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and Cai D (2018) The Dynamics of

Balanced Spiking Neuronal Networks

Under Poisson Drive Is Not Chaotic.

Front. Comput. Neurosci. 12:47.

doi: 10.3389/fncom.2018.00047

The Dynamics of Balanced Spiking
Neuronal Networks Under Poisson
Drive Is Not Chaotic
Qing-long L. Gu 1, Zhong-qi K. Tian 1, Gregor Kovačič 2, Douglas Zhou 1* and David Cai 1,3,4
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Some previous studies have shown that chaotic dynamics in the balanced state, i.e.,

one with balanced excitatory and inhibitory inputs into cortical neurons, is the underlying

mechanism for the irregularity of neural activity. In this work, we focus on networks of

current-based integrate-and-fire neurons with delta-pulse coupling. While we show that

the balanced state robustly persists in this system within a broad range of parameters,

we mathematically prove that the largest Lyapunov exponent of this type of neuronal

networks is negative. Therefore, the irregular firing activity can exist in the system without

the chaotic dynamics. That is the irregularity of balanced neuronal networks need not

arise from chaos.

Keywords: balanced state, irregular activity, chaotic dynamics, delta-pulse coupling, largest Lyapunov exponent

1. INTRODUCTION

Neural spiking activity in the brain is highly irregular (Britten et al., 1993; Shadlen and Newsome,
1998; Compte et al., 2003; London et al., 2010). It is believed that the irregularity of the spiking
activity can reflect an underlying rich coding structure for information processing (Hertz and
Prügel-Bennett, 1996; Gütig and Sompolinsky, 2006; Sussillo and Abbott, 2009; Monteforte and
Wolf, 2012). This viewpoint naturally leads to the investigation of the origin of the irregular
neuronal activity. A number of theoretical studies have postulated that a balance between excitatory
and inhibitory inputs into an individual neuron can give rise to irregular activity (vanVreeswijk and
Sompolinsky, 1996; Troyer andMiller, 1997; Vreeswijk and Sompolinsky, 1998; Vogels and Abbott,
2005; Miura et al., 2007). The idea behind the theory of balanced networks is that the excitatory
and inhibitory components of inputs nearly cancel each other, and the neuronal firing activity is
driven by strong fluctuations that intermittently interrupt this cancellation. Consistent with the
hypothesized scenario, balanced synaptic inputs have been observed in slices of the ferret prefrontal
and occipital cortex (Shu et al., 2003). Moreover, it has also been found that, in vivo studies,
the balanced excitation and inhibition in ferrets’ prefrontal cortex can substantially influence the
neuronal activity (Haider et al., 2006).

It has been shown theoretically that small perturbations of the balanced state in a network
with binary neurons grow exponentially, indicating the chaotic nature of the balanced activity
(Vreeswijk and Sompolinsky, 1998). Some studies suggest that highly irregular activity in the
balanced state originates from chaotic network dynamics (Vogels et al., 2005; Wallace et al., 2013;
Ostojic, 2014). Albeit not specifically addressing the source of irregular activity in a balanced state,
studies exist that have drawn the opposite conclusions in some special situations. For example,
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numerical simulations of neural networks consisting of pulse-
coupled spiking neurons of only inhibitory type can display
irregular activity in a dynamical state with a negative Lyapunov
exponent (Zillmer et al., 2006; Jahnke et al., 2008; Monteforte and
Wolf, 2012). Meanwhile, in the limit of fast synaptic response,
any generic trajectory was shown to be asymptotically stable
in inhibition-dominated networks (only a small fraction of
connections can be excitatory) with the inhomogeneous delay
distribution and strong coupling (Jahnke et al., 2009). Therefore,
the question of whether the irregularity in a balanced state arises
from chaos in a neuronal network with both excitatory and
inhibitory neurons under more realistic Poisson drive, remains
an important issue to be further clarified.

In this work, we first numerically show that, over a broad
range of parameters, the balanced state can exist in current-
based integrate-and-fire (I&F) neuronal networks consisting of
both excitatory and inhibitory neurons with delta-pulse coupling
currents and pulse-like external inputs. We then mathematically
prove that, driven by any point process in time—not limited
to Poisson point processes, the current-based I&F neuronal
networks with delta-pulse interactions cannot exhibit chaotic
dynamics. In fact, two nearby trajectories of such a network
generically coalesce after a finite time regardless of whether the
dynamics is in a balanced state or not. Our results demonstrate
that in the delta-pulse coupled, current-based I&F system the
irregular activity of the balanced state is not a consequence
of a chaotic dynamical state. Our proof remains valid when
the system possesses only excitatory or inhibitory population.
This conclusion extends the previous results (Jin, 2002; Zillmer
et al., 2006; Jahnke et al., 2009) that dynamics of the strongly
inhibition-dominated networks are stable. By our analysis, stable
dynamics with the irregular firing activity can occur in the
delta-pulse coupled, current-based I&F neuronal network of any
size.

