDK 
libraries 

OpenNI OpenNI Microsoft Kinect 
SDK, and OpenNI.  

Other Comments Two microphones. 
Low power 

consumption. 

Two microphones. 
Smaller in size 
comparably. 

Four 24-bit audio 
microphones. 

Accelerometer. 
Vertical tilt motor. 

 

Each device has its own advantages and disadvantages, but with the comparison of 

the three, it is evident that PSS and Kinect Sensor will be more applicable for a mobile robot. 

PSS is impressive with its more accurate 640x480 resolution depth image at 30 FPS and low 

power consumption. Having accurate 3D sensory as well as low energy consumption are very 

important factors for a mobile robot. Kinect has a built in accelerometer as well as a vertical 

tilt motor. It also has 4 effectively placed microphones which can be used for better sound 

triangulation. At this stage, the choice would be the prime sense sensor. However, the biggest 

difference in hardware comes from the software support available.  Microsoft continuously 
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had great driver support and a growing library dedicated for the Kinect Software 

Development Kit (SDK). Do to all the support provided by Microsoft, the Kinect SDK is 

easier to implement when compared the PSS. Therefore the device used for this project was a 

Microsoft Kinect sensor. 

D.4 Microsoft Kinect Sensor 

D.4.1 Introduction to Kinect 

          The Microsoft Kinect was first available for consumers in November 2010 as an 

accessory to Xbox360, a video game console. In an E3 conference, 2010, Microsoft 

announced and advertised the Kinect as hands-free controller that will revolutionize the 

gaming industry. Soon after its release, an online community reverse engineered the USB 

data stream and released open-source software enabling Kinect to be used on any computer8. 

In June 2011, Microsoft released a software development kit for the Kinect, which then 

became a tool that anyone can use. Over the years to follow, the Kinect SDK became well 

supported and user friendly; giving births to many creations that Microsoft never imagined. 

The Kinect has multiple sensors embedded with in it; IR emitter, colour sensor, IR detector, 

four microphones, tilt motor, and a 32-bit ARM Microprocessor. Figure D-1 illustrates the 

placement of these sensors, image from Microsoft website. 

 

 

 

 

 

 

 

Figure D-1: Sensors within the Kinect.
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D.4.2 Retrieving Depth Information from the Sensors   

          To achieve depth, combinations of sensors work in synchronous. The IR emitter 

radiates a 2D plane of IR pattern. The CMOS camera attached is fitted with an IR-pass filter 

to simultaneously capture that IR image. The pattern is shown in Figure D-2(a) and D-2(b) 

[44]. The embedded ARM-processor then calculates the distance by comparing the pattern 

with a pre-stored, reference pattern at a known distance. If a projected IR speckle’s distance 

that is smaller or larger than the reference plane, the position of the IR speckle will be shifted 

in the direction of the perspective center in between the emitter and the IR-pass camera [8]. 

These shifts are measured for all speckles by image correlation procedure. For each pixel, the 

disparity corresponding will retrieve the displacement as shown in Figure D-3 [11]. 

 

(a) 

 

(b) 

Figure D-2: (a) Shows the speckle IR patterns captured by the camera inside. (b) Shows a close-

up of the IR pattern emitted by the sensor. 
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Figure D-3: (a) IR pattern is projected a scene with an object where the pattern on the object is 

slightly shifted. (b) Output disparity image used to calculate displacement. 

 

         The displacement outputted by the sensor is not the actual distance away from the 

sensor; it is the estimated displacement from the sensor plane as illustrated in Figure D-4 

[18]. This allows the 3D point cloud to not be perspective-centric; instead, the data is 

organized in a 3D plane. This also ensures that the objects in the captured 3D space in not 

obscured due to perspective like a panoramic image. 
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Figure D-4: The interpretation of how the Kinect sensor perceives its displacement from an 

object. The depth value obtained is that of the displacement from the sensor plane 

and not the actual distance from the sensor. 

