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Fuzzy e-regular spaces and strongly e-irresolute mappings
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Abstract. The aim of this paper is to introduce fuzzy (e, almost)
e∗-regular spaces in Šostak’s fuzzy topological spaces. Using the
r-fuzzy e-closed sets, we define r-(r-θ-, r-eθ-) e-cluster points and
their properties. Moreover, we investigate the relations among r-
(r-θ-, r-eθ-) e-cluster points, r-fuzzy (e, almost) e∗-regular spaces
and their functions.

1. Introduction

Kubiak [10] and Šostak [15] introduced the fundamental concept of a
fuzzy topological structure, as an extension of both crisp topology and
fuzzy topology [1], in the sense that not only the objects are fuzzified,
but also the axiomatics. In [13, 14], Šostak gave some rules and showed
how such an extension can be realized. Chattopadhyay et al., [2] have
redefined the same concept under the name gradation of openness. It
has been developed in many directions [2–6, 9]. Kim et. al [4–6, 8, 9]
investigate r-regulars closed sets, several operators and fuzzy (almost)
regular spaces in Šostak’s fuzzy topological spaces. In this paper, we
introduce r-fuzzy e-closed sets in Šostak’s fuzzy topological spaces. We
study the notions of r-fuzzy (e, almost) e∗-regular spaces. We investigate
some properties. In particular, we define r-(r-θ-, r-eθ-) e-cluster points
and their properties. Moreover, we investigate the relations among r-
(r-θ-, r-eθ-) e-cluster points, r-fuzzy (e, almost) e∗-regular spaces and
their functions.
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2. Preliminaries

Throughout this paper, let X be a non-empty set, I = [0, 1], I0 =
(0, 1]. A fuzzy set λ of X is a mapping λ : X → I, and IX be the family
of all fuzzy sets on X. The complement of a fuzzy set λ is denoted by
1 − λ. For λ ∈ IX , λ(x) = λ for all x ∈ X. For each x ∈ X and t ∈ I0,
a fuzzy point xt is defined by

xt(y) =

{
t if y = x,

0 if y ̸= x.

Let Pt(X) be the family of all fuzzy points in X. For λ, µ ∈ IX , λ is
called quasi coincident with µ, denoted by λqµ, if there exists x ∈ X
such that λ(x)+µ(x) > 1. Otherwise, we denote λqµ. We define xt ∈ λ
if t ≤ λ(x). All other notations and definitions are standard in the fuzzy
set theory.

Definition 2.1 ([15]). A function τ : IX → I is called a fuzzy topology
on X if it satisfies the following conditions:

(1) τ(0) = τ(1) = 1,
(2) τ(

∨
i∈J µi) ≥

∧
i∈J τ(µi), for any {µi : i ∈ J} ⊆ IX ,

(3) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), for all µ1, µ2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts).

Definition 2.2 ([5]). Let (X, τ) be a fts, λ, µ ∈ IX and r ∈ I0. We
define operators as follows:

Cτ (λ, r) = ∧{µ ∈ IX |λ ≤ µ, τ(1− µ) ≥ r},
Iτ (λ, r) = ∨{µ ∈ IX |λ ≥ µ, τ(µ) ≥ r}.

Definition 2.3 ([5]). Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0,
λ is called r-fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular
closed (for short, r-frc)) if λ = Iτ (Cτ (λ, r), r) (resp. λ = Cτ (Iτ (λ, r), r)).

Definition 2.4 ([12]). Let (X, τ) be a fts. λ, µ ∈ IX and r ∈ I0,

(i) δ-Iτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-fro set } is called the

r-fuzzy δ-interior of λ.
(ii) δ-Cτ (λ, r) =

∧
{µ ∈ IX : µ ≥ λ, µ is a r-frc set } is called the

r-fuzzy δ-closure of λ.

Definition 2.5 ([12]). Let (X, τ) be a fts. For λ, µ ∈ IX and r ∈ I0,

(i) λ is called an r-fuzzy δ-semiopen (resp. r-fuzzy δ-semiclosed)
set if λ ≤ Cτ (δ-Iτ (λ, r), r) (resp. Iτ (δ-Cτ (λ, r), r) ≤ λ).

(ii) λ is called an r-fuzzy δ-preopen (resp. r-fuzzy δ-preclosed) set
if λ ≤ Iτ (δ-Cτ (λ, r), r) (resp. Cτ (δ-Iτ (λ, r), r) ≤ λ).
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(iii) λ is called an r-fuzzy semi δ-preopen (resp. r-fuzzy semi δ-
preclosed) set if λ ≤ Iτ (Cτ (δ-Iτ (λ, r), r), r) (resp. Cτ (Iτ (δ-
Cτ (λ, r), r), r) ≤ λ).

(iv) λ is called an r-fuzzy e-open (resp. r-fuzzy e-closed) set if λ ≤
Cτ (δ-Iτ (λ, r), r)∨Iτ (δ-Cτ (λ, r), r) (resp. Cτ (δ-Iτ (λ, r), r)∧Iτ (δ-
Cτ (λ, r), r) ≤ λ).

Definition 2.6 ([12]). Let (X, τ) be a fts. λ, µ ∈ IX and r ∈ I0,

(i) eIτ (λ, r) =
∨
{µ ∈ IX : µ ≤ λ, µ is a r-feo set } is called the

r-fuzzy e-interior of λ.
(ii) eCτ (λ, r) =

∧
{µ ∈ IX : µ ≥ λ, µ is a r-fec set } is called the

r-fuzzy e-closure of λ.

Definition 2.7 ([8]). Let (X, τ) be a fts and xt ∈ Pt(X). We denote

Qτ (xt, r) = {µ ∈ IX |xtqµ, τ(µ) ≥ r},
Rτ (xt, r) = {µ ∈ IX |xtqµ, µ is r-fro}.

Definition 2.8 ([8]). Let (X, τ) be a fts, λ ∈ IX , xt ∈ Pt(X) and
r ∈ I0. A fuzzy point xt is called:

(i) an r-(resp. r-θ-) cluster point of λ if µqλ (resp. Cτ (µ, r)qλ) for
every µ ∈ Qτ (xt, r).

(ii) an r-(resp. r-θ-) regular cluster point of λ if µqλ (resp. Cτ (µ, r)qλ)
for every µ ∈ Rτ (xt, r).

Also, we define operators RCτ and RTτ with respect to r-regular
cluster and r-θ-regular cluster points respectively.

Theorem 2.9 ([7]). Let (X, τ) be a fts. For each λ, µ, ρ ∈ IX and r ∈ I0
we have the following properties:

(1) Cτ (λ, r) =
∨
{xt ∈ Pt(X)|xt is an r-cluster point ofλ},

RCτ (λ, r) =
∧
{µ ∈ IX |λ ≤ µ, µ is r-frc}.

(2) Tτ (λ, r) =
∧
{µ ∈ IX |λ ≤ Iτ (µ, r), τ(1− µ) ≥ r},

RTτ (λ, r) =
∧
{µ ∈ IX |λ ≤ Iτ (µ, r), µ is r-frc}.

(3) xt is an r-θ-cluster point of λ iff xt ∈ Tτ (λ, r),
xt is an r-θ-regular cluster point of λ iff xt ∈ RTτ (λ, r).