2. MATERIALS AND METHODS

2.1. I&F Model
We model neurons as integrate-and-fire (I&F) units (Dayan
and Abbott, 2001; Newhall et al., 2010; Zhou et al., 2010). The
governing equation for the membrane potential vki of the ith
neuron in the kth population is

dvki
dt

= −gL(v
k
i − ǫkR)+ Iki (t), (1)

where gL denotes the leakage conductance, ǫkR is the resting

voltage of the kth population and Iki (t) is the corresponding

input current (k = E, I). The voltage vki evolves according to

Equation (1) when vki ≤ ǫkT , where ǫkT is the threshold of the

kth population. When vki crosses ǫkT , the neuron spikes, and then

vki is reset to ǫkR. Upon resetting, vki is immediately governed by
Equation (1) again. In simulation, gL = 50 s−1 corresponds to the
membrane time constant 20 ms. The dimensionless values used
in simulations are ǫER = ǫIR = 0.0, ǫET = 1.0 and ǫIT = 0.7, which
correspond to the parameters in Vreeswijk and Sompolinsky
(1998).

The instantaneous current projecting into the ith neuron in
the kth population,

Iki (t) = IkEi (t)+ IkIi (t), (2)

consists of two terms, where IkEi (t) = f k
∑

s
δ(t − ζ k

is) +

JkE
NE
∑

j=1
CkE
ij

∑

s
δ(t − τEjs ) is the excitatory input, IkIi (t) =

−JkI
NI
∑

j=1
CkI
ij

∑

s
δ(t − τ Ijs) is the inhibitory input, δ(·) is the Dirac

delta function, f k is the strength of the external input, and Jkl

is the coupling strength from the lth population to the kth
population, k, l = E, I. The coupling constant Ckl

ij = 0 or 1 is

an element of the adjacency matrix of the network. It describes
the connection from the jth neuron in the lth population to
the ith neuron in the kth population. The first term in IkEi (t)
corresponds to the current arriving from the external input. The
spike-time sequence, {ζ k

is , s = 1, 2, ...}, corresponds to the external
input into the ith neuron in the kth population. At the arrival
time ζ k

is of the sth spike, the voltage of the ith neuron in the kth

population jumps by the amount of f k. In the simulations below,
we use Poisson trains for the external inputs. The second term in
IkEi (t) and the term in IkIi (t) correspond to the presynaptic input
from neurons of the excitatory and inhibitory populations in the
network, respectively, where τ kjs is the arrival time of the sth spike

from the jth neuron in the kth population for k = E, I.
In our simulation, each neuron in the network has, on average,

K excitatory and K inhibitory presynaptic neurons. Because each
neuron may receive a large number of synapses in the cortex
(Peters, 1987; Braitenberg and Schuz, 1998), and the connection
between cortical neurons is often sparse with low connection
probability (Holmgren et al., 2003), we chooseK to be sufficiently
large but much smaller than the total number of neurons in
the network. Experimentally, for example, it is observed that
cells in the primary visual cortex of adult cats fire much more
irregularly than cells in vitro when they are both stimulated by
injecting direct current through the electrode. Therefore, there
is a substantial influence of fluctuations of synaptic inputs on
the irregular activity (Holt et al., 1996). To capture the effect
of fluctuations as observed in the experiment, we follow the
balanced network theory to set the scaling of the coupling
strength Jkl to be of order 1/

√
K, thus leading to the scaling

of fluctuations in the total synaptic inputs as of order 1. As a
consequence, the fluctuations persist in the large-K limit (van
Vreeswijk and Sompolinsky, 1996; Vreeswijk and Sompolinsky,
1998; Vogels and Abbott, 2005).

The connection from the jth neuron in the lth population to
the ith neuron in the kth population Ckl

ij in our simulation follows

a Bernoulli distribution, i.e., the probability P(Ckl
ij = 1) = K/N l

and P(Ckl
ij = 0) = 1 − K/N l, where N l is the total number

of the lth population, k, l = E, I. The parameter values in our
simulations are as follows: NE = 32000, NI = 8000, K =
400, JEE = JIE = 1.0/

√
K, JII = 1.8/

√
K, JEI = 2.0/

√
K,

f E = 1.0/
√
K, f I = 0.8/

√
K, and the external inputs are Poisson
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processes with rate νE = νI = ν0K, where ν0 controls the
magnitude of Poisson rate.