 

D.4.3 Mathematical Model of Estimating Depth 

          The mathematical model can be illustrated and derived from Figure D-5. All the 

variables used in the derivations are also labeled in Figure D-5. The arbitrary object on the 

object plane is labeled Ob and the measured disparity by the sensor is labeled d. For 

simplicity of explanation of the concept, this illustration is presented in 2-dimentions, 

ignoring the height dimension or z-axis. The x-axis is parallel to the sensor plane and the y-

axis orthogonal to sensor plane.   
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Figure D-5: A model created to help illustrate how Kinect calculates depth for an arbitrary 

object point. 

       Using triangulation, the following two Equations; Equation (D-1) and Equation (D-2) 

can be obtained from Figure D-5. 

 

 

          

 

        

 
Ob   Point on Object on the object plane. 
R     Point on reference plane corresponding to the object. 
IRDS   Infrared depth sensor. 
IRE   Infrared emitter. 
H   Distance between the IR emitter and the IR detector. 
d  Observed disparity in image space. 
D  Displacement of Ob with respect to R. 
yOb   Distance to Ob on object plane. 
yR   Distance to R on reference plane. 
f   Focal length of the IR camera. 
 

𝐷

𝐻
  

𝑦𝑟 𝑦𝑂𝑏

𝑦𝑟
                                                         (D-1) 

𝑑

𝑓
  

𝐷

𝑦𝑂𝑏
                                                            (D-2) 
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Substituting Equation (D-1) into (D-2) and solving for yOb will yield the Equation (D-

3). 

 

 
 

 

          yOb is the estimated distance of the object plane from the camera plane. This can be 

done simply by the embedded processor for every pixel and output a 3D point cloud to the 

USB stream. Now, let’s take a look at how this information is received and processed on the 

main processor side.  

 

2.4.4 Processing the Information from the Kinect 

       Kinect can be set-up to be synced with the computer by C/C++ or C# coding 

languages when using Microsoft Kinect SDK. This project was coded in C# and the compiler 

used was Microsoft Visual Studio.  

When windows loaded event is activated (program is started), Kinect must be started 

and the different functionalities that is to be used must be enabled as shown in Figure D-6. 

Note that the “try, catch” is used to close the program if a connection between the computer 

and the Kinect is not achieved. Also, the “AllFramesReady” event handler is used at the end 

to go to function “kinect_ AllFramesReady” when frames are available from all the active 

streams of the Kinect. This will loop until the program is closed. 

𝑦𝑂𝑏   
𝑦𝑅

   
𝑦𝑅𝑑

𝑓𝐻

                                                       (D-3)       
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Figure D-6: Initial code to activate and sync the Kinect sensor and its active streams. 

 

“kinect_AllFramesReady” function is in charge of capturing the colour frame and the depth 

frame; refer to Figure D-7 and Figure D-8 for the actual code. Note that “using” statement is 

used for colour frame and depth frame to dispose of the object once finished.  Also, both sub-

functions check to see if the there is a colour frame or a depth frame to be processed.  

 

          To obtain the colour frame, first an empty array of bytes are created and filled with 

pixels. A stride function is used to scale accordingly since each pixel has 4 bytes; blue, green, 

red, and transparency. Using the information such as frame width, height, pixel format, 

stride, and actual array of pixels, a “bitmap-source” can be created. It is then converted to 

simple bitmap, since bitmaps are much easier to use for image processing and is compatible 

with “EMGUCV” (image processing library). The image is stored as a BGR, byte, Image 

data. 

       private void Window_Loaded(object sender, RoutedEventArgs e) 
       { 
       
            try 
            { 
                kinectSensor = KinectSensor.KinectSensors[0];    
                kinectSensor.Start(); 
            } 
            catch (System.IO.IOException)                        
            { 
                return; 
            } 

            
kinectSensor.ColorStream.Enable(ColorImageFormat.RgbResolution640x480
Fps30); 
            
kinectSensor.DepthStream.Enable(DepthImageFormat.Resolution320x240Fps
30); 

 
kinectSensor.AllFramesReady += new 
EventHandler<AllFramesReadyEventArgs>(kinect_AllFrameReady); 

 
       } 
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Note that “Image” (Image<Bgr, byte>) is a class in EMGUCV library, which is used for 

image processing. It is a wrapper of OpenCV library to be used in C# and other .NET 

compatible languages. 

