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The aim of this study was to examine EEG coherence before, during, and after time

to exhaustion (TTE) trials in an endurance cycling task, as well as the effect of effort

level and attentional focus (i.e., functional external, functional internal, and dysfunctional

internal associative strategies−leading to Type 1, Type 2, and Type 3 performances)

on brain functional connectivity. Eleven college-aged participants performed the TTE

test on a cycle-ergometer with simultaneous EEG and rate of perceived exertion (RPE)

monitoring. EEG data from 32 electrodes were divided into five effort level periods based

on RPE values (Baseline, RPE 0-4, RPE 5-8, RPE 9-MAX, and Recovery). Within subjects

RM-ANOVA was conducted to examine time to task completion across Type 1, Type 2,

and Type 3 performance trials. RM-ANOVA (3 performance types × 5 effort levels) was

also performed to compare the EEG coherence matrices in the alpha and beta bands

for 13 pairs of electrodes (F3-F4, F3-P3, F4-P4, T7-T8, T7-P3, C3-C4, C3-P3, C4-P4,

T8-P4, P3-P4, P3-O1, P4-O2, O2-O1). Significant differences were observed on TTE

performance outcomes between Type 1 and Type 3, and between Type 2 and Type 3

performance states (p < 0.05), whereas Type 1 and Type 2 performance states did not

differ. No significant main effects were observed on performance type (p > 0.05) for

all frequency bands in any pair of electrodes of the coherence matrices. Higher EEG

coherence values were observed at rest (Baseline) than during cycling (RPE 0–4, 5–8,

9–MAX) for all pairs of electrodes and EEG frequency bands irrespective of the type of

performance (main effect of effort, p < 0.05). Interestingly, we observed a performance

× effort interaction in C3–C4 in beta 3 band [F (4,77) = 2.62, p = 0.038] during RPE

9-MAX for Type 3 performance as compared to Type 1 and Type 2 performances. These

findings may have practical implications in the development of performance optimization

strategies in cycling, as we found that focusing attention on a core component of the

action could stimulate functional connectivity among specific brain areas and lead to

enhanced performance.
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INTRODUCTION

Physical exercise is commonly known to result in changes of
brain cortical activity measured by EEG techniques (Schneider
et al., 2009a). It is also generally accepted that exercise can
cause temporary changes of the EEG activity in the alpha
and beta bands (Crabbe and Dishman, 2004). Specific brain
changes are related to different kinds of exercise and to the
participants’ preferences for physical exercise (Schneider et al.,
2009a,b). Moreover, the effects of exercise on brain cortical
activity are reflected in specific brain regions. For example,
research findings from studies comparing running and cycling
revealed an increased alpha activity in the frontal regions,
involved in emotional processing, immediately after treadmill
exercise on those participants who displayed a clear preference
for running. On the other hand, participants who preferred
cycling showed increased alpha activity in the parietal regions,
which play an important role in integrating sensory information,

after bike exercise (Schneider et al., 2009b). These studies have
shown the occurrence of brain activity changes as a result of

exercise. However, few studies have examined these changes
during exercise. For example, Bailey et al. (2008) documented
increased EEG power spectra during graded-exercise to fatigue;
in particular, they found increased power in the theta, alpha, and

beta bands during exercise at different electrode sites (i.e., F3, F4,
F7, F8, C3, C4, P3, P4). Findings suggest that brain activity may
be related to exercise intensity, which could have an impact on
brain waves; in particular, increases in EEG activity in alpha and
beta bands seem to reflect augmented ventilatory rate.

In a cycling study, Hottenrott et al. (2013) found cortical
activity to be influenced by cadence. Specifically, EEG data
indicated that cadence not only directly increased metabolic and
cardiac activity, but also influenced cortical parameters. In detail,
the U-shaped curve of EEG spectral power over time suggests a
central activation that decreases with the onset of fatigue.

Hilty et al. (2011), in addition, demonstrated that there
is a fatigue-induced increase in communication between the
mid/anterior insular and the motor cortex during cycling
exercise. The authors provided basis to further investigate
the cortical mechanisms of supraspinal fatigue. Moreover,
in different tasks, Babiloni et al. (2011) speculated on
the physiological meaning of inter- and intra-hemispheric
connectivity during performance; in a golf putting task, for
instance, they suggested that the increase of bilateral parietal
central coherence in alpha band is due to the recruitment of
central-parietal resources related to global attention. However,
there is scant research examining brain activity before, during,
and after endurance tasks or under stressful conditions.