Simulations of the neuronal network model are carried out to
the machine accuracy using the event-driven algorithm (Brette
et al., 2007). The event-driven algorithm for a general point
process as external inputs proceeds by generating the time of the
next external spike. Some neurons in the network receive this
spike. Upon receiving an external spike, these neurons’ voltages
increase by the amount of f E for the excitatory population and f I

for the inhibitory population. If some of them have their voltages
exceed the threshold, they fire. Their voltages are held at the
reset voltage, and the voltages of their postsynaptic neurons are
instantaneously increased (for excitatory inputs) or decreased
(for inhibitory inputs). It is possible that the voltages of these
postsynaptic neurons may now be above threshold as well, then,
these neurons also fire. Their voltages are held at the reset voltage,
while their postsynaptic neurons’ voltages are changed. This
process repeats until no new neurons spike. We emphasize that
in our dynamics we hold the voltage of the neurons that just fired
at the resting potential in order to prevent any of these neurons
from firing more than once at any given time. After all the
neurons are updated at this time, we release these neurons from
the reset voltage to follow the dynamics governed by Equation (1)
until the next external spike.

2.2. Analysis of the I&F Network
As is well known, for the balanced state in binary neuronal
networks, the population-averaged firing rate is a linear function
of the external input. We now address the question of whether
the balanced state in the I&F network also possesses the linear
response property of the population-averaged firing rate to the
external drive.

We consider the mean firing rate mE and mI in the large-
K limit. In a balanced network, the firing events of different
neurons are nearly independent of one another (Vreeswijk and
Sompolinsky, 1998). This is illustrated in Figure 1 in which the
cross-correlation between firing events of pairs of neurons is
narrowly distributed around zero. According to Equations (1)
and (2), it is obvious that, under Poisson-train external inputs,
spiking events of a neuron in the network, in general, are not
a Poisson train, i.e., {τEjs } and {τ Ijs} do not follow Poisson point

process for a fixed j in Equation (2). However, the input to the ith
neuron is a spike train summed over outputs frommany neurons
in the network. Since the firing events of neurons are statistically
independent from one another, the summed spike train from a
large number of output spike trains of neurons in the network
asymptotically approaches a Poisson spike process (Cinlar, 1972).
The recurrent excitatory (inhibitory) input of each neuron can be
treated as a Poisson train with rate KmE (KmI), where mE (mI)
is the mean firing rate per neuron averaged over the excitatory
(inhibitory) population. Each neuron receives three Poisson spike
trains in Equation (2). By homogeneity of our networks, the
subscript i in Equation (2) will be dropped for the remainder of
this discussion.

Since the voltage of neuron in the kth population is reset
to ǫkR after spiking, we consider Equation (1) with initial value

vk(0) = ǫkR for k = E, I. We can readily obtain vk(t) = ǫkR +
f kvk,ext(t)+ JkEvk,E(t)− JkIvk,I(t) with vk,l(t) =

∑Mk,l

s=1 e
−gL(t−Uk,l

s ),

where Mk,l is the total spike count of the lth input to the kth
population, described by a Poisson distribution with the average
number of successes νk,lt, k = E, I and l = ext,E, I. For each
givenMk,l, the spike times of the lth input to the kth population,
Uk,l
s , s = 1, 2, ..., are uniformly distributed on the interval [0, t].

Clearly, the random variable Rk,ls (t) ≡ e−gL(t−Uk,l
s ) takes value

in the interval [e−gLt , 1] with the following probability density
PR(t)(r) = 1

gLt
1
r for r ∈ [e−gLt , 1]. Since vk,l(t) is given by a

sum of independent identically distributed random variables for
given Mk,l, the average neuronal voltage at time t can be simply
expressed as

uk(t) = ǫkR +
1− e−gLt

gL
(f kνk + KJkEmE − KJkImI) (3)

for k = E, I. As discussed above, ǫkR = 0, f k, JkE, and JkI are

of order 1/
√
K; νk is of order K; and mE and mI are of order 1.

Then, the leading order of uk(t) is
√
K. Obviously, the membrane

potential cannot become infinite as K → +∞. Therefore, the
leading order of

√
K should vanish and one can obtain

mE =
JII f E − JEI f I

JIEJEI − JEEJII
ν0,

mI =
JIEf E − JEEf I

JIEJEI − JEEJII
ν0

(4)

in the large-K limit. Equation (4) describes the linear dependence
of the mean firing rate on the external input. This relation is a
defining feature of a balanced state, similar to what is obtained for
the binary neuronal system (Vreeswijk and Sompolinsky, 1998).

3. RESULTS

3.1. Existence of Balanced States
In Vreeswijk and Sompolinsky (1998), the properties of the
balanced state are shown in detail with binary neuronal
networks. We use numerical simulations to investigate whether
the current-based I&F neuronal network coupled with delta-
pulse interactions can exhibit the dynamical characteristics of
a balanced state. Our results demonstrate that there indeed
exists a balanced state in I&F neuronal networks. Figure 1

summarizes the defining characteristics of the balanced state
as exhibited in I&F neuronal networks: balanced inputs
(Figure 1A), irregular spiking activity (Figure 1B), heterogeneous
firing rate (Figure 1C), weak correlation (Figure 1D), stationary
asynchronous dynamics (Figure 1E), and linear response
(Figure 1F). The results above confirm the important properties
of balanced networks as discussed in previous theoretical
work (van Vreeswijk and Sompolinsky, 1996; Vreeswijk and
Sompolinsky, 1998; Renart et al., 2010; Litwin-Kumar and
Doiron, 2012).