 

 
Figure D-7: Obtaining and storing the image frame as a usable colour bitmap. 

 

          To obtain the depth frame and creating a meaningful depth image, a little bit more 

processing needs to be done. First the empty byte array is filled with raw depth data received 

from the Kinect sensor and a colour byte is generated. To generate the colour bytes 

corresponding to distance, a colour index is created. The depth and colour index is looped 

through one at a time to obtain the depth for every pixel and colour code it to a meaningful 

value. Figure D-8 shows an example where pixels are coloured red or green depending on 

their range. Similar to color image, a bitmap is created of these pixels and stored as BGR, 

byte, Image data.  Now both, the colour and depth data from the Kinect is available for 

further processing. Note that Figure D-8 is just a sample code of how to obtain and 

manipulate the depth pixel data. 

using (ColorImageFrame colorFrame = e.OpenColorImageFrame()) 
{ 
    if (colorFrame == null) 
    { 
        return;  
    } 
 
    byte[] cPixels = new byte[colorFrame.PixelDataLength]; 
    colorFrame.CopyPixelDataTo(cPixels);                   
 
    int stride = colorFrame.Width * 4                 
 
    image1.Source = BitmapSource.Create(colorFrame.Width, colorFrame.Height, 96,      

96, PixelFormats.Bgr32, null, cPixels, stride 
                 
 
    Image<Bgr, byte> colorImage = new Image<Bgr, 

byte>(BitmapFromSource(BitmapSource.Create(colorFrame.Width, colorFrame.Height, 
96, 96, PixelFormats.Bgr32, null, cPixels, stride))); 

                               
} 
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Figure D-8: Obtaining and storing the depth frame as a usable colour bitmap. 

       using (DepthImageFrame depthFrame = e.OpenDepthImageFrame()) 
       { 
           if (depthFrame == null) 
           { 
                return;  
           } 
           depthFrame.CopyPixelDataTo(rawDepthData);  
           byte[] dPixels = GenerateColoredBytes(rawDepthData); 
 
           int stride = 320 * 4; 
           Image<Bgr, byte> depthImage = new Image<Bgr, 

byte>(BitmapFromSource(BitmapSource.Create(320, 240, 96, 96, 
PixelFormats.Bgr32, null, dPixels, stride))); 

                depthBox.Image = depthImage; 
            } 
        } 
 
        private byte[] GenerateColoredBytes(short[] rawDepthData) 
        { 
            Byte[] pixels = new byte[240 * 320 * 4]; 
 
            const int blueindex = 0; 
            const int greenindex = 1; 
            const int redindex = 2; 
            for (int depthIndex = 0, colorIndex = 0;                                        

depthIndex < rawDepthData.Length && colorIndex < pixels.Length;  
                depthIndex++, colorIndex += 4)                                                            

{ 
 
                int depth = rawDepthData[depthIndex] >> 

DepthImageFrame.PlayerIndexBitmaskWidth; 
 
                 
                if (depth > minDepthDistance && depth < maxDepthDistance) 
                {    
                    pixels[colorIndex + blueindex] = 0; 
                    pixels[colorIndex + greenindex] = 255; 
                    pixels[colorIndex + redindex] = 0; 
                } 
                 
                else if (depth > maxDepthDistance) 
                {    
                    pixels[colorIndex + blueindex] = 0; 
                    pixels[colorIndex + greenindex] = 0; 
                    pixels[colorIndex + redindex] = 255; 
                }} 
            return pixels; 
        } 
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D.5 Comments  

       In this chapter, different solutions were explored.  Stereo and non-stereo solutions 

were analyzed to find the best suitable solution for this project.  It was evident that an 

infrared optical sensor may be better suited for this project. Then some suitable infrared 

devices were compared. Of the three analyzed sensors, both the Microsoft Kinect and the 

prime sensor seemed to be the obvious choice, since Intel’s Creative Camera can only 

process depth for up to 0.99 meters. 