Interaction among brain processes, cognition, and
performance has been recently studied using the multi-
action plan (MAP) model (Bortoli et al., 2012; Robazza et al.,
2016) as a theoretical framework (for a review, see di Fronso
et al., 2017). This model provides practical indications to
help athletes reach and maintain optimal performance also
under strenuous or stressful situations. The MAP model is
based on the notion that different attentional strategies lead to
optimal and suboptimal performance states, which are related

to specific psychophysiological (Bertollo et al., 2013; Filho et al.,
2015), neural (Bertollo et al., 2016; di Fronso et al., 2016), or
affective responses (Robazza et al., 2016). The MAP model
is conceptualized in function of distinct performance levels
(i.e., optimal or suboptimal) and attentional demands (i.e.,
automatic or controlled). The interplay between performance
and attention leads to four performance states: (a) Type 1,
optimal-automated performance, characterized by an automatic
(“flow” like) attentional mode; (b) Type 2, optimal-controlled
performance, typified by an associative focus directed toward
core components of a given task/action; (c) Type 3, suboptimal-
controlled performance, characterized by a focus directed
toward irrelevant information and/or a dysfunctional control
of automated action components; and (d) Type 4, sub-optimal-
automated performance, typified by a low level or a lack of
focus of attention. In particular, former studies showed that
athletes can achieve optimal performances (Type 1, Type 2) with
different type of effort, attention, and investment of cognitive
resources (Furley et al., 2015; Carson and Collins, 2016; Robazza
et al., 2016). In brain studies, high levels of anxiety are commonly
associated with beta activity increase and alpha activity decrease
(e.g., Carvalho et al., 2013). Similarly, efficient and inefficient
processing during performance were shown to be modulated by
the degree of effort and attentional demands of the task, with a
clear Event-Related Synchronization in Type 1 performance and
Desynchronization in Type 3 performance (Bertollo et al., 2016).

Drawing on the MAP model assumptions, the effect of
different internal and external associative strategies on endurance
performance has been investigated (Bertollo et al., 2015).
Participants were required to direct attention externally on
pacing (Type 1 performance), focus internally on a core
component of the cycling action (Type 2), or attend to muscular
exertion (Type 3). Findings showed that participants in Type 1
and Type 2 performance states attained optimal performance.
On the other hand, Type 3 performance condition led to poor
performance because of enhanced feelings of fatigue. Type 4
performance was not considered in this earlier study and in
the current investigation because of the difficulty to instate in
participants involved in a laboratory task a mental attitude of real
disengagement featuring a Type 4 performance state. In a study
testing the association between cortical functional networks and
the performance types foreseen in the MAP model in cycling
(Comani et al., 2014), coherence analysis has been used as an
adequate metrics to quantify the functional correlation between
active brain areas at the sensor level, as also suggested in more
recent studies (Srinivasan et al., 2007; Bowyer, 2016). Comani
et al. found that performance types relied on fronto-occipital and
inter-hemispheric frontal coherence in the alpha band.

Drawing on the MAP model assumptions, we conducted
a counterbalanced repeated measure trial to investigate the
effect on cortical coherence (i.e., functional connectivity; Florian
et al., 1998; Srinivasan et al., 2007) of internal and external
attentional strategies during the different periods (i.e., effort
levels) of a time to exhaustion (TTE) cycling task. At Baseline,
before the TTE test, we expected to observe in participants
a higher functional connectivity in the alpha and beta bands
as compared to the periods of TTE execution and Recovery,
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because of a readiness for task execution that translates in a
greater communication within all brain regions (Hypothesis
1-effort level effect). Furthermore, we expected to observe a
significant interaction between type of performance and effort
level (i.e., Baseline, RPE 0-4, RPE 5-8, RPE 9-MAX, Recovery)
on functional connectivity (Hypothesis 2-Performance × effort
level interaction). In particular, Type 3 performance should
result in a higher level of coherence in the beta band (the
biomarker that most reflects motor binding; Cheron et al.,
2016), during the last stages of the TTE task, due to the
attentional focus on dysfunctional feelings, which increases
the communication among sensory motor areas and should
differ from Type 1 and Type 2 performances. On the other
hand, Type 1 “flow-like” experience should be characterized by
reduced functional connectivity, related to cortical inhibition
(Klimesch, 1996; Pfurtscheller, 2003; Klimesch et al., 2007) and
brain regions deactivation (Knyazev et al., 2011). Because of
the limited research on this topic, the current investigation
could be considered exploratory in nature. Specifically, alpha
band analysis could provide information about global resting
state, whereas beta band could offer information about sensory
motor integration (beta1), perception-action coupling (beta2),
and selective attention related to the motor task (beta3) (Laufs
et al., 2003; Donner and Siegel, 2011; Kilavik et al., 2013; Cheron
et al., 2016).

