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Abstract. In this paper a numerical analysis was performed developing low-resolution spherical harmonics 
(LRSH) models in order to describe particle shapes. The potential of LRSH, limited by the expansion degree 
L ≤ 3, to describe quasi-regular particle shapes was explored. The term “quasi” is used hereafter to indicate 
the monomeric, almost regular shaped, particle described by a single continuous function. This approach 
reflects the shape of a major part of soil minerals. It was shown, that even the simplest case of the suggested 
low-resolution harmonics technique with L = 1 showed sufficient accuracy. The main drawback of the sug-
gested approach was that the low-resolution harmonics yield particle shapes with nearly sharp angles, there-
fore, enhanced analysis of local surface curvatures becomes necessary. An application using quasi-ellipsoidal 
particles is enclosed.
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Introduction

Characterization of geomaterials and soils plays an 
important role in many areas of civil and geotechnical 
engineering. It is obvious that these materials should 
be treated as discrete elements, and that the mechani-
cal properties of these materials depend on properties 
of individual particles, thereby, some of them such as 
packing density, flowability, dilatancy, crushability, 
friction, etc., are highly contributed by the particle 
shape. The influence of the particle shape in the be-
haviour of aggregated materials is considered by San-
tamarina and Cho (2004), Kock and Huhn (2007) and 
Cleary (2008). Basic concepts and different measures 
used to classify particle shapes are given in review pa-
pers (Nouguier-Lehon et al. 2003; Blott, Pye 2008; Bul-
lard, Garboczi 2013; Parafiniuk et al. 2014). 

It is obvious that methods that accurately describe 
non-spherical shapes are still needed for both tech-
nological and computational purposes. On the other 
hand, accuracy is not the unique requirement, dif-
ferent approaches based on the compromise between 
accuracy and simplicity have been proposed for the 
description of particle shapes, especially for its appli-
cation with the Discrete Element Method (DEM). A 
critical review of recent developments in DEM with 
advances in the formulation and the implementa-
tion of particle shape models is presented by Lu et al. 
(2015), where properties of the simplest shapes (el-
lipsoids, super-quadrics, polyhedrons and composite 
multi-sphere models) are reviewed. Concerning com-
plex shapes, broad variety of universal methods rang-
ing from purely numeric discrete function representa-
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tion (DFR) (Johnson, Williams 2009) up to analytical 
continuous function representation (CFR) methods 
are also explored (Lu et al. 2015).

In many situations, an analytical description of 
particles is more advantageous compared to compos-
ite or purely numeric approaches. Garboczi (2002) was 
probably the first employing the spherical harmonics 
(SH) technique to mathematically describe in three-
dimensions particle shapes applying it to aggregates 
used in concrete. A review of computational methods 
including the radius method, gradient method, Fourier 
series and spherical harmonic series was presented by 
Masad et al. (2005). In this study, a number of compu-
tational methods were utilized to describe the surface 
characteristics (form, angularity and texture) of parti-
cles. Subsequently, these methods were used to analyse 
images captured by non-destructive X-ray computer 
tomography. The SH method was successfully applied 
in the description of sand (Zhou et al. 2015) or even of 
quite specific lunar regolith particles (Garboczi 2011). 
Application of SH to describe agricultural grains is 
given in Radvilaitė et al. (2016). Illustrations of very 
complex shapes can be found in Mousa et al. (2008) 
while various shape indicators described in terms of 
SH were considered in Feinauer et al. (2015).

The major part of the above mentioned appli-
cations addressed the suitability of SH technique to 
precisely describe particle shapes. Desired accuracy 
of semi-analytical SH approximation is controlled by 
a suitable value of expansion degree L. It was found, 
however, see Feinauer et al. (2015), Zhou et al. (2015), 
that essential characteristics of the shape geometry 
are captured by a limited number of expansion terms, 
while the residual terms are responsible for the de-
tailed description of the particle surface. Basic fea-
tures of spherical harmonic modelling methodology, 
addressing the applicability of low-resolution spherical 
harmonics to describe symmetric particles with sharp 
edges shape were considered by Radvilaitė et al. (2017).