Next, we turn to the investigation of the persistence of the
balanced state in the I&F system and derive conditions under
which the balanced network state exists. Note that, in our
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FIGURE 1 | Defining characteristics of a balanced network. (A) Balanced excitatory and inhibitory inputs into a sample I&F neuron. The amplitude of excitatory (red)

and inhibitory (blue) inputs (normalized by gL) deviate significantly from the firing threshold (green solid line) whereas the summed total input (scaled by gL) (black)

fluctuates around the threshold while keeping its mean (cyan) below the threshold; (B) The average fano-factor across the network as a function of the time bin size

(black line). The values of fano-factor for different time bin sizes (larger than 100 ms) are above unity and nearly constant. The inset is the distribution of the fano-factor

calculated from each neurons spike events over the entire network with the time bin size 400 ms. All the values are above unity, again exemplifying the irregularity of

the spiking activity; (C) Distribution of neuronal firing rates normalized by the entire population-averaged firing rate. The distribution is broad and skewed as a

consequence of the heterogeneity of the single neuron activity; (D) The distribution of cross-correlation coefficient of spike events for each pair of neurons in the

network. It has a sharp peak around zero, therefore, the system is nearly uncorrelated. We choose the bin size 1t = 2ms to calculate the cross-correlation; (E) The

upper panel is a raster plot of 500 excitatory (red dots) and 500 inhibitory (blue dots) neurons; the lower panel shows the number of the spiking neurons in the

excitatory population (red) and inhibitory population (blue) in each time window. The raster plot shows there is no synchrony in the neuronal dynamics. The lower panel

exhibits stationarity of the number of firing neurons in the network; (F) The mean firing rate of the excitatory and inhibitory population as a linear function of the external

driving rate. For comparison, we vary the value of K here: K = 100 (dashed-dot), K = 400 (solid lines), and K = 3600 (dashed lines); red for excitatory population

whereas blue for inhibitory population. The mean firing rates in the K → +∞ limit, mE = ν0 and mI = ν0, are also shown (black line, the theoretical gain curves for the

excitatory and inhibitory populations overlap). Note that the minor disagreement between the theoretical prediction and the simulated gain curve arises from the finite

size effect, and the gain curve converges to the infinite-K limit as K increases. The parameters are NE = 32000, NI = 8000, JEE = JIE = 1.0/
√
K, JII = 1.8/

√
K,

JEI = 2.0/
√
K, fE = 1.0/

√
K, f I = 0.8/

√
K, νE = ν I = ν0K and ν0 = 30Hz. In (A–E), K = 400.

simulation, we choose JIE = JEE. Therefore, from Equation (4),
requiring firing rates to be non-negative implies

f E

f I
>

JEI

JII
> 1 (5)

or

f E

f I
<

JEI

JII
< 1. (6)

Note that Equation (5) is equivalent to the balance condition
derived in Vreeswijk and Sompolinsky (1998) for a binary
neuronal system. However, Equation (6) admits a solution for
which mE = 0 — that is, only inhibitory neurons fire in
the system, the mean firing rate of the inhibitory population
is then given by mI = f Iν0/JII . Therefore, for k = E in
Equation (3), we can find uE(t) ≈ ǫER − C

√
K, where C

is a positive constant independent of K, which demonstrates
that membrane potential is highly negative, and the excitatory

neurons’ firing activity is suppressed. In the simulation, we
choose a range of parameters, in particular, f E, f I , JEI , and JII to
examine the competition between the excitatory and inhibitory

inputs to a neuron and verify whether the system maintains the
characteristic balanced-state properties. If the neuronal network
dynamics indeed exhibits the features displayed in Figure 1, that
network is classified as balanced. Figure 2A summarizes our
results for the parameters f E/f I and JEI/JII that we have scanned.
Each dot in the figure can represent a set of parameters f E,
f I , JEI , and JII with fixed ratios of f E/f I and JEI/JII . Each red
dot in the parameter space indicates the fact that the system
with the corresponding parameters can reach a balanced state;
each blue dot represents the system with the corresponding
parameters that exhibits synchronous dynamics; and each green
dot indicates that at those parameter values only inhibitory
neurons fire in the system but the inhibitory population still
retains the characteristic balanced-state properties in Figure 1.

