Sahand Communications in Mathematical Analysis (SCMA) Vol. 10 No. 1 (2018), 135-156 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2017.28031

Fuzzy e-regular spaces and strongly e-irresolute mappings

Veerappan Chandrasekar¹ and Somasundaram Parimala^{2*}

ABSTRACT. The aim of this paper is to introduce fuzzy (e, almost) e^* -regular spaces in Šostak's fuzzy topological spaces. Using the r-fuzzy e-closed sets, we define r- $(r-\theta-, r-e\theta-)$ e-cluster points and their properties. Moreover, we investigate the relations among r- $(r-\theta-, r-e\theta-)$ e-cluster points, r-fuzzy (e, almost) e^* -regular spaces and their functions.

1. INTRODUCTION

Kubiak [10] and Šostak [15] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [13, 14], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al., [2] have redefined the same concept under the name gradation of openness. It has been developed in many directions [2–6, 9]. Kim et. al [4–6, 8, 9] investigate *r*-regulars closed sets, several operators and fuzzy (almost) regular spaces in Šostak's fuzzy topological spaces. In this paper, we introduce *r*-fuzzy *e*-closed sets in Šostak's fuzzy topological spaces. We study the notions of *r*-fuzzy (*e*, almost) *e*^{*}-regular spaces we investigate some properties. In particular, we define $r - (r - \theta -, r - e\theta -) e$ -cluster points, *r*-fuzzy (*e*, almost) *e*^{*}-regular spaces and their properties. Moreover, we investigate the relations among *r*-(*r*- θ -, *r*-*e* θ -) *e*-cluster points, *r*-fuzzy (*e*, almost) *e*^{*}-regular spaces and their functions.

 $^{2010\} Mathematics\ Subject\ Classification.\ 54A40,\ 54C08,\ 54C10,\ 54D10.$

Key words and phrases. Fuzzy topology, r-fuzzy e-open (closed) sets, r-(r- θ -, r- $e\theta$ -) e-cluster points, r-fuzzy (e, almost) e^{*}-regular spaces, (strongly, θ -) e-irresolute mappings.

Received: 29 June 2016, Accepted: 18 October 2017.

^{*} Corresponding author.

2. Preliminaries

Throughout this paper, let X be a non-empty set, $I = [0, 1], I_0 =$ (0, 1]. A fuzzy set λ of X is a mapping $\lambda : X \to I$, and I^X be the family of all fuzzy sets on X. The complement of a fuzzy set λ is denoted by $\overline{1} - \lambda$. For $\lambda \in I^X, \overline{\lambda}(x) = \lambda$ for all $x \in X$. For each $x \in X$ and $t \in I_0$, a fuzzy point x_t is defined by

$$x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

Let Pt(X) be the family of all fuzzy points in X. For $\lambda, \mu \in I^X, \lambda$ is called quasi coincident with μ , denoted by $\lambda q\mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise, we denote $\lambda \overline{q} \mu$. We define $x_t \in \lambda$ if $t < \lambda(x)$. All other notations and definitions are standard in the fuzzy set theory.

Definition 2.1 ([15]). A function $\tau: I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

- (1) $\tau(\overline{0}) = \tau(\overline{1}) = 1$,
- (2) $\tau(\bigvee_{i\in J}\mu_i) \ge \bigwedge_{i\in J}\tau(\mu_i)$, for any $\{\mu_i : i\in J\}\subseteq I^X$, (3) $\tau(\mu_1 \land \mu_2) \ge \tau(\mu_1) \land \tau(\mu_2)$, for all $\mu_1, \mu_2 \in I^X$.

The pair (X, τ) is called a fuzzy topological space (for short, fts).

Definition 2.2 ([5]). Let (X, τ) be a fts, $\lambda, \mu \in I^X$ and $r \in I_0$. We define operators as follows:

$$C_{\tau}(\lambda, r) = \wedge \{ \mu \in I^X | \lambda \le \mu, \tau(\overline{1} - \mu) \ge r \},\$$

$$I_{\tau}(\lambda, r) = \vee \{ \mu \in I^X | \lambda \ge \mu, \tau(\mu) \ge r \}.$$

Definition 2.3 ([5]). Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$, λ is called *r*-fuzzy regular open (for short, *r*-fro) (resp. *r*-fuzzy regular closed (for short, r-frc)) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$ (resp. $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$).

Definition 2.4 ([12]). Let (X, τ) be a fts. $\lambda, \mu \in I^X$ and $r \in I_0$,

- (i) $\delta I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \mu \text{ is a r-fro set } \}$ is called the (i) $\delta C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \ge \lambda, \mu \text{ is a r-frc set } \}$ is called the
- *r*-fuzzy δ -closure of λ .

Definition 2.5 ([12]). Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$,

- (i) λ is called an r-fuzzy δ -semiopen (resp. r-fuzzy δ -semiclosed) set if $\lambda \leq C_{\tau}(\delta I_{\tau}(\lambda, r), r)$ (resp. $I_{\tau}(\delta C_{\tau}(\lambda, r), r) \leq \lambda$).
- (ii) λ is called an r-fuzzy δ -preopen (resp. r-fuzzy δ -preclosed) set if $\lambda \leq I_{\tau}(\delta - C_{\tau}(\lambda, r), r)$ (resp. $C_{\tau}(\delta - I_{\tau}(\lambda, r), r) \leq \lambda$).

FUZZY e-REGULAR SPACES AND STRONGLY e-IRRESOLUTE MAPPINGS 137

- (iii) λ is called an r-fuzzy semi δ -preopen (resp. r-fuzzy semi δ -preclosed) set if $\lambda \leq I_{\tau}(C_{\tau}(\delta I_{\tau}(\lambda, r), r), r)$ (resp. $C_{\tau}(I_{\tau}(\delta C_{\tau}(\lambda, r), r), r) \leq \lambda$).
- (iv) λ is called an r-fuzzy e-open (resp. r-fuzzy e-closed) set if $\lambda \leq C_{\tau}(\delta I_{\tau}(\lambda, r), r) \vee I_{\tau}(\delta C_{\tau}(\lambda, r), r)$ (resp. $C_{\tau}(\delta I_{\tau}(\lambda, r), r) \wedge I_{\tau}(\delta C_{\tau}(\lambda, r), r) \leq \lambda$).

Definition 2.6 ([12]). Let (X, τ) be a fts. $\lambda, \mu \in I^X$ and $r \in I_0$,

- (i) $eI_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \mu \text{ is a r-feo set } \}$ is called the *r*-fuzzy e-interior of λ .
- (ii) $eC_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \ge \lambda, \mu \text{ is a r-fec set } \}$ is called the *r*-fuzzy e-closure of λ .

Definition 2.7 ([8]). Let (X, τ) be a fts and $x_t \in Pt(X)$. We denote

$$\mathcal{Q}_{\tau}(x_t, r) = \{ \mu \in I^X | x_t q \mu, \tau(\mu) \ge r \},$$

$$\mathcal{R}_{\tau}(x_t, r) = \{ \mu \in I^X | x_t q \mu, \mu \text{ is } r\text{-fro} \}.$$

Definition 2.8 ([8]). Let (X, τ) be a fts, $\lambda \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$. A fuzzy point x_t is called:

- (i) an r-(resp. $r-\theta$ -) cluster point of λ if $\mu q \lambda$ (resp. $C_{\tau}(\mu, r) q \lambda$) for every $\mu \in \mathcal{Q}_{\tau}(x_t, r)$.
- (ii) an r-(resp. r- θ -) regular cluster point of λ if $\mu q \lambda$ (resp. $C_{\tau}(\mu, r) q \lambda$) for every $\mu \in \mathcal{R}_{\tau}(x_t, r)$.

Also, we define operators RC_{τ} and RT_{τ} with respect to r-regular cluster and r- θ -regular cluster points respectively.

Theorem 2.9 ([7]). Let (X, τ) be a fts. For each $\lambda, \mu, \rho \in I^X$ and $r \in I_0$ we have the following properties:

- (1) $C_{\tau}(\lambda, r) = \bigvee \{x_t \in Pt(X) | x_t \text{ is an } r\text{-cluster point } of\lambda\},\ RC_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq \mu, \mu \text{ is } r\text{-}frc\}.$ (2) $T_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq I_{\tau}(\mu, r), \tau(\overline{1} - \mu) \geq r\},\$
- (2) $T_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X | \lambda \leq I_{\tau}(\mu, r), \tau(\overline{1} \mu) \geq r \}, \\ RT_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X | \lambda \leq I_{\tau}(\mu, r), \mu \text{ is } r\text{-}frc \}.$
- (3) x_t is an r- θ -cluster point of λ iff $x_t \in T_{\tau}(\lambda, r)$, x_t is an r- θ -regular cluster point of λ iff $x_t \in RT_{\tau}(\lambda, r)$.

Definition 2.10 ([7]). Let (X, τ) be a fts. Then (X, τ) is called an *r*-fuzzy regular (resp. *r*-fuzzy almost regular) if for each $\tau(\mu) \ge r$ (resp. *r*-regular open μ), there exists a family $\{\nu_i \in I^X | \tau(\nu_i) \ge r\}$ such that $\mu = \bigvee_{i \in \Gamma} \nu_i$ with $C_{\tau}(\nu_i, r) \le \mu$.

