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The term videosomnography captures a range of video-based methods used to record

and subsequently score sleep behaviors (most commonly sleep vs. wake states). Until

recently, the time consuming nature of behavioral videosomnography coding has limited

its clinical and research applications. However, with recent technological advancements,

the use of auto-videosomnography techniquesmay be a practical and valuable extension

of behavioral videosomnography coding. To test an auto-videosomnography system

within a pediatric sample, we processed 30 videos of infant/toddler sleep using a

series of signal/video-processing techniques. The resulting auto-videosomnography

system provided minute-by-minute sleep vs. wake estimates, which were then

compared to behaviorally coded videosomnography and actigraphy. Minute-by-

minute estimates demonstrated moderate agreement across compared methods

(auto-videosomnography with behavioral videosomnography, Cohen’s kappa = 0.46;

with actigraphy= 0.41). Additionally, auto-videosomnography agreements exhibited high

sensitivity for sleep but only about half of the wake minutes were correctly identified.

For sleep timing (sleep onset and morning rise time), behavioral videosomnography and

auto-videosomnography demonstrated strong agreement. However, nighttime waking

agreements were poor across both behavioral videosomnography and actigraphy

comparisons. Overall, this study provides preliminary support for the use of an

auto-videosomnography system to index sleep onset and morning rise time only, which

may have potential telemedicine implications. With replication, auto-videosomnography

may be useful for researchers and clinicians as a minimally invasive sleep timing

assessment method.
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INTRODUCTION

The term videosomnography (VSG) captures a range of video-based methods used to record and
subsequently score sleep behaviors. One of the first documented uses was at Brown University as
Dr. Thomas Anders and colleagues attempted to record sleep in infants born preterm without the
use of electrodes (1). Shortly after this, video recordings became a more common component of
polysomnography (PSG). Over time, PSG with video became a field standard, and the additional
informaton provided by these videos proved to be a valuable interpretation tool for sleep disorders
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across several populations [e.g., (2)]. However, until recently,
the use of VSG (outside of PSG) has been primarily limited
to research. With recent technological advancements and the
rise of telemedicine approaches, the use of home-based VSG
is increasing. Minimally invasive sleep methods, like VSG, are
quickly being adopted by mass market devices, although few
studies have tested the accuracy and feasibility of an automated-
VSG approach.

Thus, to develop and subsequently test an automated VSG
scoring system, this study builds on two lines of research: VSG
and video signal processing. In the following sections, we will
first review VSG (outside of PSG) followed by advances in signal
processing that have led to the possibility of auto-VSG.

Videosomnography Research and Clinical
Applications
Sadeh (3) described VSG as a sleep assessment best practice,
noting its ability to non-invasively capture sleep, while
also documenting some parasomnias and caregiver actions.
Behavioral VSG includes human coding of sleep behaviors
(e.g., wakings) by watching video recordings of sleep. However,
behavioral VSG coding is time consuming and cannot accurately
detect sleep if a child moves out of the video frame. Additionally,
there are privacy concerns as most videos cannot be deidentified.
These factors have limited the application of VSG in clinical
settings, and thus VSG has primarily served as a research tool.
Within a research setting, students are typically trained to code
target behaviors (e.g., night wakings) over the course of 2–3
months. Once trained, behavioral coding in 4:1 time takes
approximately 1 h per night of sleep. Despite this time consuming
nature, previous studies have used behavioral VSG coding to
generate estimates of quiet sleep, active sleep, wake after sleep
onset (WASO), sleep position, caregiver behaviors, bed sharing,
and infant crying or self-soothing behaviors (1, 4–9). The use
of VSG has grown exponentially in the past 5 years and the
larger sleep field would benefit from a standardized and more
efficient VSG coding method. Fortunately recent advancements
in video/signal processing may make this possible.

Video Signal Processing
Within the field of electrical and computer engineering, the
application of signal processing techniques to digital video data
are common; however, the application to sleep is relatively
novel. One of the first studies used infrared-based cameras to
index motion during sleep (10). Subsequent studies used frame-
by-frame differencing to extract activity, with the assumption
that the sleeping individual was the only source of ‘difference’
or activity (11–13). Within these studies, VSG data from
five children and ten adults were used to calibrate the sleep
data extracted from the videos. A similar differencing method
was then applied in a study of six children with Attention
Deficit/Hyperactivity Disorder (14). Additional research used
variations of this image differencing approach, while focusing on
large/gross motor movements (15), head and trunk identification
(16, 17), and infant sleep (18). Spatio-temporal prediction has
been applied to VSG data to extract estimates of sleep and
wake time (19). Preliminarily, deep learning has also been

applied to VSG data in infants (20); although to date, no peer-
reviewed articles have been published. Commercially available

products like Nanit©, AngelCare R©, BabbyCam© and Knit
Health have quickly adopted automated VSG procedures, but
minimal validation or clinical guidelines exist.