The balanced state with only the inhibitory population
firing is established by the balance between strong excitatory
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FIGURE 2 | Dynamical network state as a function of fE/f I and JEI/JII. The range of parameters here is as follows: NE = 32000, NI = 8000, K = 400, 0 < fE < 0.2,

0.04 < f I < 1.0, νE fE = 10, ν I = νE , JEE = JIE = 1.0/
√
K, 1.0/

√
K < JEI < 5.0/

√
K, 0.0 < JII < 10.0/

√
K. We choose values of the four parameters fE , f I, JEI and

JII at random to verify whether the state of the network with these parameters is a balanced state. Note that each dot (C1,C2) in the panel (A) can represent a group

of different parameter values as long as they satisfy fE/f I = C1 and JEI/JII = C2, where C1 and C2 are constant. A red dot represents a balanced state in which both

excitatory and inhibitory neurons fire, with a sample raster in panel (B) (which has the parameters marked by the black asterisk in the area of red dots, and only 1000

excitatory and 1000 inhibitory neurons are shown here). A green dot represents a state in which only the inhibitory population is firing. This dynamical state also

exhibits all the defining characteristics of a balanced state for the inhibitory population, while the excitatory population fires few spikes over a long time. A

corresponding sample raster is shown in the panel (C) (which has the parameters marked by the black asterisk in the area of green dots, and only 1000 excitatory and

1000 inhibitory neurons are shown here). Finally, a blue dot represents a state of strong synchrony, for which a sample raster is shown in the panel (D) (which has the

parameters marked by the black asterisk in the area of blue dots, and only 1000 excitatory and 1000 inhibitory neurons are shown here). The black dashed lines in the

panel (A) are y = x, y = 1 and x = 1. In the raster plot, red dots denote the spike times of the excitatory population and blue dots denote the spike times of the

inhibitory population.

external input to the inhibitory neurons and strong inhibitory
recurrent current. As shown in Figure 2C, in this state, only
the inhibitory population exhibits asynchronous firing activity
while the excitatory population is silenced due to relatively strong
recurrent inhibition as compared with the inhibitory population.

The parameter values for the results of the representative case
as presented in Figure 2B are marked by the black asterisk in the
red-dot area in Figure 2A. The parameters for the representative
case shown in Figure 2C are marked by the black asterisk in the
green-dot area in Figure 2A. The broad region covered by the
red and green dots demonstrates the existence of the balanced
state over a wide range of parameter space. The parameter values
marked by the black asterisk in the blue-dot area in Figure 2A

with strong f E and JII in comparison to f I and JEI , respectively,
render the system robustly synchronized as shown in Figure 2D.

Note that the area represented by Equation (5) is smaller than
the red-dot region that supports stable balanced states in our
numerical results. We also point out that the area described by
Equation (6) contains a small number of stable balanced states
in which both excitatory and inhibitory neurons are spiking
in addition to balanced states in which excitatory neurons are
almost silent while only inhibitory neurons are spiking. As a
matter of fact, upon inserting mE = 0 and mI = f Iν0/JII into
Equation (3), and requiring that uE becomes sufficiently negative
as K becomes large so the excitatory population rarely fires, we
obtain the condition

f E

f I
<

JEI

JII
, (7)

which contains Equation (6) and covers a greater area than the
parameter regions in Figure 2A filled with green dots. These
differences between the numerical results and the theoretical
conditions (Equations 5–7) arise from the finite size effect of K.

3.2. Absence of Chaos
As shown above, the I&F networks with delta-pulse coupling
can persistently manifest the dynamics of a balanced state.
We now address our central question of whether the irregular
firing activity of neurons in the balanced network is a
consequence of chaotic dynamics of the network. We can
mathematically prove that the I&F networks with delta-pulse
coupling cannot exhibit chaotic dynamics. Therefore, chaos
may not underpin the irregular firing activity of neurons
in a balanced state. Below is a proof that there is no
chaos in the dynamics of the current-based I&F network
coupled with delta-pulses and with a general point process
(not limited to Poisson) as external inputs, the details of
whose dynamics are described in the section Materials and
Methods.

For each reference voltage trajectory, v(t) =
(

vE1 (t),v
E
2 (t), ..., v

E
NE (t), v

I
1(t), vI2(t), ..., v

I
NI (t)

)

, we
consider the perturbed voltage trajectory ṽ(t) =
(

ṽE1 (t), ṽ
E
2 (t), ..., ṽ

E
NE (t), ṽ

I
1(t), ṽ

I
2(t), ... , ṽI

NI (t)
)

, with sufficiently
small perturbation size ǫ at initial time t = t0, i.e.,
ǫ = |ṽ(t0) − v(t0)| ≪ 1. The dynamics of the perturbed
trajectory ṽ(t) is described by the equation

dṽki
dt

= −gL(ṽ
k
i − ǫkR)+ f k

∑

s

δ(t − ζ k
is)

+ JkE
NE
∑

j=1

CkE
ij

∑

s

δ(t − τ̃Ejs )− JkI
NI
∑

j=1

CkI
ij

∑

s

δ(t − τ̃ Ijs),

(8)

where τ̃ kjs is the sth spike of the jth neuron in the kth population

along ṽ(t), and k = E, I. The external spike times {ζ k
is} are the
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same as those along the reference trajectory v(t). Then the largest
Lyapunov exponent,

λmax = lim
T→∞

lim
ǫ→0

1

T
ln

( |ṽ(T)− v(T)|
ǫ

)

, (9)

can be calculated for this I&F network dynamics (Zhou et al.,
2009). As is well known, positive λmax measures the average
exponential spreading of nearby trajectories, while negative λmax

measures the exponential convergence of trajectories onto the
attractor (Oseledec, 1968; Ott, 2002; Parker and Chua, 2012).
Generically, an attractor is defined to be non-chaotic if λmax is
non-positive. In what follows, we show that the largest Lyapunov
exponent λmax of this I&F network is always negative and in fact
approaches negative infinity for any spike train input.