Definition 2.11. Let (X, τ) and (Y, η) be fts's, a function $f : (X, \tau) \to (Y, \eta)$ is called:

(i) fuzzy continuous [11] iff $\tau(f^{-1}(\mu)) \ge \eta(\mu)$,

- (ii) fuzzy open (resp. fuzzy closed) [11] iff $\eta(f(\lambda)) \ge \tau(\lambda)$ (resp. $\eta(\overline{1} f(\lambda)) \ge \tau(\overline{1} \lambda)$),
- (iii) fuzzy *e*-irresolute [12] iff $f^{-1}(\mu)$ is *r*-feo for each *r*-feo $\mu \in I^Y$.
- (iv) fuzzy *e*-continuous [12] (resp. fuzzy weakly *e*-continuous) iff for each $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, there exists $\lambda \in e_{\tau}(x_t, r)$ such that $f(\lambda) \leq \mu$ (resp. $f(\lambda) \leq eC_{\eta}(\mu, r)$),
- (v) f is called fuzzy δ -semiopen [12] (resp. fuzzy δ -preopen, fuzzy semi δ -preopen and fuzzy e-open) iff $f(\lambda)$ is an r-f δ so (resp. r-f δ po, r-fs δ po and r-feo) set of Y for each $\lambda \in I^X, r \in I_0$ with $\tau_1(\lambda) \geq r$.
- (vi) f is called fuzzy δ -semiclosed [12] (resp. fuzzy δ -preclosed, fuzzy semi δ -preclosed and fuzzy e-closed) iff $f(\lambda)$ is an r-f δ sc (resp. r-f δ pc, r-fs δ pc and r-f γ c) set of Y for each $\lambda \in I^X, r \in I_0$ with $\tau_1(\overline{1} - \lambda) \geq r$.

Theorem 2.12 ([12]). Let (X, τ) be a fts and $r \in I_o$.

- (i) Any union of r-feo sets is an r-feo set.
- (ii) Any intersection of r-fec sets is an r-fec set.

Definition 2.13 ([7]). Let (X, τ) and (Y, η) be fts's a function f: $(X, \tau) \to (Y, \eta)$ is called a supercontinuous iff for each $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, there exists $\lambda \in \mathcal{R}_{\tau}(x_t, r)$ such that $f(\lambda) \leq \mu$.

3. Fuzzy *e*-regular spaces

Definition 3.1. Let (X, τ) be a fts and $x_t \in Pt(X)$. We denote $\mathcal{E}_{\tau}(x_t, r) = \{\mu \in I^X | x_t q \mu, \mu \text{ is } r\text{-feo} \}.$

Definition 3.2. Let (X, τ) be a fts, $\lambda \in I^X$, $x_t \in Pt(X)$ and $r \in I_0$. A fuzzy point x_t is called:

- (i) an *r*-e θ -cluster point of λ if $eC_{\tau}(\mu, r)q\lambda$ for every $\mu \in \mathcal{Q}_{\tau}(x_t, r)$,
- (ii) an *r*-(resp. *r*- θ -, *r*- $e\theta$ -) *e*-cluster point of λ if $\mu q \lambda$ (resp. $C_{\tau}(\mu, r) q \lambda$, $eC_{\tau}(\mu, r) q \lambda$) for every $\mu \in \mathcal{E}_{\tau}(x_t, r)$,
- (iii) an $r \cdot e\theta$ -regular cluster point of λ if $eC_{\tau}(\mu, r)q\lambda$ for every $\mu \in \mathcal{R}_{\tau}(x_t, r)$.

We define operators $eT_{\tau}, eeT_{\tau} : I^X \times I_0 \to I^X$ as follows:

 $eT_{\tau}(\lambda, r) = \bigvee \{ x_t \in Pt(X) | x_t \text{ is an } r \cdot \theta \text{-}ecluster \text{ point of } \lambda \},\$ $eeT_{\tau}(\lambda, r) = \bigvee \{ x_t \in Pt(X) | x_t \text{ is a } r \cdot e\theta \text{-}ecluster \text{ point of } \lambda \}.$

Also, we define operators ReT_{τ} and CeT_{τ} with respect to r- $e\theta$ -regular cluster and r- $e\theta$ -cluster points respectively.

Theorem 3.3. Let (X, τ) be a fts. For $\lambda, \mu \in I^X, r \in I_0$, it holds the following properties

FUZZY e-REGULAR SPACES AND STRONGLY e-IRRESOLUTE MAPPINGS 139

(1) $eC_{\tau}(\overline{1} - \lambda, r) = \overline{1} - eI_{\tau}(\lambda, r),$ (2) $\lambda \leq eC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r),$ (3) If $\tau(\lambda) \geq r$ and $\tau(\overline{1} - \lambda) \geq r$, then $eC_{\tau}(\lambda, r) = C_{\tau}(\lambda, r),$ (4) $eC_{\tau}(eC_{\tau}(\lambda, r), r) = eC_{\tau}(\lambda, r).$

Proof. (1) For each
$$\lambda \in I^X, r \in I_0$$
, we have

$$eI_{\tau}(\overline{1} - \lambda, r) = \bigvee \left\{ \mu \in I^{X} | \mu \leq \overline{1} - \lambda, \mu \text{is}r\text{-feo} \right\}$$
$$= \overline{1} - \bigwedge \left\{ \overline{1} - \mu | \overline{1} - \mu \geq \lambda, \overline{1} - \mu \text{is}r\text{-fec} \right\}$$
$$= \overline{1} - eC_{\tau}(\lambda, r).$$

- (2) Since $\tau(\overline{1} \lambda) \ge r$, then μ is *r*-fec. Thus the result holds.
- (3) Suppose $eC_{\tau}(\lambda, r)(x) < t < C_{\tau}(\lambda, r)(x)$. There exists an *r*-fec set μ with $\lambda \leq \mu$ such that

$$eC_{\tau}(\lambda, r)(x) < \mu(x) < t < C_{\tau}(\lambda, r)(x).$$

Since μ is *r*-fec,

$$C_{\tau}(\delta - I_{\tau}(\mu, r), r) \wedge I_{\tau}(\delta - C_{\tau}(\mu, r), r) \leq \mu.$$

Since $\tau(\lambda) \geq r$ and $\tau(\overline{1} - \lambda) \geq r$, $I_{\tau}(\lambda, r) = \lambda$ and $C_{\tau}(\lambda, r) = \lambda$
So
$$C_{\tau}(\lambda, r)(x) = C_{\tau}(\delta - I_{\tau}(\lambda, r), r)(x) \wedge I_{\tau}(\delta - C_{\tau}(\lambda, r), r)(x)$$
$$\leq C_{\tau}(\delta - I_{\tau}(\mu, r), r)(x) \wedge I_{\tau}(\delta - C_{\tau}(\mu, r), r)(x)$$
$$\leq \mu(x)$$
$$< t.$$

It is a contradiction.

(4) Since $eC_{\tau}(\lambda, r)$ is r-fec from Theorem 2.12 (2), it is trivial.

Theorem 3.4. Let (X, τ) be a fts. The following statements hold:

r- e cluster	\Rightarrow	r - $e\theta$ - e cluster	\Rightarrow	r - θ - e cluster
\Downarrow		\Downarrow		\Downarrow
<i>r</i> -cluster	\Rightarrow	r - $e\theta$ cluster	\Leftrightarrow	r - θ cluster
\Downarrow		\Downarrow		\Downarrow
r-regular cluster	$r \Rightarrow$	$r - e\theta$ regular cluster	\Leftrightarrow	r - θ regular cluster

Proof. By Theorem 3.3 (3), since $eC_{\tau}(\mu, r) = C_{\tau}(\mu, r)$ for $\tau(\mu) \ge r, x_t$ is an $r-e\theta$ (resp. $r-e\theta$ regular) cluster point iff x_t is an $r-\theta$ (resp. $r-\theta$ regular) cluster point. Other implications follow from the definitions.

Theorem 3.5. Let (X, τ) be a fts. For each $\lambda, \mu, \rho \in I^X$ and $r \in I_0$ we have the following properties:

(1) $\mathcal{R}_{\tau}(x_t, r) \subset \mathcal{Q}_{\tau}(x_t, r) \subset \mathcal{E}_{\tau}(x_t, r).$ (2) $eC_{\tau}(\lambda, r) = \bigvee \{x_t \in Pt(X) | x_t \text{ is an } r \text{-ecluster point } of \lambda\}.$ (3) $eT_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq I_{\tau}(\mu, r), \mu \text{ is } r \text{-fec}\}.$ (4) $eeT_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq eI_{\tau}(\mu, r), \mu \text{ is } r \text{-fec}\},$ $CeT_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq eI_{\tau}(\mu, r), \tau(\overline{1} - \mu) \geq r\},$ $ReT_{\tau}(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq eI_{\tau}(\mu, r), \mu \text{ is } r \text{-frc}\}.$ (5) x_t is an e-cluster point of λ iff $x_t \in eC_{\tau}(\lambda, r),$ x_t is an $r \cdot \theta$ - (resp. $r \cdot e\theta$ -) e cluster point of λ iff $x_t \in eT_{\tau}(\lambda, r)$ (resp. $x_t \in eeT_{\tau}(\lambda, r)),$ x_t is an $r \cdot e\theta$ -regular cluster point of λ iff $x_t \in ReT_{\tau}(\lambda, r).$ (6) $CeT_{\tau}(\lambda, r) = T_{\tau}(\lambda, r)$ and $ReT_{\tau}(\lambda, r) = RT_{\tau}(\lambda, r).$ (7) $eC_{\tau}(\lambda, r) \leq eeT_{\tau}(\lambda, r) \leq eT_{\tau}(\lambda, r) \leq T_{\tau}(\lambda, r) \leq RT_{\tau}(\lambda, r).$ (8) $eC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r) \leq RC_{\tau}(\lambda, r) \leq T_{\tau}(\lambda, r) \leq RT_{\tau}(\lambda, r).$ (9) If ρ is $r \cdot feo$, then

$$eC_{\tau}(\rho, r) = eeT_{\tau}(\rho, r),$$

and

$$C_{\tau}(\rho, r) = RC_{\tau}(\rho, r)$$
$$= T_{\tau}(\rho, r)$$
$$= RT_{\tau}(\rho, r).$$

(10) If $\tau(\rho) \geq r$, then

$$C_{\tau}(\rho, r) = eeT_{\tau}(\rho, r)$$

= $eT_{\tau}(\rho, r)$
= $C_{\tau}(\rho, r)$
= $RC_{\tau}(\rho, r)$
= $T_{\tau}(\rho, r)$
= $RT_{\tau}(\rho, r)$.