Within the present study, we build on the most established
signal processing approach—specifically a frame-by-frame
differencing approach, and apply it to existing pediatric VSG
data. We aim to demonstrate how a signal/video-processing
system can be used to generate estimates for sleep vs. wake
states, in addition to estimates of sleep timing (sleep onset and
morning rise time) and nighttime sleep duration. This study will
provide valuable information about the assumptions, accuracy,
and feasibility of automated-VSG scoring, to better inform our
understanding of its use in both mass market devices and future
clinical applications.

METHODS

Participants
As a part of a larger longitudinal study on sleep in early
development, families recorded their infant/toddler’s sleep
between 8 and 30 months of age (M = 17.8, SD = 6.1; Table 1).
To enroll in the larger study infants/toddlers had to be a younger
sibling of a typically developing child and the family’s primary
language was English. Exclusion criteria include severe visual,
hearing, or motor impairment, or a fragile health condition, and
the use of medications known to affect sleep or attention at time
of enrollment (Table 1).

For analyses one night per infant/toddler was selected in a
quasi-random fashion (within this study quasi-random means
that data selection was based on two practical factors, described
below). The first 30 families that completed behavioral VSG and
actigraphy coding were included. Only 30 families (of the overall
90 enrolled in the larger study) were included for two reasons.
First, this longitudinal study and its coding are ongoing and
the included families reflect those with behaviorally coded data
at the time of analyses. Second, including 30 infants/toddlers
with more than 500min of “sleep vs. wake” data points per
infant/toddler had sufficient power to detect moderate effect sizes
(d = 0.50) with two-method differences and kappa agreement
(power <0.95).

Measures
Child Demographic Information
Infant sex, race, ethnicity, maternal education, paternal
education, and family income were reported at time of
enrollment.

Videosomnography
Video recordings of sleep were captured using a portable, night-
vision camera (Swann SW344-DWD, Model ADW-400) that was
placed over the infant/toddler’s primary sleep location. Videos
were processed using both behavioral codes and automated VSG
coding methods, as outlined below.
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TABLE 1 | Sample demographic characteristics (N = 30).

Characteristics Range, M(SD) or n (%)

INFANT/TODDLER

Sex (% Male) 19 (63%)

Age (months) 8–30, 17.8 (6.1)

Race and Ethnicity

White, Non-hispanic or Latino 25 (83%)

Black, Non-hispanic or Latino 1 (3%)

Multi-Racial 1 (3%)

Hispanic or Latino 3 (10%)

MATERNAL AND HOUSEHOLD

Maternal age (years) 20–42, 31.5 (4.9)

Maternal Education

High School/GED 2 (7%)

College degree 16 (53%)

Graduate degree 4 (13%)

Other 6 (20%)

Unreported 2 (7%)

Paternal Education

Some High School 1 (3%)

High School/GED 1 (3%)

College degree 12 (40%)

Graduate degree 8 (27%)

Other 6 (20%)

Unreported 2 (7%)

Marital status (% married) 27 (93%)

Family Income

Below $20,000 1 (3%)

$20,001–$40,000 4 (13%)

$40,001–60,000 5 (17%)

$60,001–$80,000 6 (20%)

$80,001–$100,000 7 (23%)

$100,001 and above 6 (20%)

Unreported 1 (3%)

Parents completed the family demographic form at the time of enrollment. Three families

did not provide information on family income and one family did not provide paternal

education information.

Behavioral Coding
First, each video was coded for sleep onset, morning rise time
(sleep offset), and nighttime wakings. Wakings had to last
longer than 1min and include purposeful actions from the
infant/toddler (e.g., sitting up, looking around, crying). Wakings
were assessed in three ways: WASO, minor wakings, and major
wakings (definitions provided in Table 2). Research assistants
received over 40 h of training, including guided coding, practice
videos, and monthly meetings with a trained coding lead. All
assistants also completed up to two reliability training sets
including five videos each. For the current sample, inter-rater
reliability exceeded our predetermined intraclass correlation
coefficient (ICC > 0.70) threshold for sleep onset and offset
(range 0.91–1.0). For WASO, inter-rater reliability was more
difficult to achieve (range 0.70–0.92); therefore, all WASO codes

TABLE 2 | Operational definitions of sleep variables.