This paper addresses the development of numeri-
cal tools based on low-resolution spherical harmonics 
(LRSH) models limited by the expansion degree L ≤ 3 
that are applied to description of quasi-quadric shapes. 
The term “quasi” is used hereafter to indicate the mon-
omeric almost regular shaped particle described by the 
single continuous function. The suitability of the LRSH 
to describe the shape of quasi-ellipsoids including an 
evaluation of normal contacts is demonstrated.

1. Theoretical background

Spherical harmonics (SH) represent a complete set of 
angular functions in spherical coordinates, where the 
position of a point is defined by the polar radius r and 
two polar and azimuthal spherical angles, θ and φ, re-
spectively. Thereby, azimuthal angle θ is counted from 
Cartesian axis Oz. This approach provides a conveni-
ent way to characterize the surface of a complex ob-
ject. An arbitrary surface function R(θ, φ) defined in 
angular spherical coordinates θ and φ can be expanded 
using spherical harmonics series. In applications, it is 
approximated by function F(θ, φ) which is limited to a 
finite number of harmonics as follows: 
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where m
lY  denotes spherical harmonics of degree l 

and order m (0 ≤ |m| ≤ l), while m
la  presents the un-

known expansion coefficients. The maximal order of 
the spherical harmonic expansion is usually defined 
by the integer parameter called the expansion degree 
L. Consequently, each expansion term m

la  and m
lY  is 

characterized by two indices. The subscript l (l = 0, 1, 
2,…, L) indicates the expansion degree, while the su-
perscript m (m = −l, …, 0, …; l) indicates the order of 
spherical harmonics, see Mousa et al. (2008) and Gar-
boczi (2002).

The formal definition of the spherical harmonics 
is expressed in terms of complex functions m

lY , but 
only real valued functions are used hereafter. They are 
given by:
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where m
lN  is a normalization constant and θ(cos )m

lP  
presents associated Legendre polynomials.

Development of the spherical harmonics expan-
sion is a computational procedure where the calcula-
tion of expansion coefficients m

la  is required. The least 
square method is used for this purpose, where the er-
ror E between the actual value R(θ, φ) and the spheri-
cal harmonics expansion Eq. (1) is being minimized. 
Using discrete presentation, the approximation error is 
estimated by deviations in the set of sampling points i 
(i = 1…, N1 ≥ M). Finally, a minimization problem is 
expressed as follows:



Engineering Structures and Technologies, 2016, 8(4): 131–142 133

= = =−

   = θ ϕ − θ ϕ     
∑ ∑ ∑

1
2

1 0
min ( , ) ( , ) ,

m
l

N L l
m m

i i i il la i l m l
E R a Y   (3) 

where θ ϕ( , )m
i ilY  presents the values of harmonic 

functions in sampling point i.
Using matrix notations, the problem in Eq. (3) is 

transformed to a matrix equation:

 [ ][ ] [ ]=Y a R ,  (4) 

where ≡[ ] m
laa and ≡ θ ϕ[ ] ( , )i iRR  are column vec-

tors, and rectangular matrix ≡ θ ϕ[ ] ( , )m
i ilYY  contains 

values in sampling points. The solution of this ma-
trix equation is obtained by matrix algebra applying a 
standard Moor-Penrose pseudo-inversion procedure.

Quality of numerical SH approximation could be 
also evaluated not only by surface deviations (Eq. (3)) 
but also by considering integral geometric character-
istics of the particle body, including volume and sur-
face. Numerical integration procedure was utilized for 
calculation purposes. Grid used for calculation of ex-
pansion coefficients was explored for these purposes. 
Four node grid cells are divided into four triangles. As 
a result, triangle is described by three nodal points 1, 
2 and 3, respectively, and it is defined by three polar 
radii. Converting between polar and Cartesian coordi-
nates, the polar triangle is transformed to an arbitrary 
oriented triangle, which geometry is defined by three 
vectors as follows x1 = {x1, y1, z1}T, x2 = {x2, y2, z2}T 
and x3 = {x3, y3, z3}T. The area of this triangle embed-
ded in the three-dimensional space is expressed as the 
modulus of the vector product:
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Calculation of the volume follows the same path. 
Each of the surface triangles forms a pyramid where 
the forth vertex is fixed in the origin of coordinates. 