METHOD

Participants
We recruited 12 college-aged students. One student discontinued
participation from the experiment due to health reasons.
Therefore, 11 students (4 women and 7 men,Mage = 24.29 years,
SD= 4.91 years) completed the experimental protocol, consisting
of five visits to our exercise physiology laboratory. All volunteers
participated regularly in different physical activities of low or
moderate intensity and some of them were professional cyclists
(see Table 1). After being briefed on the general purpose of the
study, the participants agreed to participate and signed a written
informed consent. The study was conducted in accordance with
the declaration of Helsinki and received approval from the
local university ethics committee (University “G. d’Annunzio” of
Chieti-Pescara) with application ref. n. 10-21/05/2015.

Ratings of Perceived Exertion (RPE)
RPE was measured through the CR-10 Scale (Borg and
Borg, 2001) ranging from “0” (no effort) to “•” (maximal
sustainable effort). The verbal anchors were: 0 = nothing
at all, 0.5 = extremely weak, 1 = very weak, 2 = weak,
3 = moderate, 5 = strong, 7 = very strong, 10 = extremely
strong, • = absolute maximum (a score of 11 is assigned
to this anchor). No verbal anchors were used for 4, 6, 8,
and 9; the use of CR-10 Scale is instrumental in diminishing
ceiling effects, and its ratings are linearly related to various
physiological parameters such as VO2max, lactate, and heart rate
(Borg, 1998).

Procedure
Similarly to a previous study (Bertollo et al., 2015), five visits
to the laboratory were arranged, with inter-visit intervals of 48–
72 h in order to permit physiological Recovery of participants.
Two qualified researchers collected the data. Data collection
occurred in a quiet (no music playing, and no other people
allowed in the laboratory) and safe environment to warrant the
comfort of the participants. During the first visit, participants
received standard instructions about the use of RPE on the
CR-10 scale and performed an incremental test to determine
their anaerobic threshold (AT) and individual optimal pedaling
rate in revolution/minute (rpm). Heart rate, VO2, and VCO2

were continuously monitored with the Schiller CS 200 system.
During the second visit, an EEG was acquired during a TTE
test to check the setting and EEG equipment. At the same time,
the precision of the estimated AT and the pedaling rate were
verified to proceed as accurately as possible with the other three
visits to our laboratory that were important for data collection
and the subsequent analysis. The time to exhaustion interval
is defined as the maximum interval for which the subject can
maintain an exercise intensity equal to AT + 5%, and/or after
which he/she reaches volitional exhaustion. During the last three
visits, participants performed the TTE test on a monark Cyclo-
Ergometer (939 E) with simultaneous EEGmonitoring. The TTE
test was performed adopting a counterbalanced design. During
each visit, one of three MAP-based strategies was randomly used
during the constant load phase of the protocol:

1) An external associative strategy—focus on an external pacing-
metronome set at the individual optimal pedaling rate—
leading to Type 1 performance (instructions for participants:
“. . . during the whole constant load phase, a metronome
reproducing your optimal pedaling rate will be activated.
Please focus your attention on the pacer and follow the
pedaling rhythm. . . ”);

2) A functional internal associative strategy—focus on the
internal individual optimal pedaling rate (core component)—
leading to Type 2 performance (“. . . during the whole constant
load phase maintain your optimal pedaling rate which is
estimated to be n revolutions per minutes-RPM. Please, focus
your attention on your feet to maintain that rhythm. . . ”);

3) A dysfunctional internal associative strategy—focus on
muscle exertion (perception of tension, stiffness, fatigue,
soreness, etc.) related to pedaling—leading to Type 3
performance (“. . . during the whole constant load phase,
please focus your attention on your muscle exertion. . . ”).