Definition 2.10 ([7]). Let (X, τ) be a fts. Then (X, τ) is called an
r-fuzzy regular (resp. r-fuzzy almost regular) if for each τ(µ) ≥ r (resp.
r-regular open µ), there exists a family {νi ∈ IX |τ(νi) ≥ r} such that
µ =

∨
i∈Γ νi with Cτ (νi, r) ≤ µ.

Definition 2.11. Let (X, τ) and (Y, η) be fts’s, a function f : (X, τ) →
(Y, η) is called:

(i) fuzzy continuous [11] iff τ(f−1(µ)) ≥ η(µ),
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(ii) fuzzy open (resp. fuzzy closed) [11] iff η(f(λ)) ≥ τ(λ) (resp.
η(1− f(λ)) ≥ τ(1− λ)),

(iii) fuzzy e-irresolute [12] iff f−1(µ) is r-feo for each r-feo µ ∈ IY .
(iv) fuzzy e-continuous [12] (resp. fuzzy weakly e-continuous) iff

for each µ ∈ Qη(f(x)t, r), there exists λ ∈ eτ (xt, r) such that
f(λ) ≤ µ (resp. f(λ) ≤ eCη(µ, r)),

(v) f is called fuzzy δ-semiopen [12] (resp. fuzzy δ-preopen, fuzzy
semi δ-preopen and fuzzy e-open) iff f(λ) is an r-fδso (resp. r-
fδpo, r-fsδpo and r-feo) set of Y for each λ ∈ IX , r ∈ I0 with
τ1(λ) ≥ r.

(vi) f is called fuzzy δ-semiclosed [12] (resp. fuzzy δ-preclosed, fuzzy
semi δ-preclosed and fuzzy e-closed) iff f(λ) is an r-fδsc (resp.
r-fδpc, r-fsδpc and r-fγc) set of Y for each λ ∈ IX , r ∈ I0 with
τ1(1− λ) ≥ r.

Theorem 2.12 ([12]). Let (X, τ) be a fts and r ∈ Io.

(i) Any union of r-feo sets is an r-feo set.
(ii) Any intersection of r-fec sets is an r-fec set.

Definition 2.13 ([7]). Let (X, τ) and (Y, η) be fts’s a function f :
(X, τ) → (Y, η) is called a supercontinuous iff for each µ ∈ Qη(f(x)t, r),
there exists λ ∈ Rτ (xt, r) such that f(λ) ≤ µ.

3. Fuzzy e-regular spaces

Definition 3.1. Let (X, τ) be a fts and xt ∈ Pt(X). We denote

Eτ (xt, r) = {µ ∈ IX |xtqµ, µisr-feo}.

Definition 3.2. Let (X, τ) be a fts, λ ∈ IX , xt ∈ Pt(X) and r ∈ I0. A
fuzzy point xt is called:

(i) an r-eθ-cluster point of λ if eCτ (µ, r)qλ for every µ ∈ Qτ (xt, r),
(ii) an r-(resp. r-θ-, r-eθ-) e-cluster point of λ if µqλ (resp. Cτ (µ, r)qλ,

eCτ (µ, r)qλ) for every µ ∈ Eτ (xt, r),
(iii) an r-eθ-regular cluster point of λ if eCτ (µ, r)qλ for every µ ∈

Rτ (xt, r).

We define operators eTτ , eeTτ : IX × I0 → IX as follows:

eTτ (λ, r) =
∨

{xt ∈ Pt(X)|xt is an r-θ-ecluster point of λ},

eeTτ (λ, r) =
∨

{xt ∈ Pt(X)|xt is a r-eθ-ecluster point of λ}.

Also, we define operators ReTτ and CeTτ with respect to r-eθ-regular
cluster and r-eθ-cluster points respectively.

Theorem 3.3. Let (X, τ) be a fts. For λ, µ ∈ IX , r ∈ I0, it holds the
following properties
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(1) eCτ (1− λ, r) = 1− eIτ (λ, r),
(2) λ ≤ eCτ (λ, r) ≤ Cτ (λ, r),
(3) If τ(λ) ≥ r and τ(1− λ) ≥ r, then eCτ (λ, r) = Cτ (λ, r),
(4) eCτ (eCτ (λ, r), r) = eCτ (λ, r).

Proof. (1) For each λ ∈ IX , r ∈ I0, we have

eIτ (1− λ, r) =
∨{

µ ∈ IX |µ ≤ 1− λ, µisr-feo
}

= 1−
∧{

1− µ|1− µ ≥ λ, 1− µisr-fec
}

= 1− eCτ (λ, r).

(2) Since τ(1− λ) ≥ r, then µ is r-fec. Thus the result holds.
(3) Suppose eCτ (λ, r)(x) < t < Cτ (λ, r)(x). There exists an r-fec

set µ with λ ≤ µ such that

eCτ (λ, r)(x) < µ(x) < t < Cτ (λ, r)(x).

Since µ is r-fec,

Cτ (δ-Iτ (µ, r), r) ∧ Iτ (δ-Cτ (µ, r), r) ≤ µ.

Since τ(λ) ≥ r and τ(1−λ) ≥ r, Iτ (λ, r) = λ and Cτ (λ, r) = λ.
So

Cτ (λ, r)(x) = Cτ (δ-Iτ (λ, r), r)(x) ∧ Iτ (δ-Cτ (λ, r), r)(x)

≤ Cτ (δ-Iτ (µ, r), r)(x) ∧ Iτ (δ-Cτ (µ, r), r)(x)

≤ µ(x)

< t.

It is a contradiction.
(4) Since eCτ (λ, r) is r-fec from Theorem 2.12 (2), it is trivial.

□
Theorem 3.4. Let (X, τ) be a fts. The following statements hold:

r-e cluster ⇒ ⇒

⇒

r-eθ-e cluster r-θ-e cluster

r-cluster r-θ cluster

r-regular cluster r-eθ regular cluster r-θ regular cluster

r-eθ cluster

⇓ ⇓

⇓

⇓

⇓ ⇓
⇒

⇔

⇔

Proof. By Theorem 3.3 (3), since eCτ (µ, r) = Cτ (µ, r) for τ(µ) ≥ r, xt is
an r-eθ (resp. r-eθ regular) cluster point iff xt is an r-θ (resp. r-θ regular)
cluster point. Other implications follow from the definitions. □
Theorem 3.5. Let (X, τ) be a fts. For each λ, µ, ρ ∈ IX and r ∈ I0 we
have the following properties:



140 V. CHANDRASEKAR AND S. PARIMALA

(1) Rτ (xt, r) ⊂ Qτ (xt, r) ⊂ Eτ (xt, r).
(2) eCτ (λ, r) =

∨
{xt ∈ Pt(X)|xt is an r-ecluster point ofλ}.

(3) eTτ (λ, r) =
∧
{µ ∈ IX |λ ≤ Iτ (µ, r), µ is r-fec}.

(4) eeTτ (λ, r) =
∧
{µ ∈ IX |λ ≤ eIτ (µ, r), µ is r-fec},

CeTτ (λ, r) =
∧

{µ ∈ IX |λ ≤ eIτ (µ, r), τ(1− µ) ≥ r},

ReTτ (λ, r) =
∧

{µ ∈ IX |λ ≤ eIτ (µ, r), µ is r-frc}.