Variable Operational definition

Sleep onset time The first minute (of at least three

consecutive minutes) scored as sleep

Nightime sleep duration Total minutes scored as sleep from sleep

onset time to morning rise time minus any

night waking minutes (WASO)

Wake after sleep onset (WASO) Total minutes scored as awake between

sleep onset and offset

Morning rise time (Sleep Offset) The first five consecutive minutes of awake

time, following a period of sleep, when the

child is awake for the day

Minor night waking Night wakings ranging from 1 to 14min

Major night waking Night wakings that are 15min or longer

were reviewed by at least two assistants during monthly coding
consensus meetings. All behavioral VSG coders were ultimately
reliable at coding WASO (ICC > 0.70) and our consensus
practice was an added measure to keep these more difficult codes
consistent. Minor and major wakings were post-hoc calculations
fromWASO minutes.

Auto-VSG Coding
To provide automated estimates of sleep onset time, morning
rise time (sleep offset), wakings, and nighttime sleep duration, a
custom processing systems was employed (detailed in Figures 1,
2). Within this system, infant/toddler movements before, during,
and after sleep were assessed using a background subtraction
method and a scaled minute-to-minute summary score. These
movement scores were then classified as sleep or wake using
existing algorithms (21). The decision to index sleep using
infant/toddler movement builds on a strong history of using
accelerometers or small wrist/ankle worn sensors to estimate
sleep using movement (22, 23). Table 2 provides a summary of
each auto-VSG system parameter when compared to behavioral
VSG and actigraphy.

Auto-Vidoesomnography System Equations
Within our auto-VSG system, we first converted the Red Green
Blue (RGB) image to a grayscale image. We then resized the

image
(

width, wp = 160 pixels, height, hp = 120 pixels
)

to fit

our preprocessing block requirements. The final step in the
preprocessing block required histogram equalization, wherein we
enhanced the image contrast (i.e., tomaximize the discrimination
between the infant/toddler and the background). Next, the
background model was obtained from the history of h previous
frames as

Bi
[

x, y
]

=
1

h [i]

i=1
∑

k=i−h[i]

Ik
[

x, y
]

(1)

where Ii
[

x, y
]

is a pixel in frame i, Bi
[

x, y
]

is a pixel in
background model at frame i and h[i] is the number of previous
frames (history) used for making the background model. The
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FIGURE 1 | Block diagram of automated videosomnography (auto-VSG) processing system. *Preprocessing block includes Image Resizing, Red Green Blue (RGB) to

Gray Scale Conversion and Histogram Equalization. wp and hp are width and height of the resized image used in the preprocessing block, τs is duration of each time

segment (epoch) [60 s], h is the number of frames used to obtain the Background model B, T is a threshold for each pixel to determine whether there is a movement

or not and nm is number of moved pixels in the current frame.

FIGURE 2 | Sample videosomnography frame (A) and the corresponding selected infant/toddler area (B). wp and hp are the width and height of the resized image.

Nmax is the maximum number of pixels allow to “move” within the frame.

difference between the background model Bi
[

x, y
]

and Ii
[

x, y
]

indicated whether each pixel in the frame was classified asmoved
or notmoved. This was achieved by comparing the grayscale value
across each pixel. A pixel was classified as moved if (Equation 2)
holds.

∣

∣I
[

x, y
]

− B
[

x, y
] ∣

∣

> T (2)

where T is a threshold for determining movement for one pixel.
We quantified the amount of movement as the number of pixels
classified as moved. We obtained the motion index for time

segment j as:

mj = min

(

1

K

K−1
∑

k=0

nm
[

k
]

,N max

)

(3)

where k is frame index within one epoch, nm
[

k
]

is number of
moved pixels in frame k, Nmax is the size of the infant/toddler in
the video frame [pixels] and K is number of frames for one time
segment,

⌊

τs · fs
⌋

where τs is duration of each time segment [sec].
The motion index is capped at N max because the largest number
of moved pixels that belongs to the infant/toddler’s movement
would not exceed the size of the infant/toddler. Nmax is obtained
from a single frame at midnight by manually annotating the
infant/toddler’s size. We obtained one Nmax per ID assuming that
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the change in the number of pixels for the infant/toddler over the
entire night is negligible.