At the end of the task, participants were asked to complete a
manipulation check questionnaire using a 10-point frequency
scale with anchors 1 (never) and 10 (always). The questionnaire
contained one of the following questions: “How often did you
focus your attention on the metronome?” (Type 1 performance
condition), “How often did you focus your attention on your
feet to maintain individual RPM pacing?” (Type 2 performance
condition), and “How often did you focus your attention on your
muscle exertion?” (Type 3 performance condition). A frequency
adherence under 4, which was considered “often enough,” was
adopted as an exclusion criterion.
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Incremental Test (First Visit)
After a warm up (4min at 75 watt), oxygen uptake (VO2) and
carbon dioxide production (VCO2) were measured using an
incremental protocol on amonark cycle ergometer (939 E). Heart
rate, VO2, and VCO2 were continuously monitored using the

Schiller C2 200 System, as above mentioned, to obtain all the
physiological parameter useful to identify AT. AT was measured
using the V-SLOPE method (Wasserman et al., 1994). Pedaling
rate was maintained at 70 rpm, and the workload power output,
initially set at 75 Watt, was step-wise increased by 25 Watt every

TABLE 1 | Mean (M) and Standard Deviations (SD) of Anaerobic Threshold (AT) and Individual Optimal Pedaling Rate (IOPR) obtained with incremental test, and minutes

on constant load phase of Time to Exhaustion Test (TTE) in the three types of performance for the participants.

Participants Age Gender Expertise AT-VO2

(l/min)

AT-VO2

(ml/kg/m)

AT-VCO2

(l/min)

AT-power (Watt) IOPR AT-HR Time to exhaustion (min)

Type 1 Type 2 Type 3

1 24 M Novice 1.29 20.50 1.28 145 83 140 13 16 15

2 32 M Amateur 2.04 26.80 2.27 150 100 152 18 16 9

3 33 M Elite 1.88 24.40 2.83 200 100 138 19 10 10

4 20 F Novice 1.12 18.70 1.43 85 68 150 16 14 11

5 28 M Novice 1.69 20.10 1.85 120 78 161 10 15 13

6 33 M Amateur 3.01 45.50 3.15 225 80 165 14 12 12

7 19 M Elite 2.27 37.10 2.26 175 70 169 23 31 19

8 25 M Novice 2.66 30.09 3.21 170 75 159 13 9 8

9 27 F Novice 1.21 22.80 1.19 90 54 176 11 12 9

10 24 F Novice 1.15 21.00 1.00 90 60 138 27 26 20

11 21 F Novice 1.38 25.5 1.48 90 73 186 12 15 10

Mean 24.29 1.79 26.59 1.99 140 76.45 157.63 16 16 12.36

SD 4.91 0.64 8.2 0.8 48.98 14.38 15.84 5.31 6.69 4.05

FIGURE 1 | Coherence matrices for each type of performance during different time periods of the protocol in the alpha band. Red color indicates high values of

coherence whereas the blue color indicates low values of coherence.
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2min until exhaustion. After the incremental test, participants
were given a 20-min rest period. After this period, participants
were asked to pedal at AT + 5% for 10min to identify their
individual optimal pedaling rate, while familiarizing themselves
with the study procedures.

TTE Test at Individual Constant Load
(Second to Fifth Visit)
During the second visit participants familiarized with TTE
protocol. After a resting period of 2min (no movement for
Baseline EEG recording) and a warm up period of 4min on the
cycle ergometer at 60% of AT in Watt, participants performed
a constant load exhaustive test at individual constant load (AT
+ 5%) reporting at the same time their RPE, with pedaling rate
fixed at their individual optimal pedaling rate. After exhaustion
(absolute maximum effort), there was a Recovery period of 4min
at 60% of AT and a further resting period of 2min without
movement. RPE scores were collected 5 s before the end of each
minute during the entire protocol. During the following visits to
the laboratory (i.e., 3rd, 4th, and 5th), participants were assigned
to one of the three experimental conditions, each defined in
a random order and occurring on different days. In order to
verify the adherence to the experimental assignments, the above-
mentioned manipulation check questionnaire was administered.

EEG Recording and Pre-processing
Electroencephalographic data were continuously recorded
during the whole protocol using the 32 channels EEG ASAlab
system with Waveguard cap (Advanced Neuro Technology,
Enschede, Netherlands). This system is supplied with shielded
wires to make recordings less susceptible to external noise
and movements. Sampling frequency was 512Hz. The ground
electrode (AFz) and common average reference were positioned
between Fpz and Fz to ensure low impedance values (< 10 K�).
The 32 electrodes were distributed over the scalp according to the
10/5 system (Oostenveld and Praamstra, 2001). The EEG data
were band-pass filtered between 0.3 and 40Hz. Epochs showing
instrumental, ocular, and muscular artifacts were detected using
the ASA (Advanced Source Analysis) software (Zanow and
Knösche, 2004) with the PCA (Principal Components Analysis)
method. Data epochs showing residual artifacts were visually
identified by two independent experts and excluded from further
analysis.