Proof. (1) It follows from the definitions.

e

(2) Put $\rho = \bigvee \{x_t \in Pt(X) | x_t \text{ is an } r\text{-}e \text{ cluster point of } \lambda\}$. Suppose $eC_{\tau}(\lambda, r) \nleq \rho$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $eC_{\tau}(\lambda, r)(x) > t > \rho(x)$. Then x_t is not an r-e cluster point of λ . So, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r), \lambda \leq \overline{1} - \mu$ and $\overline{1} - \mu$ is r-fec. By the definition of eC_{τ} , in Theorem 3.3

$$eC_{\tau}(\lambda, r)(x) \le (\overline{1} - \mu)(x) < t.$$

It is a contradiction. Thus $eC_{\tau}(\lambda, r) \leq \rho$.

Suppose $eC_{\tau}(\lambda, r) \not\geq \rho$. Then there exists an *r*-*e* cluster point $y_s \in Pt(X)$ of λ such that $eC_{\tau}(\lambda, r)(y) < s \leq \rho(y)$. By the

definition of eC_{τ} , there exists an *r*-fec set μ with $\lambda \leq \mu$ such that $eC_{\tau}(\lambda, r)(y) \leq \mu(y) < s < \rho(y)$. Then, $\overline{1} - \mu \in \mathcal{E}_{\tau}(y_s, r)$ and $\lambda \overline{q}\overline{1} - \mu$. Hence, y_s is not an *r*-*e* cluster point of λ . It is a contradiction. So $eC_{\tau}(\lambda, r) \geq \rho$.

(3) Put

$$\delta = \bigwedge \{ \mu \in I^X | \lambda \le I_\tau(\mu, r), \mu \text{ is } r \text{-fec} \}.$$

Suppose $eT_{\tau}(\lambda, r) \not\geq \delta$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $eT_{\tau}(\lambda, r)(x) < t < \delta(x)$. Then x_t is not an $r \cdot \theta \cdot e$ cluster point of λ . So, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ and $C_{\tau}(\mu, r) \leq \overline{1} - \lambda$. Thus $\overline{1} - \mu$ is r-fec and

$$\lambda \le \overline{1} - C_{\tau}(\mu, r) = I_{\tau}(\overline{1} - \mu, r).$$

Hence $\delta(x) \leq (\overline{1} - \mu)(x) < t$. It is a contradiction. Thus $eT_{\tau}(\lambda, r) \geq \delta$.

Suppose $eT_{\tau}(\lambda, r) \nleq \delta$. Then there exists an $r \cdot \theta \cdot e$ cluster point y_s of λ such that $eT_{\tau}(\lambda, r)(y) \ge s > \delta(y)$. By the definition of δ , there exists μ with $\lambda \le I_{\tau}(\mu, r)$ and μ is r-fec such that

$$eT_{\tau}(\lambda, r)(y) \ge s > \mu(y) \ge \delta(y)$$

Then, μ is *r*-fec and $\overline{1} - \mu \in \mathcal{E}_{\tau}(y_s, r)$. So

$$\lambda \le I_{\tau}(\mu, r) = \overline{1} - C_{\tau}(\overline{1} - \mu, r),$$

implies $\lambda \overline{q} C_{\tau}(\overline{1} - \mu, r)$. Hence, y_s is not an r- θe cluster point of λ . It is a contradiction. Thus $eT_{\tau}(\lambda, r) \leq \delta$.

(4) Put

$$\gamma = \bigwedge \{ \mu \in I^X | \lambda \le eI_\tau(\mu, r), C_\tau(I_\tau(\mu, r), r) = \mu \}.$$

Suppose $ReT_{\tau}(\lambda, r) \not\geq \gamma$. There exist $x \in X$ and $t \in (0, 1)$ such that $ReT_{\tau}(\lambda, r)(x) < t < \gamma(x)$. Then x_t is not an r $e\theta$ regular cluster point of λ . So, there exists $\mu \in R_{\tau}(x_t, r)$, $eC_{\tau}(\mu, r) \leq \overline{1} - \lambda$. Thus

$$\lambda \leq \overline{1} - eC_{\tau}(\mu, r)$$

= $eI_{\tau}(\overline{1} - \mu, r), C_{\tau}(I_{\tau}(\mu, r), r)$
= $\overline{1} - \mu.$

Hence $\gamma(x) \leq (\overline{1} - \mu)(x) < t$. It is a contradiction. Thus $ReT_{\tau}(\lambda, r) \geq \gamma$.

Suppose $ReT_{\tau}(\lambda, r) \nleq \gamma$. Then there exists an $r \cdot e\theta$ regular cluster point y_s of λ such that $ReT_{\tau}(\lambda, r)(y) \ge s > \gamma(y)$. By the definition of γ , there exists μ with $\lambda \le eI_{\tau}(\mu, r), C_{\tau}(I_{\tau}(\mu, r), r) =$ μ such that $RT_{\tau}(\lambda, r)(y) \ge s > \mu(y) \ge \gamma(y)$. Then, μ is r-frc and $\overline{1} - \mu \in \mathcal{R}_{\tau}(y_s, r)$. Furthermore, $\lambda \le eI_{\tau}(\mu, r) =$ $\overline{1} - eC_{\tau}(\overline{1} - \mu, r)$ implies $\lambda \overline{q} eC_{\tau}(\overline{1} - \mu, r)$. Hence, y_s is not an $r - e\theta$ regular cluster point of λ . It is a contradiction. Thus $ReT_{\tau}(\lambda, r) \leq \gamma$. Other cases are similarly proved.

- (5) We show that x_t is an $r \cdot e\theta \cdot e$ cluster point of λ iff $x_t \in eeT_\tau(\lambda, r)$. (\Rightarrow) It is trivial.
 - (\Leftarrow) Suppose that x_t is not an $r \cdot e\theta \cdot e$ cluster point of λ . Then there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\mu, r) \leq \overline{1} - \lambda$. Thus, $\lambda \leq \overline{1} - eC_{\tau}(\mu, r) = eI_{\tau}(\mu, r).$
 - By (3), we have $eeT_{\tau}(\lambda, r)(x) \leq (\overline{1} \mu)(x) < t$. Hence $x_t \notin eeT_{\tau}(\lambda, r)$. Other cases are similarly proved.
- (6-8) Are easily proved from Theorem 3.4.
 - (9) For each r-feo set ρ , we will show that $eC_{\tau}(\rho, r) = eeT_{\tau}(\rho, r)$. Then there exist $x \in X$ and $t \in I_0$ such that

 $eC_{\tau}(\rho, r)(x) < t < eeT_{\tau}(\rho, r)(x).$

Thus, x_t is not an r-e cluster point of ρ . So, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $\lambda \leq \overline{1} - \rho$. It implies $eC_{\tau}(\lambda, r) \leq \overline{1} - \rho$. Thus, x_t is not an r- $e\theta$ -e-cluster point of ρ . Hence $eC_{\tau}(\rho, r) = eeT_{\tau}(\rho, r)$. Let $\rho \leq I_{\tau}(C_{\tau}(\rho, r), r)$ be given. Since $C_{\tau}(\rho, r)$ is r-fec, by (3), $eT_{\tau}(\rho, r) \leq C_{\tau}(\rho, r)$. Moreover, since

$$C_{\tau}(\rho, r) \leq C_{\tau}(I_{\tau}(C_{\tau}(\rho, r), r))$$
$$\leq C_{\tau}(\rho, r),$$

then $C_{\tau}(\rho, r)$ is r-frc. Since $\rho \leq I_{\tau}(C_{\tau}(\rho, r), r)$ and $C_{\tau}(\rho, r)$ is r-frc, by (3), $RT_{\tau}(\rho, r) = C_{\tau}(\rho, r)$. From (8), we have

$$C_{\tau}(\rho, r) = RC_{\tau}(\rho, r)$$
$$= T_{\tau}(\rho, r)$$
$$= RT_{\tau}(\rho, r).$$

(10) There exist $\rho \in I^X$ with $\tau(\rho) \geq r$ such that

$$eC_{\tau}(\rho, r) \not\geq eT_{\tau}(\rho, r).$$

Then there exists $x \in X$ and $t \in I$ such that

$$eC_{\tau}(\rho, r)(x) < t < eT_{\tau}(\rho, r)(x).$$

Thus, x_t is not an *r*-*e* cluster point of ρ . So, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $\lambda \leq \overline{1} - \rho$. It implies $C_{\tau}(\lambda, r) \leq \overline{1} - \rho$. Thus, x_t is not an *r*- θ -*e* cluster point of ρ . Hence

$$eC_{\tau}(\rho, r) = eeT_{\tau}(\rho, r)$$
$$= eT_{\tau}(\rho, r).$$

By (7-9), we have

$$eC_{\tau}(\rho, r) = C_{\tau}(\rho, r)$$

= $RC_{\tau}(\rho, r)$
= $T_{\tau}(\rho, r)$
= $RT_{\tau}(\rho, r)$.