We labeled each minute of recording as sleep or wake by
applying the Sadeh sleep/wake algorithm designed for actigraphy
(21). To apply this algorithm, we scaled the motion index from 0
to 400 (the same range used for the actigraphy data in the present
study).

Actigraphy
Movements during sleep were recorded in 1min epochs using
a micromini-motionlogger R©. Each infant/toddler wore the
actigraph on his/her ankle (imbedded in a neoprene band).
The actigraph data were interpreted as sleep or wake using the
Sadeh algorithm provided in Action-W version 2.7.3. Following
published actigraphy guidelines (23), parent-report sleep diaries
were used to further interpret our data [including validity; (24)].
Parent-report diaries helped to clarify the usability of data for
each recording night. The sleep diary used in the current study is
a modified version of previously validated sleep diaries (25, 26),
with similar versions used in several published papers [e.g.,
(6)]. Overall, using a parent-report diary in conjunction with
actigraphy data (as described above) is the current field standard
(24, 27).

For each actigraph recording night, estimates for sleep onset,
sleep offset, nighttime sleep duration, WASO, minor wakings,
and major wakings were calculated (Table 2).

Procedure
This study was approved by the Institutional Review Board of
Purdue University. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. Families completed
the demographic form at time of enrollment. The first home
visit included setting up the VSG recording equipment and
providing parents with an actigraph and a parent-report sleep
diary. Parents were instructed to turn the camera on when
they started their infant/toddler’s bedtime routine and to turn
it off in the morning after the infant/toddler was removed from
bed.

Plan of Analysis
To assess the proposed auto-VSG system, we utilized Cohen’s
kappa, paired sample t-tests, Bland-Altman plots, and
correlations for estimates of sleep onset, WASO, morning
rise time (sleep offset) and nighttime sleep duration across (1)
behavioral VSG, (2) auto-VSG, and (3) actigraphy.

First, all synchronized minute-by-minute estimates of sleep
vs. wake were compared using Cohen’s kappa. Cohen’s kappa
was employed to index measurement agreement above that
expected by chance, while considering the marginal distribution
of sleep and wake codes. Paired t-tests were used to assess if
statistically significant differences existed on average, between
the two methods (i.e., behavioral VSG and auto-VSG). To
provide an illustrative index of agreement, Bland-Altman plots
were generated (28). Additionally, to ground this work within
existing studies, correlations were calculated as an index of
association. We also interpreted whether differences were
clinically meaningful. For example, a difference of 10min in a

24-h period may be statistically significant but not practically
meaningful to clinicians. For minor and major wakings only,
descriptive statistics and Bland-Altman plots were employed
because most of these count variables were zero-inflated and not
normally distributed.

Given the high number of agreement and association statistics
assessed in this study, analyses are summarized (Table 5) with
evaluative (+) supports agreement, (±) modest or mixed
support, and (–) does not support agreement. On the basis of
these results, we assigned qualitative ratings of strong, moderate,
or poor agreement.

For all analyses, auto-VSG was compared to behavioral
VSG and actigraphy, separately because auto-VSG estimates
were calculated using different Nmax settings (see Table 3).
Additionally, recognizing that the focus of the current study is
auto-VSG, the inclusion of comparisons between actigraphy to
behavioral VSG are not discussed as these results are beyond the
scope of the current study.

RESULTS

Behavioral VSG and Auto-VSG
Kappa estimates of sleep vs. wake ranged from 0.09 (poor) to
0.99 (strong) with an average agreement of 0.46 (moderate).
For three participants, behavioral and auto-VSG demonstrated
very strong agreement (kappa > 0.99) but most (n = 25) had
strong to moderate agreement, and for two participants, poor
agreement (kappa< 0.10).When using the behavioral VSG codes
as the true codes, auto-VSG demonstrated sensitivity of 99%
to correctly classify sleep, with specificity of 48%. In this case,
specificity indexed when a minute was coded as wake using
behavioral VSG and auto-VSG, respectively. Overall, auto-VSG
identified sleep with a higher degree of accuracy than wake
(approximately half of the wake minutes were coded correctly
with auto-VSG).

Sleep Onset Time
For sleep onset time, there was no significant difference
between behavioral VSG and auto-VSG estimates (Table 4). The

TABLE 3 | Automatic videosomongraphy (auto-VSG) system parameters.