EEG Data Analysis
Pre-processed EEG signals were divided based on the TTE
test structure and on the RPE scores. We identified 7 periods:
Baseline, warm up, RPE 0–4, RPE 5–8, RPE 9–MAX, Recovery,
and rest. We retained the Baseline, RPE 0–4, RPE 5–8, RPE 9–
MAX, and Recovery periods for further analysis. Unfortunately,

FIGURE 2 | Coherence matrices for each type of performance during different time periods of the protocol in the beta 1 band. Red color indicates high values of

coherence whereas the blue color indicates low values of coherence.
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rest periods, where participants were requested to stop pedaling,
could not be analyzed because of sweating artifacts due to the
autonomic nervous system response, which irremediably affected
EEG signals. Warm up, instead, was not a period of interest
because attention manipulation was not implemented. For each
period we analyzed the EEG intervals of 4 s duration from −6
to −2 s prior to RPE evaluation. Four-seconds epochs were
averaged at individual level when part of similar categories of
RPE periods (e.g., participant 1: Baseline = 2 epochs for each
type of performance; RPE 0–4 = 5 epochs for Type 1; 6 for
Type 2; 7 for Type 3; RPE5–8 = 4 epochs for Type 1; 6 for
Type 2; 4 for Type3; RPE 9–MAX = 4 epochs for Type 1; 3
for type 2; 4 for Type 3; Recovery = 4 epochs for each type
of performance). Therefore, the grand average of the eleven
participants was performed resulting in a total of 22 epochs for
Baseline; 44 epochs for Recovery, 53 (±10 epochs) for RPE 0–4,
50 (±2) for RPE5–8 44 (±6) for RPE 9-MAX.

Coherence analysis of the EEG data was performed to
detect cortical connectivity patterns in relation to the different
attentional strategies and time periods. The complex coherence
between two signals X1 and X2 (recorded by two given electrodes)
was calculated as the cross-spectrum between the signals and
normalized by the square root of the power spectrum product
of the two signals. Given that coherence is a normalized measure
of the correlation between two signals, and consists of complex

values, its amplitude can vary from 0 to 1. For each period,
mean coherence matrices were calculated in the alpha (8–12Hz),
beta 1 (12–18Hz), beta 2 (18–23Hz), and beta 3 (23–30Hz)
bands (ASA-Lab software). We divided the beta band in three
sub-bands to better study sensory motor processes, perception-
action coupling, and selective attention (Laufs et al., 2003;
Donner and Siegel, 2011; Kilavik et al., 2013; Cheron et al.,
2016).

For each of the four frequency bands (i.e., alpha, beta1,
beta2, beta3) we obtained 15 reference coherence matrices
(3 performance types × 5 time periods) by averaging the
mean coherence matrices of the 11 participants. To retain
only significant functional connections across EEG signals, we
adopted the approach proposed by Berchicci et al. (2015) and
thresholded each reference coherence matrix on the basis of its
own coherence value distribution, which is expected to be non-
Gaussian. We then calculated the Median and Median Absolute
Deviation (MAD) of the coherence value distribution for each
reference coherence matrix, and defined a new thresholded
coherence matrix where only the coherence values > (Median +

1 MAD) were considered as meaningful functional connections
and retained, whereas all other coherence values were set equal
to zero (Li et al., 2015; Chella et al., 2016). Each thresholded
coherence matrix is composed of the coherence values of each
pair of 30 electrodes with this order of labels: Fp1, Fpz, Fp2, F7,

FIGURE 3 | Coherence matrices for each type of performance during different time periods of the protocol in the beta 2 band. Red color indicates high values of

coherence whereas the blue color indicates low values of coherence.
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F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1,
CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, OZ, O2.

Statistical Analysis
Before considering cortical data, we analyzed performance
outcomes in TTE test, running a within-subjects repeated
measure analysis comparing the time to complete the task during
each type of performance (Type 1, Type 2, Type 3).

Afterwards, a series of within-subjects repeated measures
ANOVA was performed with 3 (performance types) × 5 (effort
level= Baseline, RPE_0–4, RPE_5–8, RPE_9–Max, Recovery) on
each pair of electrodes. According to a previous study (Del Percio
et al., 2011), representative electrodes are F3, F4, C3, C4, P3,
P4, T7, T8, O1, O2. We analyzed cortical activity by combining
these electrodes in pairs representative of inter-hemispheric
(F3–F4, C3–C4, T7–T8, P3–P4, O2–O1) and intra-hemispheric
(F3–P3, F4–P4, T7–P3, T8–P4, C3–P3, C4–P4, P3–O1, P4–O2)
connectivity across the frontal, central, parietal, temporal, and
occipital regions in alpha and beta bands.