(5) xt is an e-cluster point of λ iff xt ∈ eCτ (λ, r),
xt is an r-θ- (resp. r-eθ-) e cluster point of λ iff xt ∈ eTτ (λ, r)
(resp. xt ∈ eeTτ (λ, r)),
xt is an r-eθ-regular cluster point of λ iff xt ∈ ReTτ (λ, r).

(6) CeTτ (λ, r) = Tτ (λ, r) and ReTτ (λ, r) = RTτ (λ, r).
(7) eCτ (λ, r) ≤ eeTτ (λ, r) ≤ eTτ (λ, r) ≤ Tτ (λ, r) ≤ RTτ (λ, r).
(8) eCτ (λ, r) ≤ Cτ (λ, r) ≤ RCτ (λ, r) ≤ Tτ (λ, r) ≤ RTτ (λ, r).
(9) If ρ is r-feo, then

eCτ (ρ, r) = eeTτ (ρ, r),

and

Cτ (ρ, r) = RCτ (ρ, r)

= Tτ (ρ, r)

= RTτ (ρ, r).

(10) If τ(ρ) ≥ r, then

eCτ (ρ, r) = eeTτ (ρ, r)

= eTτ (ρ, r)

= Cτ (ρ, r)

= RCτ (ρ, r)

= Tτ (ρ, r)

= RTτ (ρ, r).

Proof. (1) It follows from the definitions.
(2) Put ρ = ∨{xt ∈ Pt(X)|xt is an r-e cluster point of λ}. Sup-

pose eCτ (λ, r) ≰ ρ. Then there exist x ∈ X and t ∈ (0, 1) such
that eCτ (λ, r)(x) > t > ρ(x). Then xt is not an r-e cluster
point of λ. So, there exists µ ∈ Eτ (xt, r), λ ≤ 1 − µ and 1 − µ
is r-fec. By the definition of eCτ , in Theorem 3.3

eCτ (λ, r)(x) ≤ (1− µ)(x) < t.

It is a contradiction. Thus eCτ (λ, r) ≤ ρ.
Suppose eCτ (λ, r) ≱ ρ. Then there exists an r-e cluster point

ys ∈ Pt(X) of λ such that eCτ (λ, r)(y) < s ≤ ρ(y). By the
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definition of eCτ , there exists an r-fec set µ with λ ≤ µ such
that eCτ (λ, r)(y) ≤ µ(y) < s < ρ(y). Then, 1 − µ ∈ Eτ (ys, r)
and λq1− µ. Hence, ys is not an r-e cluster point of λ. It is a
contradiction. So eCτ (λ, r) ≥ ρ.

(3) Put

δ =
∧

{µ ∈ IX |λ ≤ Iτ (µ, r), µisr-fec}.
Suppose eTτ (λ, r) ≱ δ. Then there exist x ∈ X and t ∈ (0, 1)
such that eTτ (λ, r)(x) < t < δ(x). Then xt is not an r-θ-e
cluster point of λ. So, there exists µ ∈ Eτ (xt, r) and Cτ (µ, r) ≤
1− λ. Thus 1− µ is r-fec and

λ ≤ 1− Cτ (µ, r) = Iτ (1− µ, r).

Hence δ(x) ≤ (1 − µ)(x) < t. It is a contradiction. Thus
eTτ (λ, r) ≥ δ.

Suppose eTτ (λ, r) ≰ δ. Then there exists an r-θ-e cluster
point ys of λ such that eTτ (λ, r)(y) ≥ s > δ(y). By the defini-
tion of δ, there exists µ with λ ≤ Iτ (µ, r) and µ is r-fec such
that

eTτ (λ, r)(y) ≥ s > µ(y) ≥ δ(y).

Then, µ is r-fec and 1− µ ∈ Eτ (ys, r). So
λ ≤ Iτ (µ, r) = 1− Cτ (1− µ, r),

implies λqCτ (1−µ, r). Hence, ys is not an r-θe cluster point of
λ. It is a contradiction. Thus eTτ (λ, r) ≤ δ.

(4) Put

γ =
∧

{µ ∈ IX |λ ≤ eIτ (µ, r), Cτ (Iτ (µ, r), r) = µ}.

Suppose ReTτ (λ, r) ≱ γ. There exist x ∈ X and t ∈ (0, 1)
such that ReTτ (λ, r)(x) < t < γ(x). Then xt is not an r-
eθ regular cluster point of λ. So, there exists µ ∈ Rτ (xt, r),
eCτ (µ, r) ≤ 1− λ. Thus

λ ≤ 1− eCτ (µ, r)

= eIτ (1− µ, r), Cτ (Iτ (µ, r), r)

= 1− µ.

Hence γ(x) ≤ (1 − µ)(x) < t. It is a contradiction. Thus
ReTτ (λ, r) ≥ γ.

Suppose ReTτ (λ, r) ≰ γ. Then there exists an r-eθ regular
cluster point ys of λ such that ReTτ (λ, r)(y) ≥ s > γ(y). By the
definition of γ, there exists µ with λ ≤ eIτ (µ, r), Cτ (Iτ (µ, r), r) =
µ such that RTτ (λ, r)(y) ≥ s > µ(y) ≥ γ(y). Then, µ is
r-frc and 1 − µ ∈ Rτ (ys, r). Furthermore, λ ≤ eIτ (µ, r) =
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1 − eCτ (1 − µ, r) implies λqeCτ (1 − µ, r). Hence, ys is not an
r-eθ regular cluster point of λ. It is a contradiction. Thus
ReTτ (λ, r) ≤ γ. Other cases are similarly proved.

(5) We show that xt is an r-eθ-e cluster point of λ iff xt ∈ eeTτ (λ, r).
(⇒) It is trivial.
(⇐) Suppose that xt is not an r-eθ-e cluster point of λ. Then

there exists µ ∈ Eτ (xt, r) such that eCτ (µ, r) ≤ 1−λ. Thus,
λ ≤ 1− eCτ (µ, r) = eIτ (µ, r).

By (3), we have eeTτ (λ, r)(x) ≤ (1 − µ)(x) < t. Hence
xt /∈ eeTτ (λ, r). Other cases are similarly proved.

(6-8) Are easily proved from Theorem 3.4.
(9) For each r-feo set ρ, we will show that eCτ (ρ, r) = eeTτ (ρ, r).

Then there exist x ∈ X and t ∈ I0 such that

eCτ (ρ, r)(x) < t < eeTτ (ρ, r)(x).

Thus, xt is not an r-e cluster point of ρ. So, there exists
λ ∈ Eτ (xt, r) such that λ ≤ 1− ρ. It implies eCτ (λ, r) ≤ 1− ρ.
Thus, xt is not an r-eθ-e-cluster point of ρ. Hence eCτ (ρ, r) =
eeTτ (ρ, r). Let ρ ≤ Iτ (Cτ (ρ, r), r) be given. Since Cτ (ρ, r) is
r-fec, by (3), eTτ (ρ, r) ≤ Cτ (ρ, r). Moreover, since

Cτ (ρ, r) ≤ Cτ (Iτ (Cτ (ρ, r), r)

≤ Cτ (ρ, r),

then Cτ (ρ, r) is r-frc. Since ρ ≤ Iτ (Cτ (ρ, r), r) and Cτ (ρ, r) is
r-frc, by (3), RTτ (ρ, r) = Cτ (ρ, r). From (8), we have

Cτ (ρ, r) = RCτ (ρ, r)

= Tτ (ρ, r)

= RTτ (ρ, r).