The volume for one pyramid is calculated as:
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Here, hpir stands for the height of the pyramid, 
while Str,n is the normal projection of the area of the 
surface triangle.

2. Low-Resolution SH models 
for Quasi-Quadric particles

Quasi-quadric particle shape considered in this paper 
is described by three dimensional parameters a, b and 
c, which are defined as the half of the side lengths of 
the smallest imaginary box that can contain a particle 
(Fig.  1(b)). The box for any shape under considera-
tion is centred on the origin of the Cartesian coordi-
nate system and aligned with the directions of their 
axes. Parameter c means projection of the distance 
from the origin into direction of axis Oz. Tradition-
ally, c is termed hereafter as length while dimensions 
in perpendicular directions, a and b, are identified to 
cross-section as breadth and thickness. Taking into ac-
count the full three-plane symmetry, one octant of the 
body limited by positive values of Cartesian coordinate 
planes x ≥ 0, y ≥ 0, z ≥ 0 will be considered numeri-
cally. Consequently, modelling domain is mapped into 
a reduced single angular sub-domain defined by angles 
0 ≤ φ ≤ π/2 and 0 ≤ θ ≤ π/2. The remainder part of the 
particle surface will be restored using symmetry rules.

The particle shape may be also characterised by 
elongation, or flattening, through the factor kelon  = 
c/a. The equal sized shape is characterized by elonga-
tion ratio kelon = 1, i.e. by equal sizes c = a. The oblate 
shape is characterized by the dimensional values c < 
a, i.e. elongation ratio kelon < 1. It can be imagined as 
flattened equal sized shape. The prolate shape charac-
terised with kelon > 1 is obtained by extending equal 
sized shape. 

Fig. 1. Illustration of particle geometry: (a) modelling domain on the base of quadric image,  
(b) quasi-quadric particle in bounding box
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Two families of quasi-quadric shapes such as qua-
si-ellipsoids and quasi-prisms, typical in geotechnical 
engineering, are considered hereafter for illustration 
purposes. Several reasons could be mentioned to mo-
tivate the choice of the above illustrative shapes. El-
lipsoid, especially the rotational ellipsoid, is the most 
simple but the most frequently studied non-spherical 
smooth analytical shape considering the framework of 
DEM. It is obvious that the rounded particles of fluvial 
origin may be classified as quasi-ellipsoids. Industrially 
treated minerals could be classified as quasi-prisms. 

Mathematical relations defined by Eqs (1)–
(4) present a theoretical framework of SH appli-
cable to the description of particles of arbitrary 
shape. This LRSH approach involves surface mod-
els which may be defined with four complexity lev-
els. The structure of expression Eq. (1) is character-
ized by expansion degrees L  = 0, 1, 2, 3 containing 
M  = 1, 4, 9, 16 terms, respectively. The vector of 
coefficients { }=

Tm
laa  has the following structure 

{ }− − − − − −= 0 1 0 1 2 1 0 2 3 2 1 0 1 2 3
0 1 1 1 2 2 2 2 3 3 3 3 3 3 3, , , , , , , , , , , , , ,

T
a a a a a a a a a a a a a a aa  

, 

while polynomials m
lY  are formed by harmonic func-

tions. Therewith, the general expression of particle sur-
face is simplified by truncated SH expansion
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where FL3(θ, j) is a resultant function of the low-
resolution harmonics model. Explicit expressions of 
harmonic functions may be found in Garboczi (2002).

Formally, the shape defined by Eq. (7) reflects 
the initial shape into a unified form. The zero term 
(L  = 0) is characterized by a harmonic function 

( ) ( )ϕ θ = π0 0
0 0, 1 2Y a  describing a sphere. It is easy to 

persuade, that the coefficient 0
0a  is related to the sphere 

radius R by the following relationship = π0
0 2a R . The 

first order terms (L  = 1) describes the distortion of 
the shape in main directions. The geometrical inter-
pretation of the higher order terms (L = 2, 3) is more 
complicated.