 The Microsoft Kinect was the best possible solution available since it had great 

driver and SDK support.  The Microsoft Kinect was then examined through hardware and 

sensor placement. From the placements of the embedded sensors, a theoretical understanding 

was created on how the Kinect retrieves depth information. This theory was further 

reinforced with a mathematical model and was illustrated by a diagram with an arbitrary 

object. The attention was shifted towards the main processing end. Code examples were 

given to show a step by step process of how to activate Kinect using C# as well as to 

illustrate a more detailed understanding of how the color image and the depth image is 

received and processed into useable information to be further processed in the future. 
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Appendix Chapter E 
History of Robot Design and Assembly   

E.1 Introduction 

This chapter consists of information as to how the robot was constructed; hardware 

analysis, sensor placements, processors used, power management, communication, and 

reasoning behind over-all assembly. It is important to have a well-constructed machine that is 

designed to perform flexible tasks. It should be easy to make an upgrade and troubleshoot 

when necessary. This will ensure that the machine is constantly adaptable and up to date with 

hardware. 

 Majority of the robot was assembled by the previous student working on this project, 

Allan Pan. Many additional modifications were made to ensure better performance, and have 

additional degrees of freedom. Completely different algorithms were implemented and tested 

with the new modifications. 

E.2 Robot Frame 

The main frame is constructed with aluminum. The belt connecting the front wheel to 

the back wheel is constructed with rubber for grip and flexibility. The overall shape of the 

robot is rectangular prism. A better design would have been a cylindrical frame as it is less 

likely to get stuck in corners. It is also easier to manoeuvre around obstacles and jagged 

areas. However, modifications to the overall frame were not made at this time.  The frame 

can be seen on Figure 3-1, version one of the robot. The dimensions of the frame are 0.43m 

by 0.15m by 0.29m. The wheels are extended a little past the front so that the robot will be 

able to climb over any small terrain with ease. The overall design is inspired from an 

armoured, tank. 
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Figure E-1: Robot, version one. 

E.3 Motors and Sensors 

E.3.1 Version One  

All the parts used in version one of the robot are listed in Table E-1.  

Table E-2 Parts used in version one. 

Part Name Description   Voltage (V) 

Maxon Motor T-05  This motor was used to control 
horizontal rotation of the Kinect.   

12 

2-Stock motors (no 
name) 

These motors were received with the 
original frame. They are used to control 

both wheels.   

24 

Potentiometer To estimate the direction that the Kinect 
is facing. 

3.3 

TI-Digital signal 
processor (DSP) 

The microcontroller that controls the 
motor driver and the communication 

from the on board computer. 

3.3 

Kinect sensor with 
ARM DSP 

Main sensor used for colour, depth, and 
sound information, 

12 

Sonar sensor  To identify obstacles at close ranges, 3.3 
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E.3.2 Version Two  

All the parts used in version two of the robot are listed in Table E-2.  

Table E-3 Parts used in version one. 

Part Name Description   Voltage (V) 

Maxon Motor T-05  This motor was used to control 
horizontal rotation of the Kinect.   

12 

2-Maxon 343100 
Motors  

More efficient motors from the previous 
motors. They are used to control both 

wheels.   

12 

Maxon 343100 Motor This motor is used to control the vertical 
rotation of the Kinect. 

12 

2-Potentiometer To estimate the directional angle that the 
Kinect is facing (horizontal and vertical). 

3.3 

TI-Digital signal 
processor (DSP) 

The microcontroller that controls the 
motor driver and the communication 

from the on board computer. 

3.3 

Kinect sensor with 
ARM DSP 

Main sensor used for colour, depth, and 
sound information, 

12 

 

E.4 Operating Computer System 

For both versions of the robot, one Lenovo Y570 laptop was used as the main 

computing and decision making system. The system specifications are listed below. Note that 

this is the system that all simulations and tests are performed on unless otherwise stated.  

 Central processing unit (CPU)  Intel Core i7-2670QM CPU @ 2.20GHz       
.                                                           Boost @ 2.99GHz. 

• Random access memory (RAM)     8.00 GB. 

• Graphics processing unit (GPU)     NVIDIA GeForce GT 555M. 

• 64-bit operating system, windows 7. 



137 | P a g e  

 

 

E.5 Assembly Analysis and Reasoning 

E.5.1 Version One  

Version one was derived from the original version zero, constructed by Allan Pan. 