RESULTS

Performance Outcomes Comparison
Within-subjects RM-ANOVA for TTE (see Table 1) showed
significant differences among performance outcomes, F

(2,9) = 7.323, p = 0.013, η
2
p = 0.619, Power = 0.827. Post-hoc

pairwise comparisons with Bonferroni correction, showed
significant differences between Type 1 and Type 3 (p = 0.037)
performance states, and between Type 2 and Type 3 (p = 0.024),
but not between Type 1 and Type 2 (p= 1.000).

Manipulation Check
Manipulation check results showed that participants adhered
satisfactorily to the experimental conditions. During Type 1
performance condition, response ratings ranged from 4 to 9,
which corresponded to an adherence frequency from “often
enough” to “almost always” (M = 6.80, SD = 1.83). In Type
2 performance state, the response ratings ranged from 5 to 10
(“often” to “always”; M = 7.36, SD = 1.80), whereas in Type
3 performance state the response ratings ranged from 4 to 10
(“often enough” to “always,”M = 7.27, SD= 1.79).

EEG Coherence Results
For each frequency band (alpha, beta1, beta2, beta3) we
calculated coherence matrices for each type of performance
(Type 1, Type 2, Type 3) and for each effort level (Baseline,
RPE 0–4; RPE 5–8; RPE 9–MAX, Recovery). These matrices
are shown in Figures 1–4. Furthermore, the averaged coherence
values of all electrodes in the alpha and beta bands are included
in Supplementary Materials to provide a comprehensive picture
of brain activity at the sensor level (see Figures 1S−4S).

FIGURE 4 | Coherence matrices for each type of performance during different time periods of the protocol in the beta 3 band. Red color indicates high values of

coherence whereas the blue color indicates low values of coherence.
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Alpha Band
RM-ANOVA 3 (performance) × 5 (effort level) showed
significant effects on effort level for almost all pairs of chosen
electrodes (see Table 1S). Post-hoc analysis showed differences
between Baseline and periods of TTE task (effort level), mainly
between Baseline and RPE 5–8 and between Baseline and 9-MAX
period (see Table 2).

Beta Bands
RM-ANOVA 3 (performance) × 5 (effort level) showed
significant effort level effects for almost all pairs of chosen
electrodes in all beta bands (see Tables 2S−4S). Post-hoc
comparisons on effort level showed differences mainly between
Baseline and RPE 5–8, and between Baseline and Recovery
(Table 3). Moreover, performance × time interaction was found
for C3–C4 electrodes pair in beta 3 band (Table 4S). Post-hoc
pairwise comparisons showed significant differences between
Type 3 and Type 1 performances, as well as between Type 3 and
Type 2 performances, but not between Type 1 and Type 2 during
RPE 9-MAX (Table 4).

DISCUSSION

Current results, derived from EEG coherence analysis of
data collected before, during, and after TTE, corroborated
previous behavioral findings (Bertollo et al., 2015) and helped
clarifying the brain mechanisms underpinning endurance
task performance. Specifically, results related to performance
outcomes confirmed that participants were able to optimally
perform using an external associative strategy by focusing their

TABLE 2 | Post-hoc pairwise comparisons on effort level in alpha band.

Elec Pair Baseline

mean coherence values

Other periods mean

coherence values

P

F3-P3 0.542 RPE 5–8, 0.422 0.034

F4-P4 0.551 RPE 5–8, 0.397 0.000

T7-T8 0.576 RPE 5–8, 0.460 0.041

0.576 RPE 9–MAX, 0.475 0.042

T7-P3 0.545 RPE 5–8, 0.406 0.000

0.545 RPE 9-MAX, 0.400 0.032

C3-C4 0.549 RPE 5–8, 0.414 0.011

C3-P3 0.551 RPE 5–8, 0.442 0.001

0.551 Recovery, 0.453 0.012

C4-P4 0.570 RPE 5–8, 0.427 0.012

0.570 RPE 9–MAX, 0.439 0.003

T8-P4 0.540 RPE 5–8, 0.420 0.003

P3-P4 0.580 RPE 5–8, 0.425 0.003

0.580 Recovery, 0.483 0.039

P4-O2 0.573 RPE0–4, 0.454 0.021

0.573 RPE5–8, 0.449 0.016

0.573 RPE 9-MAX, 0.446 0.003

0.573 Recovery, 0.441 0.022

Only significant results are reported.

attention on the metronome (Type 1 performance). Similarly,
participants were able to achieve optimal performance also using
an internal associative strategy with a focus of attention directed
to the core component of the action (Type 2 performance).
On the other hand, participants’ performance was poor when

TABLE 3 | Post-hoc pairwise comparisons on effort level in beta bands.