3. Numerical illustration of LRSH models 

The mathematical model of LRSH defined by Eq. (7) 
reflects the mathematical side of the shape descrip-
tors. It is obvious that the variation of 16 undefined 
coefficients indicates an opportunity to generate a huge 

number of particular shapes. The suitability of the 
LRSH model to particular shapes should be proved by 
conducting numerical experiments. 

The performed numerical study involves the gen-
eration of quasi-quadric particles by approximation 
to perfect shapes and evaluation of their properties 
by applying various indicators. Both of the two shape 
families, ellipsoids as well as prisms, are represented 
with discrete number of similar particles characterised 
by an specific elongation factor kelon, non-dimensional 
values of which are ranging between 10 and 0.1, i.e. 
10  ≥ kelon ≥ 0.1. Each particular particle shape with 
a fixed value of kelon is considered as an assembly of 
“source” particles and set of four “quasi-shaped“ par-
ticles. The “source” particle presents perfectly shaped 
particle, while “quasi-shaped particles” by a set of four 
LRSH models reflecting four expansion degrees L = 0, 
1, 2, 3.

The properties of the quasi-shaped particles were 
examined by comparing the values of selected indica-
tors. Two relative indicators, the relative volume and 
the relative least square error, were introduced for 
evaluation purposes. The relative volume Vrel,L(kelon) 
is defined as the ratio of the volume of the distorted 
quasi-shape Vquasi,L(kelon) and the volume of “source” 
particle Vsource(kelon):

 ( ) ( ) ( )=, ,rel L elon quasi L elon source elonV k V k V k ,  (8)

where L denotes expansion degree.
The relative error Erel,L(kelon) is defined as least 

square error density over the surface. It is calculated 
as the ratio of the total least square error EL defined 
in Eq. (3) and the surface area of the “source” particle 
Ssource(kelon) 

   ( ) ( ) ( )=, ,rel L elong quasi L elong source elongE k E k S k . (9)

Suitability of the LRSH models is demonstrated 
by considering two families of quasi-quadric parti-
cles; quasi-ellipsoid and quasi-prisms. Simulations are 
performed considering an axially symmetric section, 
where a = b. It means that ellipsoids are restricted to 
rotational, or sphere-sectional, ellipsoids, while prisms 
are restricted to square-shaped prisms. Simulation 
results obtained for quasi-ellipsoid are illustrated in 
Figure 2 while results of quasi-prism are presented in 
Figure 3. Three separate graphs in each subfigure dem-
onstrate variations of the volume indicator Vrel,L(kelon) 
against elongation factor for specified value of expan-
sion degree L = 1, 2, 3. Discrete values of the elonga-
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tion factor kelon marked on the graph are uniformly 
distributed on horizontal axis, but different scales were 
used for equidistant location of kelon values in differ-
ent segments kelon > 1 and kelon < 1, respectively. The 
graph values indirectly reflect the quality of particular 
LRSH model.

Results show that LRSH approach seems to be 
able to sufficiently and accurately represent particles. 
It could be stated that even 10 times elongated or flat-
tened shapes could be described by SH using L= 3 ex-
tension degree quite acceptable (5 percent accuracy). 
Thereby, different character of approximation trend 
was observed for elongated and flattened figures as 
well as for different figures. This could be explained 
by the fact that different harmonics dominate in dif-
ferent configurations.

Pictorial summary of several selected 3D SH im-
ages illustrating essential points is shown in Table 1. 
Here, three-dimensional views contribute to our un-
derstanding. It is easy to detect that the longest parti-
cles are characterised by the highest local distortion of 
particle surface.

For a deeper understanding of character and 

capabilities of the low-resolution SH, the detailed il-
lustration of the obtained shape profiles is necessary. 
Consequently, profiles of oblate shaped particles char-
acterised by an elongation factor kelon  = 1/4 will be 
considered for the sake of illustration. Longitudinal 
profiles, y  = 0, and cross-sectional profiles, z  = 0, of 
these particle surfaces are shown in Figure 4a, c and 
Figure 4b, d, respectively.