3.2.1. Spike Train Sorting
For the preparation of the proof of the absence of chaos, we label
all the neurons as {1, 2, ...,NE + NI}, in which {1, 2, ...,NE} labels
the excitatory neurons and {NE + 1,NE + 2, ...,NE + NI} labels
the inhibitory neurons for easy description. That is τjs (τ̃js) is the
sth spike of the jth neuron, where j = 1, 2, ...,NE stands for an
excitatory neuron and j = NE + 1, NE + 2, ...,NE +NI stands for
an inhibitory neuron.

Then for any fixed finite time T, we sort the spike times of
the two trajectories {τpq} and {τ̃pq} into the increasing lists. Recall
the fact that the voltage of both the reference and the perturbed
trajectories of any neuron will cross the threshold only upon
receiving spikes either from the external or excitatory recurrent
input. Hence, the neurons fire precisely at the arrival time of
the external or excitatory recurrent input spikes. There may be
a group of neurons that fire at a particular time but with a
distinct firing sequence amongst these neurons (see our firing
dynamics described in the event driven algorithm in section
Materials and Methods). Note that these simultaneously firing
neurons only spike at the time when an external spike is received
by some of the neurons within this group (possibly by all the
neurons in the group) for the type of I&F neuronal networks
with delta-pulse coupling. When we meet simultaneous firings
during the sorting process, suppose these simultaneous firings are
τp1q1 , τp2q2 , · · ·, τpaqa such that τp1q1 = τp2q2 = · · · = τpaqa , then
we perform the following strategy to make the spike timing list
unique.

1. p1 is chosen to be the smallest neuron label among the neurons
that receive an external input spike in the simultaneously-
firing group;

2. the remaining sequence of τp1q1 , τp2q2 , · · ·, τpaqa is sorted and
reordered such that p2 < p3 < · · · < pa.

The same rule is applied in the perturbed network. Then we can
obtain two unique increasing spike time sequences

τp1q1 ≤ τp2q2 ≤ · · · ≤ τpMqM ,

τ̃p̃1q̃1 ≤ τ̃p̃2q̃2 ≤ · · · ≤ τ̃p̃M̃ q̃M̃
,

(10)

where τprqr (τ̃p̃r̃ q̃r̃ ) denotes the qr (q̃r̃)th spike of the pr (p̃r̃)th
neuron in the reference (perturbed) trajectory, pr (p̃r̃) =

1, 2, ...,NE stands for an excitatory neuron and pr (q̃r̃) = NE + 1,
NE + 2, ...,NE + NI stands for an inhibitory neuron. M and M̃
are the total number of spikes in the reference and perturbed
trajectories, respectively.

3.2.2. Proposition and Proof
We next turn to the following proposition,

PROPOSITION For each reference voltage trajectory v(t) =
(

v1(t), v2(t), ..., vNE (t), vNE+1(t), vNE+2(t) , ..., vNE+NI (t)
)

≡
(

vE1 (t), v
E
2 (t), ..., v

E
NE (t), v

I
1(t), v

I
2(t), ..., v

I
NI (t)

)

described by
Equation (1), and its perturbed voltage trajectory ṽ(t) =
(

ṽ1(t), ṽ2(t), ..., ṽNE (t), ṽNE+1(t), ṽNE+2(t), ..., ṽNE+NI (t)
)

≡
(

ṽE1 (t), ṽ
E
2 (t), ..., ṽ

E
NE (t), ṽ

I
1(t), ṽ

I
2(t), ... , ṽI

NI (t)
)

described by
Equation (8), with their initial difference ǫ = |ṽ(t0) − v(t0)| at
time t = t0, one can obtain the increasing spiking lists (10) for
both trajectories over any fixed finite time T according to the
sorting process described in the above. If the initial perturbation is
sufficiently small, i.e., ǫ ≪ 1, then M̃ = M, τ̃p̃r q̃r = τprqr , p̃r = pr
and q̃r = qr for any r in the lists (10).