Example 3.6. Let $X = \{a, b, c\}, \alpha, \beta, \gamma, \delta \in I^X$ are defined as

$\alpha(a) = 0.3,$	$\beta(a) = 0.6,$	$\gamma(a) = 0.6,$	$\delta(a) = 0.3,$
$\alpha(b) = 0.4,$	$\beta(b) = 0.5,$	$\gamma(b) = 0.5,$	$\delta(b) = 0.4,$
$\alpha(c) = 0.5,$	$\beta(c) = 0.5,$	$\gamma(c) = 0.4,$	$\delta(c) = 0.4.$

We define the smooth topology $\tau: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = \alpha, \\ \frac{1}{2} & \text{if } \lambda = \beta, \\ \frac{1}{2} & \text{if } \lambda = \gamma, \\ \frac{1}{2} & \text{if } \lambda = \delta, \\ 0 & \text{otherwise.} \end{cases}$$

For $r = \frac{1}{2}$, then the fuzzy sets $\alpha, \beta, \gamma, \delta$ are r-feo sets, $\overline{1} - \alpha, \overline{1} - \beta, \overline{1} - \gamma, \overline{1} - \delta$ are r-fec sets. Let $\lambda(a) = 0.4, \lambda(b) = 0.5, \lambda(c) = 0.5, eC_{\tau}(\lambda, r) = \lambda$, and clearly, $eeT_{\tau}(\lambda, r) \leq eT_{\tau}(\lambda, r) = T_{\tau}(\lambda, r) = RT_{\tau}(\lambda, r)$.

Definition 3.7. Let (X, τ) be a fts. Then (X, τ) is called:

- (1) *r*-fuzzy *e*-regular if for each *r*-feo μ there exists a family { $\nu_i \in I^X | \tau(\nu_i) \ge r$ } such that $\mu = \bigvee_{i \in \Gamma} \nu_i$ with $C_{\tau}(\nu_i, r) \le \mu$.
- (2) *r*-fuzzy *e*^{*}-regular (resp. *r*-fuzzy *ee*^{*}-regular, *r*-fuzzy almost *e*^{*}-regular) if for each $\tau(\mu) \geq r$ (resp. *r*-feo μ , *r*-fro μ), there exists a family { $\nu_i \in I^X | \nu_i \text{ is } r\text{-feo}$ } such that $\mu = \bigvee_{i \in \Gamma} \nu_i$ with $eC_{\tau}(\nu_i, r) \leq \mu$.
- (3) fuzzy (e, almost) (e^{*})-regular if (X, τ) is r-fuzzy (e, almost)(e^{*}-) regular, for each $r \in I_0$.

We easily prove the following Lemma.

Lemma 3.8. For $\lambda, \lambda_i, \mu \in I^X$ and $x_t \in Pt(X)$, we have

- (1) $\lambda \leq \mu$ iff $x_t q \lambda$ implies $x_t q \mu$.
- (2) $x_t q \bigvee_{i \in \Lambda} \lambda_i$ iff there exists $i \in \Lambda$ such that $x_t q \lambda_i$.

Theorem 3.9. Let (X, τ) be a fts and $r \in I_0$. Then the following statements are equivalent:

(1) (X, τ) is r-fuzzy almost e^* -regular.

- (2) For all $\mu \in R_{\tau}(x_t, r)$, there exists $\nu \in \mathcal{E}_{\tau}(x_t, r)$ with $eC_{\tau}(\nu, r) \leq$ μ .
- (3) For each $x_t \in Pt(X)$ and each r-frc $\lambda \in I^X$ with $x_t \notin \lambda$, there exist $\nu \in \mathcal{E}_{\tau}(x_t, r)$ and r-feo $\mu \in I^X$ such that $\lambda \leq \mu$ and $\mu \overline{q} \nu$.
- (4) For each r-frc $\lambda \in I^X$, $\lambda = \bigwedge \{ eC_{\tau}(\nu, r) | \lambda \leq \nu, \nu \text{ is } r\text{-feo} \}.$ (5) For each r-frc $\lambda \in I^X$ with $\rho \nleq \lambda$, there exist $\nu \in \mathcal{E}_{\tau}(x_t, r)$ and r-feo μ such that $\lambda \leq \mu$, $\rho q \nu$ and $\mu \overline{q} \nu$.
- Proof. (1) \Rightarrow (2): Let $\mu \in \mathcal{R}_{\tau}(x_t, r)$ be given. Since (X, τ) is r-fuzzy almost e^* -regular, there exists a family $\{\nu_i | \nu_i \text{ is } r\text{-feo}\}$ such that $\mu = \bigvee_{i \in \Gamma} \nu_i$ with $eC_{\tau}(\nu_i, r) \leq \mu$. Since $x_t q$ $(\mu = \bigvee_{i \in \Gamma} \nu_i)$, by Lemma 3.8 (2), there exists $i \in \Gamma$ such that $\nu_i \in \mathcal{E}_{\tau}(x_t, r)$ with $eC_{\tau}(\nu_t, r) \leq \mu.$
- (2) \Rightarrow (1): For each $\mu \in \mathcal{R}_{\tau}(x_t, r)$, there exists $\nu_i \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\nu_i, r) \leq \mu$. Let $\{\nu_i \in \mathcal{E}_{\tau}(x_t, r) | i \in \Lambda, eC_{\tau}(\nu_i, r) \leq \mu\}$ be the family satisfying the above condition. Trivially, $\bigvee_{i \in \Lambda} \nu_i \leq \mu$. We only show that, by Lemma 3.8 (1), $x_t q \bigvee_{i \in \Lambda} \nu_i$ for each $x_t q \mu$. For each $\mu \in \mathcal{R}_\tau(x_t, r)$, by (2), there exists $\nu_i \in \mathcal{E}_\tau(x_t, r)$ such that $eC_{\tau}(\nu_i, r) \leq \mu$. So, $x_t q \nu_i$ implies $x_t q \bigvee_{i \in \Lambda} \nu_i$. Then $\mu = \bigvee_{i \in \Lambda} \nu_i$ such that $eC_{\tau}(\nu_i, r) \leq \mu$.
- (2) \Rightarrow (3): Let $x_t \notin \lambda$ with r-frc λ . Then $\overline{1} \lambda \in \mathcal{R}_{\tau}(x_t, r)$. By (2), there exists $\nu \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\nu, r) \leq \overline{1} - \lambda$. Put $\mu = \overline{1} - eC_{\tau}(\nu, r)$. By Theorem 2.12 (1), μ is r-feo such that $\lambda \leq \mu$ and $\mu \overline{q} \nu$.
- (3) \Rightarrow (4): Suppose there exists r-frc $\lambda \in I^X$ such that

$$\lambda \leq \bigwedge \{ eC_{\tau}(\nu, r) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \}.$$

Then there exist $x \in X$ and $t \in I_0$ such that

(3.1)
$$\lambda(x) < t < \bigwedge \{ eC_{\tau}(\nu, r)(x) | \lambda \le \nu, \nu \text{ is } r\text{-feo} \}.$$

Since $x_t \notin \lambda$, by (4), there exist $\mu \in \mathcal{E}_{\tau}(x_t, r)$ and r-feo ν such that $\lambda \leq \nu$ and $\mu \bar{q} \nu$. Since ν is r-feo, $\lambda \leq eI_{\tau}(\nu, r)$ and $eI_{\tau}(\nu, r)$ is r-feo. Hence

$$\lambda(x) < t < eC_{\tau}(eI_{\tau}(\nu, r), r)(x).$$

By the definition of eC_{τ} , we have

$$eC_{\tau}(eI_{\tau}(\nu, r), r)(x) \le eC_{\tau}(\nu, r)(x)$$

$$< \overline{1} - \mu(x) < t.$$

It is contradiction for (3.1). Thus

$$\lambda = \bigwedge \{ eC_{\tau}(\nu, r) | \lambda \le \nu, \nu \text{ is } r \text{-feo} \}.$$

(4) \Rightarrow (5): Let $\lambda \in I^X$ be r-frc with $\rho \leq \lambda$. Then $x_t \in Pt(X)$ such that $x_t \in \rho$ and $t > \lambda(x)$. By (4), there exist r-feo μ such that $\lambda \leq \mu$

and $eC_{\tau}(\mu, r)(x) < t$. Put $\nu = \overline{1} - eC_{\tau}(\mu, r)$. By Theorem 2.12 (1), ν is r-feo, that is, $\nu \in \mathcal{E}_{\tau}(x_t, r)$ such that $\lambda \leq \mu$, $\rho q \nu$ and $\mu \overline{q} \nu$.