(10) There exist ρ ∈ IX with τ(ρ) ≥ r such that

eCτ (ρ, r) ≱ eTτ (ρ, r).

Then there exists x ∈ X and t ∈ I such that

eCτ (ρ, r)(x) < t < eTτ (ρ, r)(x).

Thus, xt is not an r-e cluster point of ρ. So, there exists
λ ∈ Eτ (xt, r) such that λ ≤ 1 − ρ. It implies Cτ (λ, r) ≤ 1 − ρ.
Thus, xt is not an r-θ-e cluster point of ρ. Hence

eCτ (ρ, r) = eeTτ (ρ, r)

= eTτ (ρ, r).
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By (7-9), we have

eCτ (ρ, r) = Cτ (ρ, r)

= RCτ (ρ, r)

= Tτ (ρ, r)

= RTτ (ρ, r).

□
Example 3.6. Let X = {a, b, c}, α, β, γ, δ ∈ IX are defined as

α(a) = 0.3,
α(b) = 0.4,
α(c) = 0.5,

β(a) = 0.6,
β(b) = 0.5,
β(c) = 0.5,

γ(a) = 0.6,
γ(b) = 0.5,
γ(c) = 0.4,

δ(a) = 0.3,
δ(b) = 0.4,
δ(c) = 0.4.

We define the smooth topology τ : IX → I as follows:

τ(λ) =



1 if λ ∈ {0, 1},
1
2 if λ = α,
1
2 if λ = β,
1
2 if λ = γ,
1
2 if λ = δ,

0 otherwise.

For r = 1
2 , then the fuzzy sets α, β, γ, δ are r-feo sets, 1−α, 1−β, 1−γ, 1−

δ are r-fec sets. Let λ(a) = 0.4, λ(b) = 0.5, λ(c) = 0.5, eCτ (λ, r) = λ,
and clearly, eeTτ (λ, r) ≤ eTτ (λ, r) = Tτ (λ, r) = RTτ (λ, r).

Definition 3.7. Let (X, τ) be a fts. Then (X, τ) is called:

(1) r-fuzzy e-regular if for each r-feo µ there exists a family {νi ∈
IX |τ(νi) ≥ r} such that µ =

∨
i∈Γ νi with Cτ (νi, r) ≤ µ.

(2) r-fuzzy e∗-regular (resp. r-fuzzy ee∗-regular, r-fuzzy almost e∗-
regular) if for each τ(µ) ≥ r (resp. r-feo µ, r-fro µ), there
exists a family {νi ∈ IX |νi is r-feo } such that µ =

∨
i∈Γ νi with

eCτ (νi, r) ≤ µ.
(3) fuzzy (e, almost) (e∗)-regular if (X, τ) is r-fuzzy (e, almost)(e∗-)

regular, for each r ∈ I0.

We easily prove the following Lemma.

Lemma 3.8. For λ, λi, µ ∈ IX and xt ∈ Pt(X), we have

(1) λ ≤ µ iff xtqλ implies xtqµ.
(2) xtq

∨
i∈Λ λi iff there exists i ∈ Λ such that xtqλi.

Theorem 3.9. Let (X, τ) be a fts and r ∈ I0. Then the following
statements are equivalent:

(1) (X, τ) is r-fuzzy almost e∗-regular.
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(2) For all µ ∈ Rτ (xt, r), there exists ν ∈ Eτ (xt, r) with eCτ (ν, r) ≤
µ.

(3) For each xt ∈ Pt(X) and each r-frc λ ∈ IX with xt /∈ λ, there
exist ν ∈ Eτ (xt, r) and r-feo µ ∈ IX such that λ ≤ µ and µqν.

(4) For each r-frc λ ∈ IX , λ =
∧
{eCτ (ν, r)|λ ≤ ν, ν is r-feo }.

(5) For each r-frc λ ∈ IX with ρ ≰ λ, there exist ν ∈ Eτ (xt, r) and
r-feo µ such that λ ≤ µ, ρqν and µqν.

Proof. (1) ⇒ (2): Let µ ∈ Rτ (xt, r) be given. Since (X, τ) is r-fuzzy
almost e∗-regular, there exists a family {νi|νi is r-feo } such that
µ =

∨
i∈Γ νi with eCτ (νi, r) ≤ µ. Since xtq (µ =

∨
i∈Γ νi), by

Lemma 3.8 (2), there exists i ∈ Γ such that νi ∈ Eτ (xt, r) with
eCτ (νt, r) ≤ µ.

(2) ⇒ (1): For each µ ∈ Rτ (xt, r), there exists νi ∈ Eτ (xt, r) such that
eCτ (νi, r) ≤ µ. Let {νi ∈ Eτ (xt, r)|i ∈ Λ, eCτ (νi, r) ≤ µ} be the
family satisfying the above condition. Trivially,

∨
i∈Λ νi ≤ µ.

We only show that, by Lemma 3.8 (1), xtq
∨

i∈Λ νi for each
xtqµ. For each µ ∈ Rτ (xt, r), by (2), there exists νi ∈ Eτ (xt, r)
such that eCτ (νi, r) ≤ µ. So, xtqνi implies xtq

∨
i∈Λ νi. Then

µ =
∨

i∈Λ νi such that eCτ (νi, r) ≤ µ.

(2) ⇒ (3): Let xt /∈ λ with r-frc λ. Then 1 − λ ∈ Rτ (xt, r). By (2),
there exists ν ∈ Eτ (xt, r) such that eCτ (ν, r) ≤ 1 − λ. Put
µ = 1 − eCτ (ν, r). By Theorem 2.12 (1), µ is r-feo such that
λ ≤ µ and µqν.

(3) ⇒ (4): Suppose there exists r-frc λ ∈ IX such that

λ ≰
∧
{eCτ (ν, r)|λ ≤ ν, ν is r-feo}.

Then there exist x ∈ X and t ∈ I0 such that

λ(x) < t <
∧

{eCτ (ν, r)(x)|λ ≤ ν, ν is r-feo}.(3.1)

Since xt /∈ λ, by (4), there exist µ ∈ Eτ (xt, r) and r-feo ν such
that λ ≤ ν and µqν. Since ν is r-feo, λ ≤ eIτ (ν, r) and eIτ (ν, r)
is r-feo. Hence

λ(x) < t < eCτ (eIτ (ν, r), r)(x).

By the definition of eCτ , we have

eCτ (eIτ (ν, r), r)(x) ≤ eCτ (ν, r)(x)

≤ 1− µ(x) < t.

It is contradiction for (3.1). Thus

λ =
∧
{eCτ (ν, r)|λ ≤ ν, ν is r-feo}.