Application of the LRSH to oblate (flattened) 
shapes discovered some tendencies. Spherical har-
monic with the lowest-extension degree (L = 1) inde-
pendently of the initial shape turns into quasi-ellipsoid 
with a sharp angle in the middle section z = 0 and wavy 
profile in the vicinity of the cross-section centre x = 0, 
y = 0. Increase of expansion reduces the above men-
tioned central almost circularly varying sharpness and 
improves the global indicators, thereby, approaching to 
a perfect shape. Approaching tendencies are, however, 
different. Final errors for the ellipsoid are negligible, 
and therefore an accurate practically valid shape is ob-
tained. The obtained quasi-prism has remarkable de-
viations compared to perfect shape. Rounding of sharp 
edges is a characteristic feature of quasi-prisms.

Fig. 2. Variations of relative volumes of elongated (flattened) quasi-quadric particles obtained by LRSH with different  
values of expansion degree L: a) quasi-ellipsoids; b) of quasi-prisms
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Fig. 3. Variations of square root errors of elongated (flattened) quasi-quadric particles obtained by LRSH with different  
values of expansion degree L: a) quasi-ellipsoids; b) quasi-prisms
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4. Local effects and contact behaviour

Characterisation of surfaces of non-spherical parti-
cles using of continuous representation functions by 
Eq.  (1) or evaluation of integral parameters such as 
surface or volume (Eqs (5) and (6)) reflects only a 
part of the entire problem. In certain situations, local 
variations of the surface may have significant contribu-
tion to particle properties, especially in describing the 
contact behaviour. The need to evaluate local effects 
in LRSH models is also inspirited by the earlier results 
presented in Table 1 and Figures 2, 3 and 4. Therefore, 
a mathematically consistent description of the surface 
comprising principal curvatures, their principal direc-
tions and other parameters containing surface deriva-
tives is essential. 

For numerical illustration of the contact be-
haviour, the shape sample consisting on a rotational 
oblate ellipsoid defined by size parameters a = b = 2 
and c = 1 will be investigated. Curvatures and calcu-
lation of the normal contact force are evaluated. For 
this, analytical instead of numerical treatment of the 
contact will be applied while numerical FEM analysis 
will be also used for verification purposes. Regarding 
axial symmetry geometry of the particle is defined by 

the surface profile in longitudinal section. The perfect 
analytically described ellipsoid and quasi-ellipsoids 
obtained by low-resolution SH approximation L  = 1 
is considered for representation of this shape. Various 
profiles of particle surface plotted in the Cartesian Oxz 
plain are shown in Figure 5a.

In order to restore full picture of particle proper-
ties, these profiles r(θ) are also alternatively considered 
in spherical coordinates at fixed polar angle j = 0 and 
depicted in Figure 5b. Profile of quasi-ellipsoid is origi-
nally calculated by LRSH approximation using Eq. (7). 
Here, perfect ellipsoid is illustrated by thin solid line 
while SH model by dashed lines.

Comparing character of perfect and SH profiles, 
three characteristic regions could be detected. Here, 
the conditional boundaries θ1 = 0.143π and θ2 = 0.052π 
are denoted in Figure 5 by dots. The middle region be-
tween θ1 and θ2 illustrates that approximated profile 
quite closely mimics analytical one. The first region (0 
≤ θ ≤ θ1) restricted by angle θ1 indicates occurrence 
of wavy profile in vicinity of the cross-section centre 
x = 0, y = 0. The third region (θ2 ≤ θ ≤ π/2) restricted 
by angle θ2 indicates that SH produces asperity with 
sharp angle in the central section z = 0.

Table 1. Pictorial summary of selected shapes

Values of expansion degree L

L = 1 L = 2 L = 3 L = 1 L = 3

Oblate sphere-sectional quasi-ellipsoid 
kelon = 1/8

Prolate sphere-sectional quasi-ellipsoid
 kelon = 8

kelon = 1/4 kelon = 4

Oblate square-sectional quasi-prism 
kelon = 1/8

Prolate square-sectional quasi-prism 
kelon = 4

kelon = 1/4 kelon = 2



Engineering Structures and Technologies, 2016, 8(4): 131–142 137

If consideration of the non-smooth and concave 
surface is not satisfactory, the continuous not neces-
sary smooth quasi-quadric surface could be construct-
ed. In this case, both the first and the third regions are 

replaced by circles having common tangents, or com-
mon external normals, in intersection point’s θ1 and 
θ2. In the first region, the centre of the approximating 
circle 1 is located in the central axis Oz, while its radius 
r1 is larger than semi-axis c, i.e. r1 > c. Increasing of 
approximation order reduces the boundary angle θ1, 
and, consequently, the size of region. In three dimen-
sions, this region presents spherical cup with radius r1.