(5) \Rightarrow (2): For all $\mu \in \mathcal{R}_{\tau}(x_t, r), t > \overline{1} - \mu(x)$. So, $x_t \nleq \overline{1} - \mu$ and $\overline{1} - \mu$ is *r*-frc, by (5), there exist $\nu \in \mathcal{E}_{\tau}(x_t, r)$ and *r*-feo ρ such that $\overline{1} - \mu \le \rho$ and $\rho \overline{q} \nu$. Thus, $\nu \le \overline{1} - \rho \le \mu$. Since $\overline{1} - \rho$ is *r*-fec and μ is *r*-fro, $eC_{\tau}(\overline{1} - \rho, r) \le \mu$. It implies $\nu \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\nu, r) \le \mu$.

Corollary 3.10. Let (X, τ) be a fts and $r \in I_0$. Then the following statements are equivalent:

- (i) (X, τ) is r-fuzzy ee^{*}-regular (resp. r-fuzzy e^{*}-regular).
- (ii) For all $\mu \in \mathcal{E}_{\tau}(x_t, r)$ (resp. $\mu \in Q_{\tau}(x_t, r)$), there exists $\nu \in \mathcal{E}_{\tau}(x_t, r)$ with $eC_{\tau}(\nu, r) \leq \mu$.
- (iii) For each $x_t \in Pt(X)$ and each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} \lambda) \ge r$) with $x_t \notin \lambda$, there exist $\nu \in \mathcal{E}_{\tau}(x_t, r)$ and r-feo $\mu \in I^X$ such that $\lambda \le \mu$ and $\mu \overline{q} \nu$.
- (iv) For each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} \lambda) \ge r$),

$$\lambda = \bigwedge \{ eC_{\tau}(\nu, r) | \lambda \le \nu, \nu \text{ is } r - feo \}.$$

(v) For each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} - \lambda) \geq r$) with $\rho \nleq \lambda$, there exist $\nu \in \mathcal{E}_{\tau}(x_t, r)$ and r-feo μ such that $\lambda \leq \mu$, $\rho q \nu$ and $\mu \overline{q} \nu$.

Corollary 3.11. Let (X, τ) be a fts and $r \in I_0$. Then the following statements are equivalent:

- (i) (X, τ) is r-fuzzy e-regular (resp, r-fuzzy regular, r-fuzzy almost regular).
- (ii) For all $\mu \in \mathcal{E}_{\tau}(x_t, r)$ (resp. $\mu \in \mathcal{Q}_{\tau}(x_t, r), \mu \in \mathcal{R}_{\tau}(x_t, r)$), there exists $\nu \in \mathcal{Q}_{\tau}(x_t, r)$ with $C_{\tau}(\nu, r) \leq \mu$.
- (iii) For each $x_t \in Pt(X)$ and each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} \lambda) \ge r, r$ -frc) with $x_t \notin \lambda$, there exist $\nu \in \mathcal{Q}_{\tau}(x_t, r)$ and $\tau(\mu) \ge r$ such that $\lambda \le \mu$ and $\mu \overline{q} \nu$.
- (iv) For each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} \lambda) \ge r, r$ -frc),

$$\lambda = \bigwedge \{ C_{\tau}(\nu, r) | \lambda \le \nu, \tau(\nu) \ge r \}.$$

(v) For each r-fec $\lambda \in I^X$ (resp. $\tau(\overline{1} - \lambda) \ge r$, r-frc) with $\rho \nleq \lambda$, there exist $\nu \in Q_{\tau}(x_t, r)$ and $\tau(\mu) \ge r$ such that $\lambda \le \mu$, $\rho q \nu$ and $\mu \overline{q} \nu$.

Lemma 3.12. Let (X, τ) be a fts.

(i) For each $x_tq\lambda$, there exists $\mu \in Q_\tau(x_t, r)$ such that

$$C_{\tau}(\mu, r) \leq \lambda$$
 iff $\overline{1} - \lambda = T_{\tau}(\overline{1} - \lambda, r).$

(ii) For each
$$x_t q \lambda$$
, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that

$$eC_{\tau}(\mu, r) \leq \lambda$$
 iff $\overline{1} - \lambda = eeT_{\tau}(\overline{1} - \lambda, r)$

Proof. (i) It is similarly proved as the following (ii).

(ii) (\Rightarrow) We only show that $\overline{1} - \lambda \ge eeT_{\tau}(\overline{1} - \lambda, r)$. Let $x_t \nleq \overline{1} - \lambda$. Then $x_t q \lambda$. By hypothesis, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\mu, r) \le \lambda$. Thus, $x_t \notin eeT_{\tau}(\overline{1} - \lambda, r)$. (\Leftarrow) For each $x_t q \lambda$, since $\overline{1} - \lambda = eeT_{\tau}(\overline{1} - \lambda, r)$, x_t is not $r - e\theta - e$

cluster point of $\overline{1} - \lambda$. There exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that

$$eC_{\tau}(\mu, r) \leq \overline{1} - \lambda.$$

Theorem 3.13. Let (X, τ) be a fts and $r \in I_0$. The following statements are equivalent:

- (1) (X, τ) is r-fuzzy ee^{*}-regular (resp. r-fuzzy e^{*}-regular, r-fuzzy almost e^{*}-regular).
- (2) For each r-feo μ (resp. $\tau(\mu) \ge r$, r-fro μ), $\overline{1} \mu = eeT_{\tau}(\overline{1} \mu, r)$.
- (3) For each $\lambda \in I^X$, $eC_{\tau}(\lambda, r) = eeT_{\tau}(\lambda, r)$ (resp. $C_{\tau}(\lambda, r) = eeT_{\tau}(\lambda, r)$, $RC_{\tau}(\lambda, r) = eeT_{\tau}(\lambda, r)$).

Proof. (1) \Leftrightarrow (2) It is easy from Lemma 3.12 (2).

(2) \Rightarrow (3) Suppose there exists $\lambda \in I^X$ with $eC_{\tau}(\lambda, r) \not\geq eeT_{\tau}(\lambda, r)$. Then there exist $x \in X$ and $t \in I_0$ such that

$$eC_{\tau}(\lambda, r)(x) < t < eeT_{\tau}(\lambda, r)(x).$$

By the definition of eC_{τ} , there exists r-fec set $\rho \in I^X$ with $\lambda \leq \rho$ such that

$$eC_{\tau}(\lambda, r)(x) \leq \rho(x) < t < eeT_{\tau}(\lambda, r)(x).$$

By (2), since $eeT_{\tau}(\rho, r) = \rho$, we have
 $eeT_{\tau}(\lambda, r)(x) \leq eeT_{\tau}(\rho, r)(x) = \rho(x) < t.$

It is a contradiction.

 $(3) \Rightarrow (2)$ It is easy.

ments are equivalent:

Corollary 3.14. Let (X, τ) be a fts and $r \in I_0$. The following state-

- (i) (X, τ) is r-fuzzy regular (resp. r-fuzzy e-regular, r-fuzzy almost regular)
- (ii) For each $\tau(\mu) \ge r$ (resp. r-feo μ , r-fro μ), $\overline{1} \mu = T(\overline{1} \mu, r)$.
- (iii) For each $\lambda \in I^X$, $C_{\tau}(\lambda, r) = T_{\tau}(\lambda, r)$ (resp. $eC_{\tau}(\lambda, r) = T_{\tau}(\lambda, r)$, $RC_{\tau}(\lambda, r) = T_{\tau}(\lambda, r)$).

Remark 3.15. Let (X, τ) be a fts. We have:

146

 $\begin{array}{ccc} r\text{-fuzzy } e\text{-regular} &\Rightarrow r\text{-fuzzy regular} &\Rightarrow r\text{-fuzzy almost regular} \\ & & \downarrow & & \downarrow \\ r\text{-fuzzy } ee^*\text{-regular} &\Rightarrow r\text{-fuzzy almost } e^*\text{-regular}. \end{array}$

Example 3.16. Let $X = \{a, b, c\}$ be a set and $a_{0.6} \in Pt(X)$. We define the fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda \in \{\chi_{\{a\}}, \chi_{\{b,c\}}\}, \\ \frac{1}{2} & \text{if } \lambda \in \{a_{0.6}, a_{o.6} \lor \chi_{\{b,c\}}\}, \\ 0 & \text{otherwise.} \end{cases}$$

- (1) For $0 < r \leq \frac{1}{2}$, since $\chi_{\{a\}}$ and $\chi_{\{b,c\}}$ are r-fro and r-frc sets, $C_{\tau}(\chi_{\{a\}},r) = \chi_{\{a\}}$ and $C_{\tau}(\chi_{\{b,c\}},r) = \chi_{\{a,c\}}$, then (X,τ) is r-fuzzy almost regular.
- (2) For $a_{0.6} \in \mathcal{Q}_{\tau}(a_{0.7}, 1/2)$, for all $\mu \in \mathcal{Q}_{\tau}(a_{o.7}, 1/2)$ we have $C_{\tau}(\mu, 1/2) \nleq a_{0.6}$. So, (X, τ) is not a 1/2-fuzzy regular. Moreover, for $a_{0.9} \in \mathcal{E}_{\tau}(a_{0.2}, 1/2)$ and for all $\mu \in \mathcal{E}_{\tau}(a_{0.2}, 1/2)$, we have $eC_{\tau}(\mu, 1/2) \nleq a_{0.9}$. So, (X, τ) is not a 1/2-fuzzy ee^* regular.
- (3) For $0 < r \le 1/2$, we have the following (a) and (b).
 - (a) If $a_{0.4} < a_s < a_{0.6}$, then a_s is r-feo and r-fec. For $a_{0.6} \in \mathcal{Q}_{\tau}(a_t, r)$, there exists $a_s \in \mathcal{E}_{\tau}(a_t, r)$ with $eC_{\tau}(a_s \leq a_{0.6})$.
 - (b) Let $a_{0.6} \vee \chi_{\{b,c\}} \in \mathcal{Q}_{\tau}(x_t, r)$. If $(x = a)_t$, by (a), there exist $a_s \in \mathcal{E}(a_t, r)$ such that $eC_{\tau}(a_s, r) = a_s \leq a_{0.6} \vee \chi_{\{b,c\}}$. If $(x = b)_t$ or $(x = c)_t$, there exists x_s with s + t > 1 and $a_s \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(x_t, r) = x_s \leq a_{0.6} \vee \chi_{\{b,c\}}$.