(4) ⇒ (5): Let λ ∈ IX be r-frc with ρ ≰ λ. Then xt ∈ Pt(X) such that
xt ∈ ρ and t > λ(x). By (4), there exist r-feo µ such that λ ≤ µ
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and eCτ (µ, r)(x) < t. Put ν = 1− eCτ (µ, r). By Theorem 2.12
(1), ν is r-feo, that is, ν ∈ Eτ (xt, r) such that λ ≤ µ, ρqν and
µqν.

(5) ⇒ (2): For all µ ∈ Rτ (xt, r), t > 1 − µ(x). So, xt ≰ 1 − µ and 1 − µ
is r-frc, by (5), there exist ν ∈ Eτ (xt, r) and r-feo ρ such that
1 − µ ≤ ρ and ρqν. Thus, ν ≤ 1 − ρ ≤ µ. Since 1 − ρ is r-fec
and µ is r-fro, eCτ (1 − ρ, r) ≤ µ. It implies ν ∈ Eτ (xt, r) such
that eCτ (ν, r) ≤ µ.

□
Corollary 3.10. Let (X, τ) be a fts and r ∈ I0. Then the following
statements are equivalent:

(i) (X, τ) is r-fuzzy ee∗-regular (resp, r-fuzzy e∗-regular).
(ii) For all µ ∈ Eτ (xt, r) (resp. µ ∈ Qτ (xt, r)), there exists ν ∈

Eτ (xt, r) with eCτ (ν, r) ≤ µ.
(iii) For each xt ∈ Pt(X) and each r-fec λ ∈ IX (resp. τ(1−λ) ≥ r)

with xt /∈ λ, there exist ν ∈ Eτ (xt, r) and r-feo µ ∈ IX such that
λ ≤ µ and µqν.

(iv) For each r-fec λ ∈ IX (resp. τ(1− λ) ≥ r),

λ =
∧

{eCτ (ν, r)|λ ≤ ν, ν is r − feo}.

(v) For each r-fec λ ∈ IX (resp. τ(1 − λ) ≥ r) with ρ ≰ λ, there
exist ν ∈ Eτ (xt, r) and r-feo µ such that λ ≤ µ, ρqν and µqν.

Corollary 3.11. Let (X, τ) be a fts and r ∈ I0. Then the following
statements are equivalent:

(i) (X, τ) is r-fuzzy e-regular (resp, r-fuzzy regular, r-fuzzy almost
regular).

(ii) For all µ ∈ Eτ (xt, r) (resp. µ ∈ Qτ (xt, r), µ ∈ Rτ (xt, r)), there
exists ν ∈ Qτ (xt, r) with Cτ (ν, r) ≤ µ.

(iii) For each xt ∈ Pt(X) and each r-fec λ ∈ IX (resp. τ(1 − λ) ≥
r, r-frc) with xt /∈ λ, there exist ν ∈ Qτ (xt, r) and τ(µ) ≥ r such
that λ ≤ µ and µqν.

(iv) For each r-fec λ ∈ IX (resp. τ(1− λ) ≥ r, r-frc),

λ =
∧

{Cτ (ν, r)|λ ≤ ν, τ(ν) ≥ r}.

(v) For each r-fec λ ∈ IX (resp. τ(1 − λ) ≥ r, r-frc) with ρ ≰ λ,
there exist ν ∈ Qτ (xt, r) and τ(µ) ≥ r such that λ ≤ µ, ρqν and
µqν.

Lemma 3.12. Let (X, τ) be a fts.

(i) For each xtqλ, there exists µ ∈ Qτ (xt, r) such that

Cτ (µ, r) ≤ λ iff 1− λ = Tτ (1− λ, r).
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(ii) For each xtqλ, there exists µ ∈ Eτ (xt, r) such that

eCτ (µ, r) ≤ λ iff 1− λ = eeTτ (1− λ, r).

Proof. (i) It is similarly proved as the following (ii).
(ii) (⇒) We only show that 1− λ ≥ eeTτ (1− λ, r). Let xt ≰ 1− λ.

Then xtqλ. By hypothesis, there exists µ ∈ Eτ (xt, r) such that
eCτ (µ, r) ≤ λ. Thus, xt /∈ eeTτ (1− λ, r).
(⇐) For each xtqλ, since 1−λ = eeTτ (1−λ, r), xt is not r-eθ-e
cluster point of 1− λ. There exists µ ∈ Eτ (xt, r) such that

eCτ (µ, r) ≤ 1− λ.

□
Theorem 3.13. Let (X, τ) be a fts and r ∈ I0. The following statements
are equivalent:

(1) (X, τ) is r-fuzzy ee∗-regular (resp. r-fuzzy e∗-regular, r-fuzzy
almost e∗-regular).

(2) For each r-feo µ (resp. τ(µ) ≥ r, r-fro µ), 1−µ = eeTτ (1−µ, r).
(3) For each λ ∈ IX , eCτ (λ, r) = eeTτ (λ, r) (resp. Cτ (λ, r) =

eeTτ (λ, r), RCτ (λ, r) = eeTτ (λ, r)).

Proof. (1) ⇔ (2) It is easy from Lemma 3.12 (2).
(2) ⇒ (3) Suppose there exists λ ∈ IX with eCτ (λ, r) ≱ eeTτ (λ, r). Then

there exist x ∈ X and t ∈ I0 such that

eCτ (λ, r)(x) < t < eeTτ (λ, r)(x).

By the definition of eCτ , there exists r-fec set ρ ∈ IX with
λ ≤ ρ such that

eCτ (λ, r)(x) ≤ ρ(x) < t < eeTτ (λ, r)(x).

By (2), since eeTτ (ρ, r) = ρ, we have

eeTτ (λ, r)(x) ≤ eeTτ (ρ, r)(x) = ρ(x) < t.

It is a contradiction.
(3) ⇒ (2) It is easy.

□
Corollary 3.14. Let (X, τ) be a fts and r ∈ I0. The following state-
ments are equivalent:

(i) (X, τ) is r-fuzzy regular (resp. r-fuzzy e-regular, r-fuzzy almost
regular)

(ii) For each τ(µ) ≥ r (resp. r-feo µ, r-fro µ), 1− µ = T (1− µ, r).
(iii) For each λ ∈ IX , Cτ (λ, r) = Tτ (λ, r) (resp. eCτ (λ, r) = Tτ (λ, r),

RCτ (λ, r) = Tτ (λ, r)).

Remark 3.15. Let (X, τ) be a fts. We have:
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r-fuzzy e-regular ⇒ ⇒r-fuzzy regular r-fuzzy almost regular

r-fuzzy ee∗-regular r-fuzzy almost e∗-regular.r-fuzzy e∗-regular
⇓ ⇓ ⇓

⇒ ⇒

Example 3.16. Let X = {a, b, c} be a set and a0.6 ∈ Pt(X). We define
the fuzzy topology τ : IX → I as follows:

τ(λ) =


1 if λ ∈ {0, 1},
1
2 if λ ∈ {χ{a}, χ{b,c}},
1
2 if λ ∈ {a0.6, ao.6 ∨ χ{b,c}},
0 otherwise.

(1) For 0 < r ≤ 1
2 , since χ{a} and χ{b,c} are r-fro and r-frc sets,

Cτ (χ{a}, r) = χ{a} and Cτ (χ{b,c}, r) = χ{a,c}, then (X, τ) is
r-fuzzy almost regular.