Note that, before the first spike of reference and perturbed
trajectories, the time evolution of the perturbation δv(t) = ṽ(t)−
v(t) can be obtained from the system of equations

d

dt
δvi = −gLδvi(t) for i = 1, 2, ...,NE + NI . (11)

That is, for a sufficiently small initial perturbation size ǫ, the
distance between v(t) and ṽ(t) decays exponentially. Then we use
mathematical induction to prove this proposition:

1. For the first firing event r = 1, either τp1q1 or τ̃p̃1q̃1 is equal
to some external input spike time ( the first spike must be
induced by the external input). Because the reference and
perturbed trajectories receive the same external input, for a
sufficiently small initial perturbation size ǫ, we have τ̃p̃1q̃1 =
τp1q1 , p̃1 = p1 and q̃1 = q1;

2. Suppose we have τ̃p̃r q̃r = τprqr , p̃r = pr and q̃r = qr for r ≤ m,
we then show that τ̃p̃m+1q̃m+1

= τpm+1qm+1 , p̃m+1 = pm+1 and
q̃m+1 = qm+1;

3. In fact, before the (m + 1)th spike of both the reference and
perturbed trajectories, we can find that δv(t) is still governed
by Equation (11) because they receive the same external
and recurrent input spikes. For a sufficiently small initial
perturbation size ǫ, Equation (11) also ensures p̃m+1 = pm+1

and q̃m+1 = qm+1. Then, if the qm+1th spike of the pm+1th
neuron is caused by the arrival of an excitatory recurrent input
spike, this spike can always be traced back to the spike that
is caused directly by an external input spike. By the ordering
rule of neurons in the simultaneously firing group above, we
have τpm+1qm+1 = τpsqs and τ̃p̃m+1q̃m+1

= τ̃p̃sq̃s , where either
the spike of τpsqs or the spike of τ̃p̃sq̃s is caused by an external
spike to the psth neuron (s ≤ m). Consequently, τ̃p̃m+1q̃m+1

=
τpm+1qm+1 . If the qm+1th spike of the pm+1th neuron is caused
directly by the arrival of an external spike, clearly we have
τ̃p̃m+1q̃m+1

= τpm+1qm+1 because the reference and perturbed
trajectories receive the same external input spike;

4. Finally, we can readily obtain M̃ = M.
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Therefore, τ̃p̃r q̃r = τprqr holds for r = 1, 2, ...,M with p̃r =
pr and q̃r = qr . Next, according to the Equation (9), it is
obvious that the largest Lyapunov exponent is always negative
for the dynamics described by Equation (11). That is, the I&F
network with delta-pulse coupling exhibits no chaotic dynamics
while receiving pulse-like external input. Note that the voltage of
both the reference and perturbed trajectories of any neuron, for
example, the ith neuron in the kth population, will be reset to ǫkR
after its first firing. Because both the external input spike time
and the synaptic input spike time are the same in the reference
and perturbed networks, the two trajectories will no longer
separate from each other. This means that the difference between
the reference and perturbed trajectories of the ith neuron will
converge after its first firing event. Thus, the largest Lyapunov
exponent will approach negative infinity. As show in Figure 3,
the numerical results for the given fixed network sizeN andmean
degree connectivity K indeed show that the total perturbation of
all neurons’ voltages always exponentially decay with time and
eventually converge to zero in a finite time.

As a matter of fact, the proof can be extended to a more
generalized system. For example, the membrane potential vki
of the ith neuron in the kth population obeys equation with
refractory periods

dvki
dt

= −gkiL(v
k
i − ǫkiR)+ f k

∑

s

δ(t − ζ k
is)+ JkE

NE
∑

j=1

CkE
ij

∑

s

δ(t − τEjs − τEi )− JkI
NI
∑

j=1

CkI
ij

∑

s

δ(t − τ Ijs − τ Ii ), (12)

but the neuron will come into a refractory period after vki crosses

the threshold ǫkiT . That is when vki (τ
k
is) ≥ ǫkiT , one has v

k
i (t) = ǫkiR

for τ kis < t ≤ τ kis + τ k
i,ref

, where τ k
i,ref

is the refractory period of the

ith neuron in the kth population. τEi and τ Ii are the excitatory and
the inhibitory synaptic delay of the ith neuron, respectively. In
this system, the leakage conductance, the threshold, the resting

potential, the refractory period and the synaptic delay of one
neuron can be different from that of another neuron. Note that
a neuron in this system can generate a spike also only upon
receiving spikes either from the external or excitatory recurrent
input, and the neuron fires precisely either at the arrival time of
the external spike or at the arrival time of the excitatory recurrent
spike with a fixed synaptic delay. Therefore, we can extend the
proof above directly here to conclude that there is no chaotic
dynamics in this generalized system. Despite the demonstration
of irregular firing of neurons in the balanced state of this current-
based I&F network as above, the irregular activity is not induced
by chaos.

4. DISCUSSION

Cortical neurons often exhibit spiking dynamics that are highly
irregular. It is believed that the irregular neural spiking activity
can be generated from a balance between excitatory and
inhibitory inputs to a neuron. In the early work (Vreeswijk and
Sompolinsky, 1998), the neuronal network consisting of binary
neurons was applied to explain the balanced neuronal state.
Meanwhile, the dynamics of the binary neuronal system was
found to be chaotic in the balanced state. Therefore, chaos was
then often thought to be closely related to the irregular firing
activity in a balanced network. Note that the binary neuron is a
highly idealized model for describing a neuron.