Parameter Description Behavioral VSG

settings

Actigraphy

settings

wp Width of resized image 160 pixels 160 pixels

hp Height of resized image 120 pixels 120 pixels

T Color intensity

differencing threshold

30 levels (11.76%

of the color

intensity)

30 levels (11.76%

of the color

intensity)

τs Length of epoch 60 s 60 s

τh Time used to build

background model

5 s 5 s

Nmax The maximum number

of pixels that could

contribute to the

activity count

100% 15%
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TABLE 4 | Paired-sample t-test for automated videosomnography (auto-VSG), behavioral VSG, and actigraphy.

Sleep onset time Sleep offset time WASO Sleep duration Number of minor

wakings

Number of major

wakings

M (SD) [HH:MM] M (SD) [HH:MM] M (SD) [minutes] M (SD) [minutes] M (SD) M (SD)

Auto-VSG and Behavioral VSG

Behavioral VSG 20:59 (1:10) 7:09 (1:08) 24.77 (33.37) 585.83 (60.71) 1.00 (1.72) 0.47 (0.68)

Auto-VSG 20:53 (1:08) 7:15 (1:06) 17.43 (22.40) 605.47 (61.53) 3.87 (3.82) 0.13 (0.43)

Paired t-test t(29) = 1.97 t(29) = −1.79 t(29) = 1.42 t(29) = −3.03**

Auto-VSG and Actigraphy

Actigraphy 21:00 (1:02) 6:49 (1:09) 129.67 (54.36) 459.23 (60.57) 21.87 (8.41) 2.10 (1.79)

Auto-VSG 20:59 (1:09) 7:01 (1:07) 145.30 (85.60) 457.50 (66.49) 22.77 (10.44) 2.40 (2.49)

Paired t-test t(29) = 0.42 t(29) = −2.68* t(29) = −1.47 t(29) = 0.14

All estimates were generated based on 18,943min of synchronized data (across all sleep assessment methods). Differences across the two Auto-VSG methods reflect differences in

system parameters (summarized in Table 3) *p < 0.05, **p < 0.01.

Bland-Altman plot for this data (Figure 3A) illustrates strong
agreement, with only 3% of the sample falling outside the target
threshold. Overall, for sleep onset time, behavioral VSG and
auto-VSG demonstrated strong agreement (Table 5).

Sleep Offset Time
For sleep offset time, behavioral VSG and auto-VSG estimates
were comparable for both methods. As illustrated in the Bland-
Altman plot (Figure 3B) and Table 4, most infants/toddlers fell
within the established target threshold (93%). Overall, for sleep
offset time behavioral VSG and auto-VSG had strong agreement.

Night Waking
The t-tests supported comparable estimates across behavioral
VSG and auto-VSG for WASO. However, the Bland-Altman plot
depicts a potential relationship between measurement agreement
and WASO duration (Figure 3C). There was less agreement
across the measures for infants/toddlers who were awake more
after sleep onset. Overall behavioral VSG and auto-VSG had
moderate agreement WASO (Table 5). When considering minor
and major wakings, distributional properties of these data did
not allow for the same type of comparisons. However, visual
inspection of these data (Figures 3E,F) illustrate that for most
children agreement across behavioral VSG and auto-VSG was
moderate.

Nighttime Sleep Duration
Nighttime sleep duration estimates were significantly different
across the behavioral VSG and auto-VSG processing methods
(Table 4). The Bland-Altman plot (Figure 3D) highlight the large
levels of variability in the agreement across these measures.
Additionally, only 62% of infants/toddlers fell within the target
threshold. For nighttime sleep duration, behavioral VSG and
auto-VSG demonstrated poor agreement.

Actigraphy and Auto-VSG
Overall, kappa estimates for sleep vs. wake ranged from 0.03
(poor) to 0.82 (strong) with an average of 0.41 (moderate). For
three participants, actigraph and auto-VSG demonstrated strong
agreement (kappa > 0.70) but most (n = 24) had moderate

agreement, and for three participants poor agreement (kappa <

0.10). When using the actigraphy minute-by-minute codes as the
true score, the auto-VSG codes demonstrated a sensitivity of 84%
to correctly classify sleep and a specificity of 58%. Overall, auto-
VSG identified sleep with a higher degree of accuracy than wake
(approximately half of the wake minutes were coded correctly
with auto-VSG).