(2) For a0.6 ∈ Qτ (a0.7, 1/2), for all µ ∈ Qτ (ao.7, 1/2) we have
Cτ (µ, 1/2) ≰ a0.6. So, (X, τ) is not a 1/2-fuzzy regular. More-
over, for a0.9 ∈ Eτ (a0.2, 1/2) and for all µ ∈ Eτ (a0.2, 1/2), we
have eCτ (µ, 1/2) ≰ a0.9. So, (X, τ) is not a 1/2-fuzzy ee∗-
regular.

(3) For 0 < r ≤ 1/2, we have the following (a) and (b).
(a) If a0.4 < as < a0.6, then as is r-feo and r-fec. For a0.6 ∈

Qτ (at, r), there exists as ∈ Eτ (at, r) with eCτ (as ≤ a0.6.
(b) Let a0.6 ∨χ{b,c} ∈ Qτ (xt, r). If (x = a)t, by (a), there exist

as ∈ E(at, r) such that eCτ (as, r) = as ≤ a0.6 ∨ χ{b,c}. If
(x = b)t or (x = c)t, there exists xs with s + t > 1 and
as ∈ Eτ (xt, r) such that eCτ (xt, r) = xs ≤ a0.6 ∨ χ{b,c}.

Hence, (X, τ) is r-fuzzy e∗-regular.

Example 3.17. Let X be a set containing at least three points. We
define the fuzzy topology τ : IX → I as follows:

τ(λ) =


1 if λ ∈ {0, 1},
1
2 if λ = a0.6,

0 otherwise.

For 0 < r ≤ 1/2, if λ ≰ 0.4, λ is r-feo and if µ ≱ 0.6, µ is r-fec. Let
λ ∈ Eτ (at, r). Since λ ≰ 0.4, there exists y ∈ X such that λ(y) > 0.4,

λ(a) + t > 1. Put µ ∈ IX as

µ(x) =

{
λ(x) if x ∈ {a, y},
min{0.5, λ(x)} otherwise.
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So, µ is r-fec and µ ∈ Eτ (at, r) such that eCτ (µ, r) = µ ≤ λ. Hence (X, τ)
is r-fuzzy ee∗-regular. But it is neither r-fuzzy e-regular nor r-fuzzy
regular because 0.6 ∈ Qτ (at, r) and for all λ ∈ Qτ (at, r), Cτ (λ, r) ≰ 0.6.

4. Strongly e-irresolute mappings

Definition 4.1. Let (X, τ) and (Y, η) be fts’s, a function f : (X, τ) →
(Y, η) is called:

(i) strongly θ-e-continuous (resp. strongly e-irresolute) iff for each
µ ∈ Qη(f(x)t, r) (resp. µ ∈ Eη(f(x)t, r)), there exists λ ∈
Eτ (xt, r) such that f(eCτ (λ, r)) ≤ µ,

(ii) θ-e-irresolute (resp. quasi e-irresolute) iff for each µ ∈ Eη(f(x)t, r),
there exists λ ∈ Eτ (xt, r) such that f(eCτ (λ, r)) ≤ eCη(µ, r)
(resp. f(λ) ≤ eCη(µ, r)).

Theorem 4.2. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Then the following statements are equivalent:

(1) f is e-irresolute.
(2) For each µ ∈ Eη(f(x)t, r), there exists λ ∈ Eτ (xt, r) such that

f(λ) ≤ µ.
(3) f(eCτ (λ, r)) ≤ eCη(f(λ, r)) for each λ ∈ IX .
(4) eCτ (f

−1(µ), r) ≤ f−1(eCη(µ, r)) for each µ ∈ IY .

Proof. (1) ⇒ (2) For µ ∈ Eη(f(x)t, r), by (1), there exists f−1(µ) ∈
Eτ (xt, r) such that f(f−1(µ)) ≤ µ.

(2) ⇒ (1) For each r-feo µ, we only show that

f−1(µ) =
∨
{λ|λ ≤ f−1(µ), λ is r-feo}.

Suppose there exist x ∈ X and t ∈ I0 such that

f−1(µ)(x) = µ(f(x))

> 1− t

>
∨

{λ(x)|λ ≤ f−1(µ), λ is r-feo}.

For each µ ∈ Eη(f(x)t, r), by (2), there exists λ ∈ Eτ (xt, r) such
that f(λ) ≤ µ. Thus λ ≤ f−1(µ) and λqxt implies 1− t < λ(x).
It is a contradiction. Hence f−1(µ) is r-feo.
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(1) ⇒ (3)

eCη(f(λ), r) = ∧{µ|f(λ) ≤ µ, µisr-fec}

≥
∧

{µ|f(λ) ≤ µ, f−1(µ)isr − fec}

≥
∧{

f(f−1(µ))|λ ≤ f−1(µ), f−1(µ)isr-fec
}

≥ f
(∧

{(f−1(µ))|λ ≤ f−1(µ), f−1(µ)isr-fec}
)

≥ f(eCτ (λ, r)).

(3) ⇒ (4) Put λ = f−1(µ). Then

eCτ (f
−1(µ), r) ≤ f−1(f(eCτ (f

−1(µ), r)))

≤ f−1(eCη(µ, r)).

(4) ⇒ (1) For each r-feo µ ∈ IY , we have eCη(1− µ, r) = 1− µ. By (4),

eCτ (1− f−1(µ), r) ≤ f−1(eCη(1− µ, r))

= 1− f−1(µ).

So, eCτ (1 − f−1(µ), r) = 1 − f−1(µ). By Theorem 2.12 (2),
f−1(µ) is r-feo.

□
Corollary 4.3. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Then the following statements are equivalent:

(1) f is e-continuous (resp. supercontinuous).
(2) f(eCτ (λ, r)) ≤ Cη(f(λ, r)) (resp. f(RCτ (λ, r)) ≤ Cη(f(λ), r)),

for each λ ∈ IX .
(3) eCτ (f

−1(µ), r) ≤ f−1(Cη(µ, r)) (resp. RCτ (f
−1(µ), r) ≤ f−1

(Cη(µ, r))), for each µ ∈ IY .

Theorem 4.4. The following implications hold:

stronglye− irresolute ⇒ stronglyθ − e− continuous,

stronglye− irresolute ⇒ e− irresolute,

θ − e− irresolute ⇒ quasie− irresolute.

Proof. We show that e-irresolute ⇒ θ-e-irresolute. Let (X, τ) and (Y, η)
be fts’s and f : X → Y a function. For each µ ∈ Eη(f(x)t, r), by
e-irresolutity and Theorem 4.2 (4), f−1(µ) ∈ Eτ (xt, r) such that

eCτ (f
−1(µ), r) ≤ f−1(eCη(µ, r)).

It implies
f(eCτ (f

−1(µ), r)) ≤ eCη(µ, r).

□
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Example 4.5. Let X = {a} be a set. We define the fuzzy topologies
τ, η : IX → I as follows:

τ(λ) =


1 if λ ∈ {0, 1},
1
2 if λ = 0.6,

0 otherwise.

η(λ) =


1 if λ ∈ {0, 1},
1
2 if λ = 0.6,

0 otherwise.