Here we address the issue of chaotic origin of spiking
irregularity using a current-based leaky integrate-and-fire (I&F)
model with delta-pulse coupling and pulse-like external input.
By examining the defining characteristics of a balanced state
(Vreeswijk and Sompolinsky, 1998), and by exploring a wide
range of parameter values, we have found that the balanced state
persists robustly in this I&F system.

We then apply the analysis of the largest Lyapunov
exponent to characterize the dynamics of this I&F system.
We mathematically demonstrate that the largest Lyapunov
exponent is always negative in the current-based I&F system with

FIGURE 3 | Time evolution of the total perturbation of all neurons’ voltages. The total perturbation of all neurons’ voltages |δv(t)| in either region described in

Figure 2A always exponentially decay with time and eventually converge to zero in a finite time. (A) The parameters are marked by the black asterisk in the area of red

dots in Figure 2A; (B) The parameters are marked by the black asterisk in the area of green dots in Figure 2A; (C) The parameters are marked by the black asterisk

in the area of blue dots in Figure 2A. The parameters are chosen to make the mean firing rate of spiking neurons around 30 Hz. The total perturbation of all neurons’

voltages at initial time in each case is chosen to be |δv(0)| = 5× 10−4. The slope of the solid part of the curve in each case is −gL. The vertical dashed part of each

curve indicates that the difference between the reference and perturbed trajectories vanishes, namely, the largest Lyapunov exponent approaches negative infinity.
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delta-pulse coupling and pulse-like external input, in which each
neuron can have its own distinct values of leakage conductance,
resting potential, spiking threshold, refractory period, and
synaptic decay. The reference and perturbed realizations of a
neuronal network trajectory can converge in finite time. It is
worthwhile to point out that the non-chaotic property in our
proof holds for neuronal networks of any size.

To understand under what conditions cortical-like firing
irregularity can be generated, several efforts have been made.
For instance, an early study (Renart et al., 2007) investigated
the possible existence of multiple balanced steady states with
persistent activity. It shows that the Poisson-like irregular spiking
activity can arise from balanced regimes with sustained persistent
activity. The neuronal network system used in the study (Renart
et al., 2007) is the same as that in our work, but with different
scaling of synaptic connection strengths, e.g., homogeneous or
heterogeneous multicolumnar architecture. Note that the proof
of non-chaotic mechanism in our system is independent of
scaling structure of connection strengths as long as the synaptic
interaction is delta-pulse coupled. Therefore, it is expected that
the non-chaotic mechanism also works in persistent activity
states.

In addition, another recent study found that the I&F neuronal
network endowed with probabilistic synaptic transmission can
underlie the Poisson-like spiking variability over a wide range
of firing rates (Moreno-Bote, 2014). Here, we show that the
neuronal network consisting of I&F neurons with delta-pulse
couplings is always non-chaotic over a wide range of firing rates.
It could be interesting to investigate whether our non-chaotic
neuronal network with probabilistic synaptic transmission can
achieve Poisson-like variability of the spiking activity as observed
in cortex. For example, we can consider that each pair of
connected neurons in our system has multiple delta-pulse
synaptic contacts, and each contact is activated with certain
probability.

As is shown here in our works, the irregular spiking
dynamics is always stable in the current-based I&F model with
delta-pulse coupling and pulse-like external input. Therefore,

the irregular activity cannot simply arise from the underlying
chaotic dynamics. We point out that the proof of the non-chaotic
dynamics in our system relies on the facts that both the external
input and the synaptic interactions are in the form of delta-pulse
coupling. Therefore, for any fixed network size N and the mean
degree connectivity K, the neuron fires precisely at the arrival
time of the external or excitatory recurrent spikes. As a result,
the difference between the reference and perturbed trajectories
of each neuron will converge after its first firing event. Thus,
the largest Lyapunov exponent will approach negative infinity
and the dynamics is non-chaotic. As for the case of smooth
synaptic coupling, e.g., the current Iki (t) in Equation (2) is an
α-like function (Dayan and Abbott, 2001) with the rise time
constant τr and the decay time constant τd as Iki (t) =

(

e−t/τr −
e−t/τd

)

/(τr − τd), it is expected that the non-chaotic mechanism
still holds when the time constants τr and τd are both relatively
small. However, if these time constants are not sufficiently small,
e.g., greater than 2 ms, it is known that the network dynamics is
not always stable and can be chaotic (Zhou et al., 2010; Harish and
Hansel, 2015). In general, the phenomenon of chaos is model-
dependent (Brette, 2004; Zhou et al., 2009; Sun et al., 2010)
and could not be the ultimate source of irregularity in neuronal
activity in the brain.
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