Sleep Onset Time
For sleep onset time, there was no significant difference between
actigraphy and auto-VSG estimates (Table 4). Only data from
two infants/toddlers (7% of sample), resulted in measurement
agreement outside the target threshold (Figure 4A). Actigraphy
and auto-VSG demonstrated strong agreement for sleep onset
time (Table 5).

Sleep Offset Time
On average, sleep offset time was significantly different
across the two methods (Table 4). This difference was
on average 12min, with earlier offset times provided by
actigraphy. The Bland-Altman plot revealed that data from six
infants/toddlers (20%) had measurement agreement outside
the target threshold (Figure 4B). Overall, actigraphy and
auto-VSG demonstrated poor agreement for sleep offset time
(Table 5).

Night Waking
WASO was not significantly different across the two methods
(Table 4); however, within the Bland-Altman plot, only 53% of
sample had measurement agreement inside the target threshold
(Figure 4C). ForWASO, actigraphy and auto-VSG demonstrated
poor agreement (Table 5). Visual inspection of the minor
(Figure 4E) and major (Figure 4F) wakings data illustrate that
for most children agreement across actigraphy and auto-VSGwas
poor.

Nighttime Sleep Duration
For nighttime sleep duration, average estimates were not
significantly different across the twomethods (Table 4); however,
as illustrated in the Bland-Altman plot (Figure 4D), half of
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FIGURE 3 | Bland-Altman plots for auto-VSG and behavioral VSG coding for (A) sleep onset, (B) sleep offset, (C) WASO, (D) sleep duration, (E) number of minor

wakings, and (F) number of major wakings.
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TABLE 5 | Summary of measurement agreement wherein each test statistic was evaluated with (+) supports agreement, (+/−) mixed or inconsistent support, (−) poor

support.

R t-test Bland-Altman Plota Clinically meaningful differenceb Overall agreement

Behavioral VSG and auto-VSG

Sleep Onset Time 0.97**(+) + 97% (+) 6min (+) Strong

Sleep Offset Time 0.95**(+) + 93% (+) 6min (+) Strong

WASO 0.55**(±) + 77% (±) 7min (+) Moderate

Sleep Duration 0.83**(+) – 62% (−) 20min (−) Poor

Actigraphy and auto-VSG

Sleep Onset Time 0.97**(+) + 93% (+) 1min (+) Strong

Sleep Offset Time 0.93**(+) – 80% (±) 12min (−) Poor

WASO 0.75**(+) + 53% (−) 16min (−) Poor

Sleep Duration 0.41*(−) + 50% (−) 2min (+) Poor

r, correlation, t-test results summarized in Table 3, a% of sample correctly estimated within the upper and lower bound thresholds, see Bland-Altman plots, baverage difference across

methods, *p < 0.05, **p < 0.01.

the infants/toddlers did not fall within the specified threshold.
Overall, actigraphy and auto-VSG demonstrated poor agreement
for nighttime sleep duration (Table 5).

DISCUSSION

The automation of VSG coding has the potential to improve
research paradigms and expand its clinical applications. In
the current study, we demonstrated initial support for auto-
VSG to index sleep timing in a pediatric sample, with the
strongest agreement for sleep onset and offset when compared to
behavioral VSG. However, the overall agreement patterns is more
complex as discussed in the following sections.

Sleep problems are the most common concern expressed by
parents at well-child exams (29) and for many families, these
sleep concerns reflect clinically meaningful sleep disturbances.

Mass market auto-VSG devices like Nanit©, AngelCare R©,

BabbyCam©, and Knit Health are well poised to build on these
concerns; however, rigorous studies are needed before clinical
applications or interpretation are advisable. The processing
system tested within the current study builds on an existing
signal/video-processing approach (background subtraction) and
does not directly represent the systems used in the above noted
mass market systems. However, the present study provides
preliminary information on the use of auto-VSG, and with
replication (and likely system improvements), it may be refined
to further index infant/toddler sleep.

With the rise of telemedicine approaches, clinicians desire
easy-to-use tools that may bridge the gap from clinic to in-
home assessments. Auto-VSG has the potential to provide
an index of infant/toddler sleep timing within the comfort
of an infant/toddler’s home environment—without the use
of electrodes, or wrist/ankle monitors. Additionally, when
implementing clinical recommendations, video platforms may
allow parents to actively monitor their infant/toddler’s sleep.
However, the results of this study are preliminary and only
provide initial support for its use in estimating sleep timing (sleep
onset and offset) and not for wakings or nighttime sleep duration.