Hence, (X, τ) is *r*-fuzzy e^* -regular.

Example 3.17. Let X be a set containing at least three points. We define the fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = a_{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

For $0 < r \leq 1/2$, if $\lambda \nleq \overline{0.4}$, λ is *r*-feo and if $\mu \ngeq \overline{0.6}$, μ is *r*-fec. Let $\lambda \in \mathcal{E}_{\tau}(a_t, r)$. Since $\lambda \nleq \overline{0.4}$, there exists $y \in X$ such that $\lambda(y) > 0.4$, $\lambda(a) + t > 1$. Put $\mu \in I^X$ as

$$\mu(x) = \begin{cases} \lambda(x) & \text{if } x \in \{a, y\},\\ \min\{0.5, \lambda(x)\} & \text{otherwise.} \end{cases}$$

So, μ is r-fec and $\mu \in \mathcal{E}_{\tau}(a_t, r)$ such that $eC_{\tau}(\mu, r) = \mu \leq \lambda$. Hence (X, τ) is r-fuzzy ee^* -regular. But it is neither r-fuzzy e-regular nor r-fuzzy regular because $\overline{0.6} \in \mathcal{Q}_{\tau}(a_t, r)$ and for all $\lambda \in \mathcal{Q}_{\tau}(a_t, r), C_{\tau}(\lambda, r) \leq \overline{0.6}$.

4. Strongly *e*-irresolute mappings

Definition 4.1. Let (X, τ) and (Y, η) be fts's, a function $f: (X, \tau) \to$ (Y,η) is called:

- (i) strongly θ -e-continuous (resp. strongly e-irresolute) iff for each $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$ (resp. $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$), there exists $\lambda \in$ $\mathcal{E}_{\tau}(x_t, r)$ such that $f(eC_{\tau}(\lambda, r)) \leq \mu$,
- (ii) θ -e-irresolute (resp. quasi e-irresolute) iff for each $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(eC_{\tau}(\lambda, r)) \leq eC_{\eta}(\mu, r)$ (resp. $f(\lambda) \leq eC_{\eta}(\mu, r)$).

Theorem 4.2. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Then the following statements are equivalent:

- (1) f is e-irresolute.
- (2) For each $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq \mu$.
- (3) $f(eC_{\tau}(\lambda, r)) \leq eC_{\eta}(f(\lambda, r)) \text{ for each } \lambda \in I^X.$ (4) $eC_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(eC_{\eta}(\mu, r)) \text{ for each } \mu \in I^Y.$
- (1) \Rightarrow (2) For $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$, by (1), there exists $f^{-1}(\mu) \in$ Proof. $\mathcal{E}_{\tau}(x_t, r)$ such that $f(f^{-1}(\mu)) \leq \mu$.

 $(2) \Rightarrow (1)$ For each *r*-feo μ , we only show that

$$f^{-1}(\mu) = \bigvee \{\lambda | \lambda \le f^{-1}(\mu), \lambda \text{ is } r\text{-feo} \}$$

Suppose there exist $x \in X$ and $t \in I_0$ such that

$$\begin{aligned} f^{-1}(\mu)(x) &= \mu(f(x)) \\ &> 1 - t \\ &> \bigvee \{\lambda(x) | \lambda \leq f^{-1}(\mu), \lambda \text{ is } r\text{-feo} \}. \end{aligned}$$

For each $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$, by (2), there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq \mu$. Thus $\lambda \leq f^{-1}(\mu)$ and $\lambda q x_t$ implies $1 - t < \lambda(x)$. It is a contradiction. Hence $f^{-1}(\mu)$ is *r*-feo.

$$(1) \Rightarrow (3)$$

$$eC_{\eta}(f(\lambda), r) = \wedge \{\mu | f(\lambda) \leq \mu, \mu \text{isr-fec}\}$$

$$\geq \bigwedge \{\mu | f(\lambda) \leq \mu, f^{-1}(\mu) \text{isr-fec}\}$$

$$\geq \bigwedge \{f(f^{-1}(\mu)) | \lambda \leq f^{-1}(\mu), f^{-1}(\mu) \text{isr-fec}\}$$

$$\geq f\left(\bigwedge \{(f^{-1}(\mu)) | \lambda \leq f^{-1}(\mu), f^{-1}(\mu) \text{isr-fec}\}\right)$$

$$\geq f(eC_{\tau}(\lambda, r)).$$

(3) \Rightarrow (4) Put $\lambda = f^{-1}(\mu)$. Then $eC_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(f(eC_{\tau}(f^{-1}(\mu), r)))$ $\leq f^{-1}(eC_{\eta}(\mu, r)).$

(4)
$$\Rightarrow$$
 (1) For each *r*-feo $\mu \in I^Y$, we have $eC_\eta(\overline{1} - \mu, r) = \overline{1} - \mu$. By (4),
 $eC_\tau(\overline{1} - f^{-1}(\mu), r) \leq f^{-1}(eC_\eta(\overline{1} - \mu, r))$
 $= \overline{1} - f^{-1}(\mu).$
So $eC_\tau(\overline{1} - f^{-1}(\mu), r) = \overline{1} - f^{-1}(\mu)$. By Theorem 2.12 (2)

So, $eC_{\tau}(\overline{1} - f^{-1}(\mu), r) = \overline{1} - f^{-1}(\mu)$. By Theorem 2.12 (2), $f^{-1}(\mu)$ is *r*-feo.

Corollary 4.3. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Then the following statements are equivalent:

- (1) f is e-continuous (resp. supercontinuous).
- (2) $f(eC_{\tau}(\lambda, r)) \leq C_{\eta}(f(\lambda, r))$ (resp. $f(RC_{\tau}(\lambda, r)) \leq C_{\eta}(f(\lambda), r))$, for each $\lambda \in I^X$.
- (3) $eC_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(C_{\eta}(\mu, r))$ (resp. $RC_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(C_{\eta}(\mu, r))$), for each $\mu \in I^{Y}$.

Theorem 4.4. The following implications hold:

strongly e-irresolute	\Rightarrow	$strongly\theta - e - continuous,$
stronglye-irresolute	\Rightarrow	e-irresolute,
$\theta - e - irresolute$	\Rightarrow	quasie-irresolute.

Proof. We show that *e*-irresolute $\Rightarrow \theta$ -*e*-irresolute. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. For each $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$, by *e*-irresolutity and Theorem 4.2 (4), $f^{-1}(\mu) \in \mathcal{E}_{\tau}(x_t, r)$ such that

$$eC_{\tau}(f^{-1}(\mu), r) \le f^{-1}(eC_{\eta}(\mu, r)).$$

It implies

$$f(eC_{\tau}(f^{-1}(\mu), r)) \le eC_{\eta}(\mu, r).$$

Example 4.5. Let $X = \{a\}$ be a set. We define the fuzzy topologies $\tau, \eta: I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.6}, \\ 0 & \text{otherwise.} \end{cases} \quad \eta(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = \overline{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

For r = 1/2, $\lambda = \overline{0.6}$ is r-feo in (Y, η) and λ is r-feo in (X, τ) . Hence the identity function $id_X : (X, \tau) \to (X, \eta)$ is fuzzy *e*-irresolute and strongly θ -*e*-continuous because for $\overline{0.6} \in \mathcal{Q}_{\eta}(a_t, r)$, there exists $\overline{0.6} \in \mathcal{E}_{\tau}(a_t, r)$ such that $eC_{\tau}(\overline{0.6}, r) = \overline{0.6} \leq \overline{0.6}$.

But the identity function $id_X : (X, \tau) \to (X, \eta)$ is not strongly *e*irresolute because for $\overline{0.75} \in \mathcal{E}_{\eta}(a_{0.3}, r)$, and for all $a_s \in \mathcal{E}_{\tau}(a_{0.3}, r)$ we have $eC_{\tau}(a_s, r) = \overline{1} \nleq \overline{0.75}$. Moreover, id_X is quasi *e*-irresolute but not θ -*e*-irresolute.

Theorem 4.6. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. If f is e-irresolute, then $f^{-1}(\mu) = eeT_{\tau}(f^{-1}(\mu), r)$ for each $\mu = eeT_{\eta}(\mu, r)$.