In the third region, the approximating circle 2 is 
an inscribed circle which centre is located in the cen-
tral plane Oxy (initial radius r2 = 0.5). Reducing this 

Fig. 4. Cartesian profiles of flattened (kelon = 1/4) particles 
obtained by spherical harmonics with different (L = 1, L = 2, 
L = 3) expansion degrees: longitudinal profiles (a) and cross-
sectional profiles (c) of quasi-ellipsoid; longitudinal profiles 

(b) and cross-sectional profiles (d) of quasi-prism

Fig. 5. Profiles and curvatures of quasi-quadric surfaces 
(quasi-ellipsoids): a) in Cartesian coordinates,  

b) in spherical coordinates
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radius r2 and approaching it to the almost zero, a set 
of surfaces with the new radii r3→min, approximating 
quasi-quadric shape with different degree of accuracy 
may be generated. Increase of expansion reduces the 
above-mentioned central almost circularly varying 
sharpness and improves the global indicators, thereby, 
approaching to perfect shape. 

In three dimensions, this region corresponds to 
a toroid, or spherical ring, with cross-sectional radius 
r2 and external radius ≈ a. In summary composite en-
veloping SH surface is generated. Three-dimensional 
views of particles are illustrated in Figure 6, where 
quasi-ellipsoid with sharp edge and resultant quasi-
quadric composite bodies are shown in Figure 6(a) 
and 6(b), respectively.

It could be noted, that the approximation of com-
plex curves by circular arches is a common practice 
used in DEM. The equivalent contact sphere method 
for approximation of ellipsoids by four arches is elabo-
rated in Johnson et al. (2004). Approximation of rota-
tional prolate ellipsoid by the spherical end cup com-
bined with the multi-sphere technique in the reminder 
body is presented in Markauskas et al. (2010).

An important characteristic of particle geometries 
that contributes to particle contacts are particle curva-
tures. A general method for obtaining expressions for 
curvatures in terms of surface derivatives is provided 
in differential geometry while detailed description of 
curvature expressions for ellipsoid are given by Harris 
(2006) and Poelaert et al. (2011) will be explored for 
further analysis of contact of quasi-ellipsoids. Differ-
entiation of SH and analysis of ellipsoid’s curvatures 
were considered by Garboczi (2002), while a more re-
cently applied methodology is given in Radvilaitė et al. 
(2017).

Variations of curvature radii are shown in Fig-
ure 7. The obtained radii or curvatures are used further 
for calculation of normal contact force. Potentially, an-
alytical instead of numerical approach to calculation of 
the contact would be preferable.

It is useful to remind that contacts evaluation is 
the mostly time consuming algorithmic step when per-
forming DEM simulations. Omitting conceptual dis-
cussion on detection of contact point for non-spherical 
particles, which was comprehensively described in 
the review papers of Lu et al. (2015) and Zhong et al. 
(2016), the recent paper addresses the calculation of 
the contact forces.

Analytical treatment of normal contacts for con-
tinuous solid contact partners i and j is based on the 
elastic contact theory of Hertz (Johnson 1987). The 
state of the contact behaviour between ellipsoidal par-
ticles is reviewed and discussed by Zheng et al. (2013). 
It was stated that regardless of the specific particle 
shape, two particles loaded in the normal direction 
touch and deform each other over an elliptical area. 
Consequently, considering of contacts between non-
spherical particles, the normal contact force can be 
expressed by modifying the conventional Hertz force 
FijHn = FHn which is related to the inter-particle overlap 
(displacement) u as follows:

    
= ρ ρ ρ ρ ρ 3/2

1 2 1 2
4 ( , , , )
3Hn cor i i j j eff effF c E u ,  (10)

where, the effective elastic modulus is expressed in 
terms of Poisson’s ratios νi and νj and elasticity mod-
uli Ei and Ej of contacting partners by the relation 

= −ν + −ν2 21 (1 ) (1 )eff i i j jE E E . 
Both of two other parameters – the effective ra-

dius of curvature:

( )
( ) ( )

ρ ρ ρ ρ ρ =

 ρ ρ ρ ρ ρ ρ ρ ρ 
 

1 2 1 2

1 2 1 2 1 2 1 2

, , ,

1 2  , , ,   , , ,

eff i i j j

i i j j i i j jA B ,   (11)

and non-dimensional correction factor:

    

( )

( )
( )

−

ρ ρ ρ ρ =

    ρ ρ ρ ρ   − −   ρ ρ ρ ρ     

1 2 1 2
3

1,531 20,0684
1 2 1 2

1 2 1 2

, , ,

, , ,
1 1 .

, , ,

cor i i j j

i i j j

i i j j

c

B

A
 (12)

Eq. (12) is a simplification and approximation of 
that proposed by Hale, see Zheng et al. (2013), where 
A and B are new variables determined from the local 
geometry (Johnson 1987). 

Fig. 6. Three-dimensional views of particles: a) quasi-ellipsoid 
with sharp edge, b) resultant quasi-quadric composed various 
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Contribution of the local particle shape occurred 
due to LRSH description is demonstrated by solving 
the normal contact of the above oblate ellipsoid with 
a plane plate. The case of contact of a perfectly elastic 
ellipsoid onto a semi-infinite plane surface was also 
considered in Wynn (2009).

Computational set up of the normal particle-
plane contact is illustrated in Figure 8.

Here, normal orientation of the particle with a 
plane perpendicular to the central axis Oz is shown. 
The particle centre was subjected by a normal displace-
ment u, while contact force Fn is the resultant reaction.

Analytical treatment of the above contact is per-
formed by applying Eqs (10)–(14). Parameters of the 

body i are identified to ellipsoid denoted as ell, while 
second body j is identified as plane and denoted with 
the subscript pl.

In this problem, for plane curvature radii ρpl1 = 
ρpl2 = ∞, consequently, parameters ( )≡ ρ 1ellA A  and 

( )≡ ρ 2ellB B  take a form:

 
( )ρ =

ρ1
1

1
2ell

ell
A  and ( )ρ =

ρ2
2

1
2ell

ell
B .  (13)

It is easy to detect that these parameters are cur-
vature parameters = κ 1 2ellA  and = κ 2 2ellB . 

Variations of correction factor in longitudinal 
profile against azimuthal angle θ are given Figure 9, 
where about 6 % increase of the load is observed with 
increased curvatures.

Comparison of various approaches is carried out 
in non-dimensional form, and computational experi-
ment is organised in the following manner. All length 
variables are scaled to parameter R and defined by a set 
of non-dimensional parameters. Therewith, defining 
indentation displacement by =relu u R  and effective 
radius by ρ = ρ eff rel eff R , the normal force in Eq. (10) 
may be also expressed in terms of non-dimensional 
and dimensional parameters as

 
= 2

   Hn Hn rel effF F E R , (14)

where contact force is defined by a non-dimensional 
factor:

 
( )= ρ

3
2   

4   .
3Hn rel cor eff rel relF c u  (15)

Fig. 7. Variation of curvature radii in longitudinal section presented in spherical coordinates a) radius ρ1 normal  
to section profile, b) radius ρ2 perpendicular to cross-section profile
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Contact analysis was conducted by relating the 
dimensional length parameter R with the size of el-
lipsoid, R = b, and assuming the value of the relative 
indentation urel  = 0.01. Four characteristic samples 
were solved analytically, while sample data and solu-
tion results are given in Table 2. Each of the samples 
are denoted by the specified identifier, name of which 
containing orientation of the contacting particle, con-
tact type and solution method. The first two samples 
denoted as RAD_ELL_ANL and RAD_SH_ANL illus-
trate results of radially oriented perfect ellipsoid and 
SH model with circular round off of artificial asperity, 
respectively. The next two samples denoted as NORM_
ELL_ANL and NORM_SH_ANL illustrate results of 
normally oriented perfect ellipsoid and SH model with 
spherical cup, respectively. In order to verify applica-
bility of analytical models, the problem of normal elas-
tic particle-plane contact was solved numerically, using 
the finite element method (FEM). The non-adhesive 
perfectly stick contact is assumed, therefore, tangential 