For r = 1/2, λ = 0.6 is r-feo in (Y, η) and λ is r-feo in (X, τ). Hence
the identity function idX : (X, τ) → (X, η) is fuzzy e-irresolute and
strongly θ-e-continuous because for 0.6 ∈ Qη(at, r), there exists 0.6 ∈
Eτ (at, r) such that eCτ (0.6, r) = 0.6 ≤ 0.6.

But the identity function idX : (X, τ) → (X, η) is not strongly e-
irresolute because for 0.75 ∈ Eη(a0.3, r), and for all as ∈ Eτ (a0.3, r) we
have eCτ (as, r) = 1 ≰ 0.75. Moreover, idX is quasi e-irresolute but not
θ-e-irresolute.

Theorem 4.6. Let (X, τ) and (Y, η) be fts’s and f : X → Y a func-
tion. If f is e-irresolute, then f−1(µ) = eeTτ (f

−1(µ), r) for each µ =
eeTη(µ, r).

Proof. Let µ = eeTη(µ, r). For each xtq1−f−1(µ), we have f(x)tq(1−µ).
By Lemma 3.12 (2), there exists ρ ∈ eη(f(x)t, r) such that eCη(ρ, r) ≤
1− µ. Since f is e-irresolute, by Theorem 4.2 (4), there exists f−1(ρ) ∈
Eτ (xt, r) such that

eCτ (f
−1(ρ), r) ≤ f−1(eCτ (ρ, r))

≤ 1− f−1(µ).

By Lemma 3.12 (2), f−1(µ) = eeTτ (f
−1(µ), r). □

Theorem 4.7. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Then the following statements are equivalent:

(1) f is θ-e-irresolute.
(2) f(eeTτ (λ, r)) ≤ eeTηf(λ, r) for each λ ∈ IX .
(3) eeTτ (f

−1(µ), r) ≤ f−1(eeTη(µ, r)) for each µ ∈ IY .
(4) eeTτ (f

−1(µ), r) ≤ f−1(eCη(µ, r)) for each r-feo µ ∈ IY .

Proof. (1) ⇒ (2) Suppose there exist λ ∈ IY and r ∈ I0 such that

f(eeTτ (λ, r)) ≰ eeTη(f(λ), r).

Then there exist x ∈ X and t ∈ I0 such that

f(eeTτ (λ, r))(f(x)) ≥ eeTτ (λ, r)(x)

> t

> eeTη(f(λ), r)(f(x)).
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Let f(x)t /∈ eeTη(f(λ, r). Then there exists ρ ∈ Eη(f(x)t, r)
such that eCη(ρ, r) ≤ 1 − f(λ). Since f is θ-e-irresolute, for
ρ ∈ Eη(f(x)t, r), there exists µ ∈ Eτ (xt, r) such that

f(eCτ (µ, r)) ≤ eCη(ρ, r)

≤ 1− f(λ).

It implies

eCτ (µ, r) ≤ f−1(f(eCτ (µ, r)))

≤ f−1(eCη(ρ, r))

≤ 1− f−1(f(λ))

≤ 1− λ.

Hence xt is not an r-eθ-e cluster point of λ. It is a contradiction.
Thus (2) holds.

(2) ⇒ (3) Put λ=f−1(µ). It is easy.
(3) ⇒ (4) Since eeTη(µ, r) = eCη(µ, r) for each r-feo µ ∈ IY from Theo-

rem 3.5 (9), it is trivial.
(4) ⇒ (1) Let µ ∈ eη(f(x)t, r). Then eCη(µ, r)q(1 − eCη(µ, r)). Hence

f(x)t is not an r-eθ-e cluster point of 1−eCη(µ, r). By Theorem,
f(x)t is not an r-e-cluster point of 1− eCη(µ, r). Thus,

t > eCη(1− eCη(µ, r), r)(f(x))

= f−1(eCη(1− eCη(µ, r), r))(x).

Since 1− eCη(µ, r) is r-feo, by (4),

f−1(eCη(1− eCη(µ, r), r)) ≥ eeTτ (f
−1(1− eCη(µ, r)), r).

It implies

t > eeTτ

(
f−1(1− eCη(µ, r)), r

)
(x).

Hence xt is not an r-eθ-e-cluster point of f−1(1 − eCη(µ, r)).
There exists ρ ∈ Eτ (xt, r) such that

eCτ (ρ, r) ≤ 1− f−1(1− eCη(µ, r))

= f−1(eCτ (µ.r)).

Thus, f(eCτ (ρ, r)) ≤ eCη(µ, r).
□

Theorem 4.8. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Then the following statements are equivalent:

(1) f is strongly θ-e-continuous.
(2) 1− f−1(µ) = eeTτ (1− f−1(µ), r) for each η(µ) ≥ r.
(3) f−1(µ) = eeTτ (f

−1(µ), r) for each η(1− µ) ≥ r.
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(4) f(eeTτ (λ, r)) ≤ Cη(f(λ), r) for each λ ∈ IX .
(5) eeTη(f

−1(µ), r) ≤ f−1(Cτ (µ, r)) for each µ ∈ IY .

Proof. (1) ⇒ (2) Suppose there exists µ ∈ IY with η(µ) ≥ r such
that

1− f−1(µ) ̸= eeTτ (1− f−1(µ), r).

Then there exist x ∈ X and t ∈ I0 such that

(1− f−1(µ))(x) < t < eeTτ (1− f−1(µ), r)(x).(4.1)

Since xtqf
−1(µ) implies f(x)tqµ; we have µ ∈ Qη(f(x)t, r).

Since f is strongly θ-e-continuous, for µ ∈ Qη(f(x)t, r), there
exists λ ∈ Eτ (xt, r) such that f(eCτ (λ, r)) ≤ µ. It implies
eCτ (λ, r) ≤ f−1(µ). Thus, eCτ (λ, r)q(1 − f−1(µ)). Hence xt
is not an r-eθ-e cluster point of 1 − f−1(µ). Hence eeTτ (1 −
f−1(µ), r)(x) < t. It is a contradiction. Hence (2) holds.

(2) and (3) are equivalent.
(3) ⇒ (4) Suppose there exist λ ∈ IX and t ∈ I0 such that

f(eeTτ (λ, r)) ≰ Cη(f(λ), r).

Then there exist y ∈ Y and t ∈ I0 such that

f(eeTτ (λ, r))(y) > t > Cη(f(λ), r)(y).

By the definition of f(eeTτ (λ, r)), there exists x ∈ X with
f(x) = y such that

f(eeTτ (λ, r))(f(x)) ≥ eeTτ (λ, r)(x)

> t

> Cη(f(λ), r)(f(x)).

By the definition of Cη(f(λ), r), there exists µ ∈ IY with f(λ) ≤
µ, η(1− µ) ≥ r such that

f(eeTτ (λ, r))(f(x)) ≥ eeTτ (λ, r)(x)(4.2)

> t

> µ(f(x)).

On the other hand, by (3), f−1(µ) = eeTτ (f
−1(µ), r) for each

η(1− µ) ≥ r. Then λ ≤ µ implies

eeTτ (λ, r)(x) ≤ eeTτ (f
−1(µ), r)(x)

= µ(f(x))

< t.