Proof. Let $\mu = eeT_{\eta}(\mu, r)$. For each $x_tq\overline{1} - f^{-1}(\mu)$, we have $f(x)_tq(\overline{1}-\mu)$. By Lemma 3.12 (2), there exists $\rho \in e_{\eta}(f(x)_t, r)$ such that $eC_{\eta}(\rho, r) \leq \overline{1} - \mu$. Since f is e-irresolute, by Theorem 4.2 (4), there exists $f^{-1}(\rho) \in \mathcal{E}_{\tau}(x_t, r)$ such that

$$eC_{\tau}(f^{-1}(\rho), r) \le f^{-1}(eC_{\tau}(\rho, r))$$

 $\le \overline{1} - f^{-1}(\mu).$

By Lemma 3.12 (2), $f^{-1}(\mu) = eeT_{\tau}(f^{-1}(\mu), r).$

Theorem 4.7. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Then the following statements are equivalent:

- (1) f is θ -e-irresolute.
- (2) $f(eeT_{\tau}(\lambda, r)) \leq eeT_{\eta}f(\lambda, r)$ for each $\lambda \in I^X$.
- (3) $eeT_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(eeT_{\eta}(\mu, r))$ for each $\mu \in I^{Y}$.
- (4) $eeT_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(eC_{\eta}(\mu, r))$ for each r-feo $\mu \in I^{Y}$.

Proof. (1) \Rightarrow (2) Suppose there exist $\lambda \in I^Y$ and $r \in I_0$ such that $f(eeT_{\tau}(\lambda, r)) \nleq eeT_{\eta}(f(\lambda), r).$

Then there exist $x \in X$ and $t \in I_0$ such that

$$f(eeT_{\tau}(\lambda, r))(f(x)) \ge eeT_{\tau}(\lambda, r)(x)$$

> t
> $eeT_{\eta}(f(\lambda), r)(f(x)).$

Let $f(x)_t \notin eeT_{\eta}(f(\lambda, r))$. Then there exists $\rho \in \mathcal{E}_{\eta}(f(x)_t, r)$ such that $eC_{\eta}(\rho, r) \leq \overline{1} - f(\lambda)$. Since f is θ -e-irresolute, for $\rho \in \mathcal{E}_{\eta}(f(x)_t, r)$, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that

$$f(eC_{\tau}(\mu, r)) \le eC_{\eta}(\rho, r)$$
$$\le \overline{1} - f(\lambda).$$

It implies

$$eC_{\tau}(\mu, r) \leq f^{-1}(f(eC_{\tau}(\mu, r)))$$
$$\leq f^{-1}(eC_{\eta}(\rho, r))$$
$$\leq \overline{1} - f^{-1}(f(\lambda))$$
$$\leq \overline{1} - \lambda.$$

Hence x_t is not an $r \cdot e\theta \cdot e$ cluster point of λ . It is a contradiction. Thus (2) holds.

- (2) \Rightarrow (3) Put $\lambda = f^{-1}(\mu)$. It is easy.
- (3) \Rightarrow (4) Since $eeT_{\eta}(\mu, r) = eC_{\eta}(\mu, r)$ for each r-feo $\mu \in I^{Y}$ from Theorem 3.5 (9), it is trivial.
- (4) \Rightarrow (1) Let $\mu \in e_{\eta}(f(x)_t, r)$. Then $eC_{\eta}(\mu, r)\overline{q}(\overline{1} eC_{\eta}(\mu, r))$. Hence $f(x)_t$ is not an r- $e\theta$ -e cluster point of $\overline{1} eC_{\eta}(\mu, r)$. By Theorem, $f(x)_t$ is not an r-e-cluster point of $\overline{1} eC_{\eta}(\mu, r)$. Thus,

$$t > eC_{\eta}(\overline{1} - eC_{\eta}(\mu, r), r)(f(x))$$

= $f^{-1}(eC_{\eta}(\overline{1} - eC_{\eta}(\mu, r), r))(x).$

Since $\overline{1} - eC_{\eta}(\mu, r)$ is r-feo, by (4),

$$f^{-1}(eC_{\eta}(\overline{1} - eC_{\eta}(\mu, r), r)) \ge eeT_{\tau}(f^{-1}(\overline{1} - eC_{\eta}(\mu, r)), r).$$

It implies

$$t > eeT_{\tau} \left(f^{-1} (1 - eC_{\eta}(\mu, r)), r \right) (x).$$

Hence x_t is not an $r \cdot e\theta \cdot e$ -cluster point of $f^{-1}(\overline{1} - eC_\eta(\mu, r))$. There exists $\rho \in \mathcal{E}_\tau(x_t, r)$ such that

$$eC_{\tau}(\rho, r) \leq \overline{1} - f^{-1}(\overline{1} - eC_{\eta}(\mu, r))$$
$$= f^{-1}(eC_{\tau}(\mu, r)).$$

Thus, $f(eC_{\tau}(\rho, r)) \leq eC_{\eta}(\mu, r)$.

Theorem 4.8. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Then the following statements are equivalent:

(1) f is strongly θ -e-continuous. (2) $\overline{1} - f^{-1}(\mu) = eeT_{\tau}(\overline{1} - f^{-1}(\mu), r)$ for each $\eta(\mu) \ge r$. (3) $f^{-1}(\mu) = eeT_{\tau}(f^{-1}(\mu), r)$ for each $\eta(\overline{1} - \mu) \ge r$.

(4)
$$f(eeT_{\tau}(\lambda, r)) \leq C_{\eta}(f(\lambda), r)$$
 for each $\lambda \in I^{X}$.
(5) $eeT_{\eta}(f^{-1}(\mu), r) \leq f^{-1}(C_{\tau}(\mu, r))$ for each $\mu \in I^{Y}$.

Proof. (1) \Rightarrow (2) Suppose there exists $\mu \in I^Y$ with $\eta(\mu) \ge r$ such that

$$\overline{1} - f^{-1}(\mu) \neq eeT_{\tau}(\overline{1} - f^{-1}(\mu), r).$$

Then there exist $x \in X$ and $t \in I_0$ such that

(4.1)
$$(\overline{1} - f^{-1}(\mu))(x) < t < eeT_{\tau}(\overline{1} - f^{-1}(\mu), r)(x).$$

Since $x_tqf^{-1}(\mu)$ implies $f(x)_tq\mu$; we have $\mu \in \mathcal{Q}_\eta(f(x)_t, r)$. Since f is strongly θ -e-continuous, for $\mu \in \mathcal{Q}_\eta(f(x)_t, r)$, there exists $\lambda \in \mathcal{E}_\tau(x_t, r)$ such that $f(eC_\tau(\lambda, r)) \leq \mu$. It implies $eC_\tau(\lambda, r) \leq f^{-1}(\mu)$. Thus, $eC_\tau(\lambda, r)\overline{q}(\overline{1} - f^{-1}(\mu))$. Hence x_t is not an r- $e\theta$ -e cluster point of $\overline{1} - f^{-1}(\mu)$. Hence $eeT_\tau(\overline{1} - f^{-1}(\mu), r)(x) < t$. It is a contradiction. Hence (2) holds.

- (2) and (3) are equivalent.
- (3) \Rightarrow (4) Suppose there exist $\lambda \in I^X$ and $t \in I_0$ such that

$$f(eeT_{\tau}(\lambda, r)) \nleq C_{\eta}(f(\lambda), r).$$

Then there exist $y \in Y$ and $t \in I_0$ such that

$$f(eeT_{\tau}(\lambda, r))(y) > t > C_{\eta}(f(\lambda), r)(y).$$

By the definition of $f(eeT_{\tau}(\lambda, r))$, there exists $x \in X$ with f(x) = y such that

$$f(eeT_{\tau}(\lambda, r))(f(x)) \ge eeT_{\tau}(\lambda, r)(x)$$

> t
> $C_{\eta}(f(\lambda), r)(f(x)).$

By the definition of $C_{\eta}(f(\lambda), r)$, there exists $\mu \in I^{Y}$ with $f(\lambda) \leq \mu$, $\eta(\overline{1} - \mu) \geq r$ such that

(4.2)
$$f(eeT_{\tau}(\lambda, r))(f(x)) \ge eeT_{\tau}(\lambda, r)(x)$$
$$> t$$
$$> \mu(f(x)).$$

On the other hand, by (3), $f^{-1}(\mu) = eeT_{\tau}(f^{-1}(\mu), r)$ for each $\eta(\overline{1} - \mu) \ge r$. Then $\lambda \le \mu$ implies

$$eeT_{\tau}(\lambda, r)(x) \le eeT_{\tau}(f^{-1}(\mu), r)(x)$$
$$= \mu(f(x))$$
$$< t.$$

It is a contradiction. Hence (4) holds. (4) \Rightarrow (5) Put $\lambda = f^{-1}(\mu)$. It is easy.

(5)
$$\Rightarrow$$
 (1) For each $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r), C_{\eta}(\overline{1} - \mu, r) = \overline{1} - \mu$. By (5),
$$eeT_{\eta}(\overline{1} - f^{-1}(\mu), r) = \overline{1} - f^{-1}(\mu).$$

Since $f(x)_t q\mu$ implies $x_t q f^{-1}(\mu)$, by Lemma 3.8 (2), there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $eC_{\tau}(\lambda, r) \leq f^{-1}(\mu)$. It implies $f(eC_{\tau}(\lambda, r)) \leq \mu$. Hence f is strongly θ -e-continuous.