Bands Elec Pair Baseline

mean coherence

values

Other periods

mean coherence

values

P

Beta 1 F3-F4 0.542 Recovery, 0.443 0.001

F3-P3 0.516 RPE 5–8, 0.370 0.009

T7-P3 0.502 RPE 5–8, 0.414 0.046

C3-P3 0.548 Recovery, 0.465 0.028

C4-P4 0.546 RPE 5–8, 0.421 0.003

0.546 RPE 9–MAX, 0.465 0.005

P3-P4 0.559 RPE 5–8, 0.438 0.001

0.559 Recovery, 0.458 0.045

P4-O2 0.532 RPE 5– 8, 0.437 0.046

0.532 RPE9–MAX, 0.413 0.030

0.532 Recovery, 0.428 0.027

O2-O1 0.591 RPE 0–4, 0.473 0.040

Beta 2 F3-F4 0.565 RPE 5–8, 0.416 0.029

0.565 Recovery, 0.444 0.001

F3-P3 0.539 RPE 5–8, 0.391 0.025

0.539 Recovery, 0.416 0.047

F4-P4 0.514 RPE 5– 8, 0.365 0.001

C3-C4 0.572 RPE 5–8, 0.441 0.005

C3-P3 0.555 RPE 5–8, 0.433 0.000

0.555 RPE 9–MAX, 0.448 0.043

0.555 Recovery, 0.447 0.049

C4-P4 0.523 RPE 5–8, 0.400 0.005

T8-P4 0.503 RPE 5– 8, 0.383 0.005

P3-P4 0.523 RPE 5–8, 0.420 0.002

0.523 Recovery, 0.428 0.013

P3-O1 0.508 RPE 5–8, 0.422 0.046

0.508 Recovery, 0.394 0.036

P4-O2 0.524 Recovery, 0.430 0.006

Beta 3 F3-F4 0.549 RPE 5–8, 0.411 0.019

0.549 Recovery, 0.438 0.002

F3-P3 0.560 RPE 5–8, 0.388 0.000

0.560 RPE 9–MAX, 0.419 0.002

0.560 Recovery, 0.420 0.000

T7-T8 0.555 RPE 5–8, 0.425 0.044

T7-P3 0.526 RPE 5–8, 0.415 0.003

C3-C4 0.563 RPE 5–8, 0.415 0.010

C3-P3 0.538 RPE 5–8, 0.424 0.029

0.538 Recovery, 0.459 0.000

C4-P4 0.535 RPE 5–8, 0.408 0.010

0.535 RPE 9–MAX, 0.449 0.030

0.535 Recovery, 0.436 0.026

T8-P4 0.531 RPE 5–8, 0.406 0.000

0.531 RPE 9–MAX, 0.445 0.050

P4-O2 0.543 RPE 5–8, 0.435 0.008

0.543 Recovery, 0.430 0.001

O2-O1 0.610 Recovery, 0.496 0.026

Only significant results are reported.
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they focused their attention on muscle exertion. These results
suggest that individuals may perform well not only in a
flow-like performance state (Type 1), but also when they
pay attention to specific action components (Type 2 state).
Therefore, identifying the core components of action linked
to functional performance patterns and focusing attention
on this fundamental movement can improve performance
and help individuals counteract the discomfort and pain
deriving from muscle soreness and fatigue in endurance
tasks.

The main purpose of this study was to examine, within
the theoretical framework of the MAP model, the effect of
attentional strategies on brain functional connectivity during
different periods of effort. In summary, findings from the entire
scalp (averaged coherence of all electrodes) in the alpha and beta
bands showed:

1) Higher coherence values at rest (Baseline) than during task
execution (RPE 0–4, 5–8, 9–MAX periods) for all performance
types (Hypothesis 1-effort level effect). Post-hoc pairwise
comparisons showed significant differences between Baseline
and the two periods of high effort (RPE 5–8; RPE 9–MAX) in
both alpha and beta bands. Differences between Baseline and
Recovery were found especially in the beta bands.

2) Higher coherence values in Type 3 performance as compared
to Type 1 and Type 2 performances during RPE 9-MAX
(Hypothesis 2-Performance × effort level interaction). It
is interesting to observe that performance × effort level
interaction on the C3–C4 electrodes pair in beta 3 band most
likely reflected the effect of focusing attention on muscle
exertion (Type 3 performance state), that led to higher inter-
hemispheric communication between motor areas during the
exhausting phase (i.e., RPE 9-Max).