It is a contradiction. Hence (4) holds.
(4) ⇒ (5) Put λ = f−1(µ). It is easy.
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(5) ⇒ (1) For each µ ∈ Qη(f(x)t, r), Cη(1− µ, r) = 1− µ. By (5),

eeTη(1− f−1(µ), r) = 1− f−1(µ).

Since f(x)tqµ implies xtqf
−1(µ), by Lemma 3.8 (2), there ex-

ists λ ∈ Eτ (xt, r) such that eCτ (λ, r) ≤ f−1(µ). It implies
f(eCτ (λ, r)) ≤ µ. Hence f is strongly θ-e-continuous.

□
Theorem 4.9. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Let (Y, η) be a fuzzy regular space. Then the following statements are
equivalent:

(1) f is weakly e-continuous.
(2) f is e-continuous.
(3) f is strongly θ-e-continuous.

Proof. (1) ⇒ (2) For µ ∈ Qη(f(x)t, r), since (Y, η) is a fuzzy regular
space, there exists ω ∈ Qη(xt, r) such that µ ≤ Cη(ω, r) ≤ µ.
Since f is weakly e-continuous, there exists λ ∈ Eτ (xt, r) such
that f(λ) ≤ Cη(ω, r) ≤ µ.

(2) ⇒ (3) For µ ∈ Qη(f(x)t, r), since (Y, η) is a fuzzy regular space, there
exists µ ∈ Qη(xt, r) such that µ ≤ Cη(µ, r) ≤ ν. Since f is
e-continuous, there exists λ ∈ Eτ (xt, r) such that f(λ) ≤ µ. We
will show that f(eCτ (λ, r)) ≤ Cη(µ, r). Suppose

f(eCτ (λ, r))(y) > t > Cη(µ, r)(y).

Then there exist x ∈ X with f(x) = y and ρ ∈ IY , µ ≤ ρ with
η(1− ρ) ≥ r such that

f(eCτ (λ, r))(y) ≥ eCτ (λ, r)(x)

> t

> ρ(f(x))

≥ Cη(µ, r)(y).

On the other hand, since f is e-continuous, for η(1 − ρ) ≥ r,
there exists ω ∈ Eτ (xt, r) such that f(ω) ≤ 1− ρ. Thus

λ ≤ f−1(µ) ≤ f−1(ρ) ≤ 1− ω.

So, eCτ (λ, r)(x) ≤ (1 − ω)(x) < t. It is a contradiction. Thus,
f(eCτ (λ, r)) ≤ Cη(µ, r). Hence f is strongly θ-e-continuous.

(3) ⇒ (1) It is trivial.
□

Theorem 4.10. Let (X, τ) and (Y, η) be fts’s.

(1) Every fuzzy continuous function f : X → Y is strongly θ-e-
continuous iff (X, τ) is fuzzy e-regular.



154 V. CHANDRASEKAR AND S. PARIMALA

(2) Every e-continuous function f : X → Y is strongly θ-e-continuous
iff (X, τ) is fuzzy ee∗-regular.

(3) Every supercontinuous function f : X → Y is strongly θ-e-
continuous iff (X, τ) is fuzzy almost e∗-regular.

Proof. (1) (⇒) For an identity function f : (X, τ) → (Y, σ), by
hypothesis, f is fuzzy continuous and strongly θ-e-continuous.
For µ ∈ Qη(f(x)t, r), there exists λ ∈ Eτ (xt, r) such that

f (eCτ (λ, r)) ≤ µ.

Since eCτ (λ, r) ≤ Cτ (λ, r) then

f (eCτ (λ, r)) ≤ f (Cτ (λ, r)) ≤ µ.

We have

f−1(µ) = f (Qη(f(x)t, r)) = Qτ

(
f−1f(x)t, r

)
= Qτ (xt, r).

Since f is fuzzy continuous. Then we have

f (eCτ (λ, r)) ≤ µ ⇒ eCτ (λ, r) ≤ f−1(µ)

⇒ eCτ (λ, r) ≤ Cτ (λ, r) ≤ f−1(µ).

By Corollary 3.11 (2), (X, τ) is fuzzy e-regular.
(⇐) Let f be fuzzy continuous. For each ν ∈ Qη(f(x)t, r),

f−1(ν) ∈ Qτ (xt, r). Since (X, τ) is fuzzy e-regular, there ex-
ists µ ∈ Eτ (xt, r) such that µ ≤ eCτ (µ, r) ≤ f−1(ν). Thus,
f(eCτ (µ, r)) ≤ ν. Hence f is strongly θ-e-continuous.

(2) (⇒) Since every fuzzy continuous function is fuzzy e-continuous
then the proof followed by the necessary part of (1).

(⇐) By Remark 3.15, since every fuzzy e-regular space is
fuzzy ee∗-regular. Then the proof followed by the sufficiency
part of (1).

(3) Proof is similar from the above (1) and (2).
□

Theorem 4.11. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Let (Y, η) be a ee∗-regular space. Then the following statements are
equivalent:

(1) f is strongly e-irresolute.
(2) f is e-irresolute.
(3) f is θ-e-irresolute.
(4) f is quasi-e-irresolute.

Proof. (1) ⇒ (2), (2)⇒ (3) and (3)⇒(4) are trivial from Theorem 4.2

(3) ⇒ (1) For each ν ∈ Eη(f(x)t, r), since (X, η) is fuzzy ee∗-regular, there
exists µ ∈ eτ (f(x)t, r) such that µ ≤ eCη(µt, r) ≤ ν. for
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µ ∈ eτ (f(x)t, r), by (3), there exists λ ∈ Eτ (xt, r) such that
f(eCτ (λ, r)) ≤ eCη(µ, r) ≤ ν. Hence f is strongly e-irresolute.

(4) ⇒ (2) For each r-feo ν, we only show that

f−1(ν) = ∨{λ|λ ≤ f−1(ν), λ is r-feo}.
Then there exist x ∈ X and t ∈ I0 such that

f−1(ν)(x) = ν(f(x))

> 1− t

> ∨{λ|λ ≤ f−1(ν), λisr − feo}.

For each ν ∈ Eη(f(x)t, r), since (Y, η) is fuzzy ee∗-regular, there
exists µ ∈ Eη(f(x)t, r) such that µ ≤ eCη(µ, r) ≤ ν. By (4),
there exists λ ∈ Eτ (xt, r) such that f(λ) ≤ eCη(µ, r) ≤ ν. Thus
λ ≤ f−1(ν) and λqxt implies 1− t < λ(x). It is a contradiction.
Thus f−1(ν) is r-feo.

□

Theorem 4.12. Let (X, τ) and (Y, η) be fts’s and f : X → Y a function.
Let (X, τ) be a fuzzy ee∗-regular space. Then f is θ-e-irresolute iff f is
quasi e-irresolute.

Proof. Let f be quasi-e-irresolute. For each ν ∈ Eη(f(x)t, r), there exists
λ ∈ Eτ (xt, r) such that f(λ) ≤ eCη(ν, r). Since (X, τ) is fuzzy e∗-
regular, there exists µ ∈ Eτ (xt, r) such that µ ≤ eCτ (µ, r) ≤ λ. Hence
f(eCτ (µ, r)) ≤ eCη(ν, r). Then f is θ-e-irresolute. □
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