Theorem 4.9. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Let (Y, η) be a fuzzy regular space. Then the following statements are equivalent:

- (1) f is weakly e-continuous.
- (2) f is e-continuous.
- (3) f is strongly θ -e-continuous.
- Proof. (1) \Rightarrow (2) For $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, since (Y, η) is a fuzzy regular space, there exists $\omega \in \mathcal{Q}_{\eta}(x_t, r)$ such that $\mu \leq C_{\eta}(\omega, r) \leq \mu$. Since f is weakly e-continuous, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq C_{\eta}(\omega, r) \leq \mu$.
- (2) \Rightarrow (3) For $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, since (Y, η) is a fuzzy regular space, there exists $\mu \in \mathcal{Q}_{\eta}(x_t, r)$ such that $\mu \leq C_{\eta}(\mu, r) \leq \nu$. Since f is e-continuous, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq \mu$. We will show that $f(eC_{\tau}(\lambda, r)) \leq C_{\eta}(\mu, r)$. Suppose

$$f(eC_{\tau}(\lambda, r))(y) > t > C_{\eta}(\mu, r)(y).$$

Then there exist $x \in X$ with f(x) = y and $\rho \in I^Y$, $\mu \leq \rho$ with $\eta(\overline{1} - \rho) \geq r$ such that

$$f(eC_{\tau}(\lambda, r))(y) \ge eC_{\tau}(\lambda, r)(x)$$

> t
> $\rho(f(x))$
 $\ge C_{\eta}(\mu, r)(y).$

On the other hand, since f is e-continuous, for $\eta(\overline{1} - \rho) \ge r$, there exists $\omega \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\omega) \le \overline{1} - \rho$. Thus

$$\lambda \le f^{-1}(\mu) \le f^{-1}(\rho) \le \overline{1} - \omega.$$

So, $eC_{\tau}(\lambda, r)(x) \leq (\overline{1} - \omega)(x) < t$. It is a contradiction. Thus, $f(eC_{\tau}(\lambda, r)) \leq C_{\eta}(\mu, r)$. Hence f is strongly θ -e-continuous. (3) \Rightarrow (1) It is trivial.

Theorem 4.10. Let (X, τ) and (Y, η) be fts's.

(1) Every fuzzy continuous function $f : X \to Y$ is strongly θ -econtinuous iff (X, τ) is fuzzy e-regular.

- (2) Every e-continuous function $f : X \to Y$ is strongly θ -e-continuous iff (X, τ) is fuzzy ee^{*}-regular.
- (3) Every supercontinuous function $f : X \to Y$ is strongly θ -econtinuous iff (X, τ) is fuzzy almost e^* -regular.
- Proof. (1) (\Rightarrow) For an identity function $f : (X, \tau) \to (Y, \sigma)$, by hypothesis, f is fuzzy continuous and strongly θ -e-continuous. For $\mu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that

 $f\left(eC_{\tau}(\lambda, r)\right) \leq \mu.$

Since $eC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r)$ then

$$f(eC_{\tau}(\lambda, r)) \le f(C_{\tau}(\lambda, r)) \le \mu.$$

We have

$$f^{-1}(\mu) = f\left(\mathcal{Q}_{\eta}(f(x)_t, r)\right) = \mathcal{Q}_{\tau}\left(f^{-1}f(x)_t, r\right) = \mathcal{Q}_{\tau}(x_t, r).$$

Since f is fuzzy continuous. Then we have

$$f(eC_{\tau}(\lambda, r)) \leq \mu \quad \Rightarrow \quad eC_{\tau}(\lambda, r) \leq f^{-1}(\mu)$$
$$\Rightarrow \quad eC_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, r) \leq f^{-1}(\mu).$$

By Corollary 3.11 (2), (X, τ) is fuzzy *e*-regular.

(\Leftarrow) Let f be fuzzy continuous. For each $\nu \in \mathcal{Q}_{\eta}(f(x)_t, r)$, $f^{-1}(\nu) \in \mathcal{Q}_{\tau}(x_t, r)$. Since (X, τ) is fuzzy *e*-regular, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that $\mu \leq eC_{\tau}(\mu, r) \leq f^{-1}(\nu)$. Thus, $f(eC_{\tau}(\mu, r)) \leq \nu$. Hence f is strongly θ -*e*-continuous.

(2) (\Rightarrow) Since every fuzzy continuous function is fuzzy *e*-continuous then the proof followed by the necessary part of (1).

(\Leftarrow) By Remark 3.15, since every fuzzy *e*-regular space is fuzzy *ee*^{*}-regular. Then the proof followed by the sufficiency part of (1).

(3) Proof is similar from the above (1) and (2).

Theorem 4.11. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Let (Y, η) be a ee*-regular space. Then the following statements are equivalent:

- (1) f is strongly e-irresolute.
- (2) f is e-irresolute.
- (3) f is θ -e-irresolute.
- (4) f is quasi-e-irresolute.

Proof. (1) \Rightarrow (2), (2) \Rightarrow (3) and (3) \Rightarrow (4) are trivial from Theorem 4.2

(3) \Rightarrow (1) For each $\nu \in \mathcal{E}_{\eta}(f(x)_t, r)$, since (X, η) is fuzzy ee^* -regular, there exists $\mu \in e_{\tau}(f(x)_t, r)$ such that $\mu \leq eC_{\eta}(\mu_t, r) \leq \nu$. for

 $\mu \in e_{\tau}(f(x)_t, r)$, by (3), there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(eC_{\tau}(\lambda, r)) \leq eC_{\eta}(\mu, r) \leq \nu$. Hence f is strongly *e*-irresolute. (4) \Rightarrow (2) For each *r*-feo ν , we only show that

$$f^{-1}(\nu) = \lor \{\lambda | \lambda \le f^{-1}(\nu), \lambda \text{ is } r\text{-feo}\}.$$

Then there exist $x \in X$ and $t \in I_0$ such that

$$f^{-1}(\nu)(x) = \nu(f(x))$$

> 1 - t
> $\vee \{\lambda | \lambda \le f^{-1}(\nu), \lambda isr - feo\}$

For each $\nu \in \mathcal{E}_{\eta}(f(x)_t, r)$, since (Y, η) is fuzzy ee^* -regular, there exists $\mu \in \mathcal{E}_{\eta}(f(x)_t, r)$ such that $\mu \leq eC_{\eta}(\mu, r) \leq \nu$. By (4), there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq eC_{\eta}(\mu, r) \leq \nu$. Thus $\lambda \leq f^{-1}(\nu)$ and $\lambda q x_t$ implies $1 - t < \lambda(x)$. It is a contradiction. Thus $f^{-1}(\nu)$ is r-feo.

Theorem 4.12. Let (X, τ) and (Y, η) be fts's and $f : X \to Y$ a function. Let (X, τ) be a fuzzy ee^{*}-regular space. Then f is θ -e-irresolute iff f is quasi e-irresolute.

Proof. Let f be quasi-e-irresolute. For each $\nu \in \mathcal{E}_{\eta}(f(x)_t, r)$, there exists $\lambda \in \mathcal{E}_{\tau}(x_t, r)$ such that $f(\lambda) \leq eC_{\eta}(\nu, r)$. Since (X, τ) is fuzzy e^* -regular, there exists $\mu \in \mathcal{E}_{\tau}(x_t, r)$ such that $\mu \leq eC_{\tau}(\mu, r) \leq \lambda$. Hence $f(eC_{\tau}(\mu, r)) \leq eC_{\eta}(\nu, r)$. Then f is θ -e-irresolute.

Acknowledgment. The authors would like to thank the referees for their valuable comments and suggestions.

References

- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), pp. 182-190.
- K.C. Chattopadhyay, R.N. Hazra, and S.K. Samanta, Gradation of openness, Fuzzy Sets and Systems, 49 (1992), pp. 237-242.
- K.C. Chattopadhyay and S.K. Samanta, *Fuzzy topology*, Fuzzy Sets and Systems, 54 (1993), pp. 207-212.
- Y.C. Kim, δ-closure operators in fuzzy bitopological spaces, Far East J. Math. Sci., 2 (2000), pp. 791-808.
- Y.C. Kim, r-fuzzy α-open and r-fuzzy preopen sets in fuzzy bitopological spaces, Far East J. Math. Sci. Spec, (2000), pp. 315-334.
- Y.C. Kim and S.E. Abbas, Several types of fuzzy regular spaces, Indian J. Pure and Appl. Math., 35 (2004), pp. 481-500.

- Y.C. Kim and B. Krsteska, *Fuzzy P-regular spaces*, The Journal of Fuzzy Mathematics, 14 (2006), pp. 701-722.
- Y.C. Kim and J.W. Park, *r-fuzzy* δ-closure and *r-fuzzy* θ-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10 (2000), pp. 557-563.
- 9. Y.C. Kim, A.A. Ramadan, and S. E. Abbas *r*-fuzzy strongly preopen sets in fuzzy topological spaces, Math. Vesnik, 55 (2003), pp. 1-13.
- T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, 1985.
- A.A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems, 48 (1992), pp. 371-375.
- 12. D. Sobana, V. Chandrasekar, and A. Vadivel, *Fuzzy e-continuity in Sostak's fuzzy topological spaces*, (Submitted).
- A.P. Šostak, Basic structures of fuzzy topology, J. Math. Sci., 78 (1996), pp. 662-701.
- 14. A.P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44 (1989), pp. 125-186.
- A.P. Šostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser II, 11 (1986), pp. 89-103.

 1 Department of Mathematics, Kandaswami Kandar's College, P-velur-638 182, Tamil Nadu, India.

 $E\text{-}mail\ address:\ \texttt{vckkc3895}\texttt{@gmail.com}$

 2 Research Scholar (Part Time), Department of Mathematics, Kandaswami Kandar's College, P-velur-638 182, Tamil Nadu, India.

E-mail address: pspmaths@gmail.com