Version zero had a stationary Kinect camera attached towards the front of the robot. It had an 

on board, small factor desktop as the main processing unit. The desktop had an ITX 

motherboard with Intel Core 2 Quad mobile CPU. It also had a CUDA enabled GeForce 530 

GPU.  

One of the main changes from version zero to version one was the placement of the 

Kinect sensor and a base that is able to rotate horizontally. Figure E-1 shows the sensor 

placement. This additional degree of freedom enabled the robot to be able to track targets 

without having to turn the entire frame. Not having to turn the entire frame saves power and 

makes it less likely to make contact with an obstacle while trying to track a target. The 

performance of the horizontal-rotary tracking system can be found on Chapter F: Controllers.  

Since the Kinect sensor can only detect depth beyond 0.8m; a sonar sensor was 

mounted to the front of the robot. The sonar sensor was used as a backup sensor for obstacles 

within close proximity. The original desktop computer was removed and replaced with a 

laptop (refer to Section E.5). The laptop had better overall performance comparatively 

through CPU, GPU, and RAM upgrades. Most importantly, the laptop had a portable battery 

attached. This eliminates the wire that must be connected to the desktop for power. 

E.5.2 Version Two 

The major modification from version one was the placement of the optical sensor. It 

was moved to the back of the robot and at a much higher plane. This will help with the fact 

that Kinect cannot measure depth under 0.8m. The robot will be able to identify obstacles at 

closer distance, eliminating the use for the sonar sensor. Also, having the Kinect at the back 

will ensure that, when in forward motion, the first point of contact will be the tank wheels. 

This makes it easier to manure over terrain and small obstacles.  
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The horizontal rotary joint was re-designed and attached. Initially, it was designed to 

be closer to the Kinect, near the top. That design was re-engineered to fit near the bottom as 

this gave the Kinect more stability and less oscillation. In addition, a vertical rotary base was 

attached to give the robot an additional freedom. The design focused on implementing the 

motor in a vertical alignment, in the center, instead of to the side. This is done to have better 

balance and stability in motion while having less vibration. Figure E-2, (b) display’s the 

vertical rotary joint and Figure E-2, (c) display’s the new version of the horizontal rotary 

joint. All of the power was rewired to one power supply; a battery is used at this connection 

when navigation testing done.  

The original motors were replaced with more efficient motors, Maxon 343100. These 

motors are smaller in size comparatively and able to produce a listed 22 watts of power. 

Figure E-2, (a) display’s the second version of the robot.  

 

 

Figure E-2: Robot, version two. (a) View of the entire model. (b) Vertical rotary joint with a 

potentiometer. (c) Horizontal rotary joint with a potentiometer. 

 

    
(b)                                          (b)                                          (c) 
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E.6 Communication 

There are two stages of communication implemented. One is the communication 

between the central processing computer (CPC) and the DSP, and the communication 

between the DSP and the motor drivers. Communication between CPC and DSP is achieved 

serially via RS232 connector. Commands from the CPC are initially converted internally to a 

16-byte array and sent asynchronously to the DSP; which is then decoded accordingly by the 

DSP to perform a certain task. 

The First byte of every transmission is an ASCII character. The characters are either 

U: upper limit, L: lower limit, S: start, P: pause and R: run. The second and third bytes are 

for pulse width modulation zero (PWM0), upper and lower byte respectively. The fourth and 

fifth bytes are for PWM1 upper and lower byte respectively. This order follows until PWM5 

at eleventh and twelfth byte. Thirteenth byte is designated for Timeout. Finally, fourteenth 

and fifteenth bytes are assigned to cyclic redundancy check (CRC) upper and lower bytes. 

Initially a command with “U” with 0xFFFF and “L” with 0x0000 should be sent to the DSP 

to set the upper and lower limits. An array of bytes is sent with the command code “S” to 

start the internal timer. Now the DSP is initialized and set to receive commands that will 

control the robot. 

When an array with “R” command is received; the PWM values and direction of each 

PWM values are sent to the relay that controls the motors. When the command “P” is sent, 

internal timer is stopped and the relay circuit is powered off. 
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