sliding is not allowed. The surfaces of contacting bodies 
in contact zone are assumed to be smooth. The prob-
lem is three-dimensional, and computational domain 
comprises a quarter of the bodies because of its plane 
symmetry. Contacting bodies are discretised by the 
volume tetrahedral-type elements defined by 8 nodes. 
The multipurpose commercial available FEM package 
ANSYS (ANSYS 2016) was used for these purpose.

Three characteristic samples were solved numeri-
cally. Two samples of radially oriented ellipsoid de-
noted as RAD_ELL_FEM and RAD_SH_FEM involves 
computations of radially oriented perfect ellipsoid and 
SH model with sharp edge, respectively. The third sam-
ple NORM_ELL_FEM involves normally oriented el-
lipsoid.

Illustration of computational results is presented 
in Figure 10. Here, numerically obtained distributions 
of the von Mises stresses are shown.

The computed values of the normal contact force 
correspond to expected results. The three samples of 
normal contact present actually spherical contacts, the 
difference between analytical Hertz and the FEM re-
sults is characterised by 0.3% error. Generally, results 
illustrated and confirmed that concave surface could 
be modified by spherical cup.

For evidence of models contribution, the values of 
the normalised force factor Frel /Frelmax is introduced 
and presented in the last column in Table 2. The most 
interesting results are obtained by considering radial 
contact where dramatically increasing capacity of pen-
etration with sharpening of end cup is demonstrated. 
Summarising contact experiment it could be stated 
that LRSH could be used for large variety of quasi-
quadric shapes.

Fig. 9. Variations of correction factor ccor for particle-plane 
contact in longitudinal section
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Table 2. Summary of contact analysis results

Model
No

Model 
identification

Orientantion 
angle Θ

Curvature radii Non-dimentional factors Relative forces

ρ = ρ ρn n ρ = ρ ρt t corc ρ  eff rel relF maxrel relF F
Analytical solutions

1 RAD_ELL_ANL π/2 0.25 1.0 1.0455 0.5 0.986∙10–3 0.522

2 RAD_SH_ANL π/2 0.05 1.0 1.1782 0.2236 0.743∙10–3 0.3935

3 NORM_ELL_ANL 0 2.0 2.0 1 2.0 1.885∙10–3 0.998

4 NORM_SH_ANL 0 2.005 2.005 1 2.005 1.888∙10–3 1.0

Numerical (FEM) solutions

5 RAD_ELL_FEM π/2 0.25 1.0 – – 0.707∙10–3 0.3745

6 RAD_SH_FEM π/2 – 1.0 – – 1.936∙10–4 0.1025

7 NORM_ELL_FEM 0 2.0 2.0 – – 1.879∙10–3 0.995
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Conclusions 

A semi-analytical approach based on the low-resolu-
tion spherical harmonics (LRSH) technique limited 
with the expansion degree L ≤ 3 was elaborated. Then 
the suitability of this technique for the description 
of non-spherical quasi-quadric shapes, i.e. slightly 
distorted monomeric shapes of soil particles was in-
vestigated. The quality of the results was numerically 
proved by comparing the least square approximation 
errors, considering the values of volumes and particle 
surfaces. It was shown, that the even the simplest case 
of the suggested low-resolution harmonics technique 
with L  = 1 showed a good performance. The high-
est accuracy was achieved for equal-sized shapes but 
decreased with flattening or elongation of the shapes. 
Therefore, the suitability of this method to particular 
shapes should be rechecked. It was also found that the 
standard differentiation and calculation of curvatures 
using LRSH may yield to local distortions and angu-
larities. Threfore, enhanced analysis of the local surface 
gradients and curvatures need to be developed.
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