The lack of agreement between auto-VSG and actigraphy
within the present study could reflect several factors. For
example, actigraphy has demonstrated poor sleep/wake
specificity in certain populations, including young adults
and school-age children when compared to PSG (30, 31).
Additionally, actigraphy estimates may be less accurate in
children with particularly elevated sleep problems (32). In the
current study, close inspection of the infants/toddlers with
the highest levels of disagreement between acitgraphy and
auto-VSG revealed that for most of these children, actigraphy
was overestimating WASO. Although videos clearly indicated
the infants/toddlers were moving, these movements did not
culminate into wakings. Similar errors have been observed in
previous research (25, 33, 34). Additionally, our multifaceted
analytic approach, while adding methodical rigor, may also be
contributing to our incongruent results (when compared to other
studies). For example, Mantua et al. (35) assessed agreement
between PSG and several actigraphy devices and reported high
correlations for many of their comparisons; however, as the
current study demonstrates, high correlations do not equate
high agreement. Finally, the placement of our actigraph device
(ankle band) may have influenced our results because at least
one previous study documented the highest agreement between
actigraphy and PSG with a wrist placement (36). However,
clinical recommendations for actigraphy placement in young
children include the ankle (23). Additionally, actigraph ankle
placement is generally tolerated better in young children. Within
the present study, we opted for ankle placement to maximize
child compliance.

The interpretation of auto-VSG in this study builds heavily
on the movement assumptions of sleep. Like with actigraphy,
this study used infant/toddler movement as a proxy for sleep,
recognizing that sleep with no movement may reflect deep sleep
or slow wave sleep. Although this assumption is common is
developmental sleep research (22), it is important to note that
lack of movement is not the same as sleep. The proposed auto-
VSG system suffers from the same limitations as actigraphy with
respect to sleep estimates based on movement. This limitation
likely contributed to the low agreements for waking, as have
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FIGURE 4 | Bland-Altman plots for auto-VSG and actigraphy for (A) sleep onset, (B) sleep offset, (C) WASO, (D) sleep duration, (E) number of minor wakings, and

(F) number of major wakings.
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been documented in actigraphy [e.g., (25)]. Similarly, this may
be why sleep onset and morning rise time agreements were
higher as they represent the strongest shifts from no movement
to movement or vice versa. If PSG were incorporated, sleep onset
and morning rise times would likely have acceptable agreement
for this reason. Additionally, it is probable that estimates for slow
wave sleep (given its low movement profile) would be acceptable
but estimates of Non-REM Stage 1, 2, and REM sleep would likely
be low.

There are several notable limitations to the clinical
applications of the auto-VSG system tested within this
study. First, the sleep parameters assessed reflect only a
portion of concerns faced by clinicians. When assessing
pediatric sleep concerns, more information regarding
sleep behaviors (e.g., REM sleep, seizure activity) may be
warranted. However, real-time videos can provide clinicians
with unique information regarding parenting behaviors and
the sleep environment (e.g., light, noise, and other ambient
features). Additionally, the tested auto-VSG system poorly
characterized sleep for only some of the infant/toddlers
in this study. Further research is needed to identify why
some infants/toddlers were accurately captured and others
were not. Finally, the use or generalization of the data from
this study is limited by the relatively small sample size.
Although, to our knowledge, this is the largest study of auto-
VSG, replication is needed before clinical implementation is
recommended.

Future studies of auto-VSG systems can build on this study
in several ways. First, the classification of infant/toddler sleep
as sleep or wake is an oversimplification and future studies
should code for either sleep stages or consider adding active and

quiet sleep states. Infant/toddlers transition in and out of sleep
pass through several “phases” that are often indeterminate. This
likely reflects why waking variables had the lowest agreements.
Additionally, future signal processing systems should incorporate
all available data including the audio signal. Incorporating the
audio signal may allow for more nuanced codes of wake settled
or wake distressed and may help disentangle intermediate sleep
states. Future studies may also build on this work by applying the
presented auto-VSG system to PSG and to larger, more diverse
samples. Additionally, improvements in the presented auto-VSG
system may result in more accurate sleep and wake estimates.

In sum, with recent technological advancements, auto-VSG is
feasible and as demonstrated in the current study may provide
relatively comparable estimates to behavioral VSG for sleep
timing.
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