These results are consistent with previous findings which
associate high values of coherence with functional coupling
(Thatcher et al., 1986), information exchange (Petsche et al., 1997;
Pfurtscheller and Andrew, 1999), and functional coordination
(Gevins et al., 1989) among brain regions. High coherence values
suggest an increased functional synchronization among two or
more brain areas related to the preparation for task execution
(Pfurtscheller and Andrew, 1999).

Our findings also highlighted that coherence was generally
lower during those periods characterized by movement and
high effort such as at RPE 5–8 and particularly at RPE 9–MAX
(especially in Type 1 and Type 2 performance).

Our results are partially consistent with the finding that
after a fatiguing cycling exercise there is an increase in the
communication between the mid/anterior insula and the motor
cortex (Hilty et al., 2011), similar to what observed for the
Baseline period. Indeed, from a statistical point of view, we
found differences for inter- and intra-hemispheric coherence
when comparing Baseline and TTE, but not when comparing
TTE and Recovery. This occurred not only in the alpha but
also in the beta band, the biomarker that best reflects motor
binding (Cheron et al., 2016). Therefore, we can argue that
our first hypothesis was confirmed to a large extent, although
further research is necessary to compare TTE and Recovery

Frontiers in Psychology | www.frontiersin.org 9 July 2018 | Volume 9 | Article 1249

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


di Fronso et al. EEG Coherence in a Cycling Task

immediately after exercise, eventually considering longer periods
of post-exercise Recovery.

We also noticed that coherence patterns during Baseline
periods were similar for all types of performance. This finding
indicates an extensive exchange of background information
among all brain regions before task execution and movement
(Petsche et al., 1997; Pfurtscheller and Andrew, 1999). Even if, in
general, we did not observe significant results on performances
by effort interactions, it is worth noting that Type 1 performance
was usually typified by higher coherence as compared to the
other performance types during low effort (RPE 0–4 period) in
the alpha and beta bands. This result could be related to the
external associative strategy adopted that can initially engage a
broader functional connectivity across brain areas, as well as
to the nature of the task that requires a sustained movement
(Comani et al., 2014). Lower coherence in Type 2 and Type 3
performances could be related to negative feelings associated with
fatigue or the internal focus of attention (Wilson et al., 2011).
Of note, during maximum effort (RPE 9–MAX period) Type 1
performance was characterized by lower coherence that could
be due to fatigue effects. These may lead to a reorganization
of the brain network (Berchicci et al., 2013) irrespective of the
functional strategy adopted. Moreover, we can hypothesize that
task execution during the final period of the TTE becomes more
automatic and needs less information exchange, especially when
an external associative strategy is adopted (Hatfield and Kerick,
2007). This result can be also partially interpreted within the
framework of the neural efficiency hypothesis, which reflects a
general reduction in neural activity as task execution becomes
more automated and less controlled (Callan and Naito, 2014).
We also found that an external associative strategy was effective
and possibly leading to flow like experiences, as demonstrated
by cortical inhibition and therefore by the low coherence values
obtained during maximum effort (Knyazev et al., 2011).

It is worth considering that during the Recovery phase there
was no attention manipulation and, consequently, cognitive and
attentional demands were low; these low demands could have
contributed to the retrieval of coherence patterns similar to
those observed during Baseline. From the visual inspection of
the coherence matrices, indeed, we observed, especially in the
alpha band, high coherence values during Recovery in Type
1 performance, similarly to coherence in Type 3 performance.
We can hypothesize that after maximum effort a counteracting
mechanism restores the same pattern of functional connectivity
among brain areas as during Baseline. Indeed sensory-related
thalamic nuclei information, which serves as gate to the primary
sensory areas in the cortex during TTE (Beiser and Houk, 1998),
is absent during Baseline. We also observed another difference
between Type 1 and Type 3 performance states: coherence
values in beta 3 were significantly higher for Type 3 during
maximum effort in C3–C4. This may be due to the focus of
attention on muscle exertion that leads to an increased inter-
hemispheric communication between motor areas devoted to
the motor input in the bilateral cycling task (Comani et al.,
2014). We could argue that an enhancement of alpha and beta
interhemispheric coherence, particularly in C3–C4, may reflect
the primary activation of the somatosensory cortex in noxious

processing (Chen and Rappelsberger, 1994). This difference
was also observed between Type 2 and Type 3 performance,
but not between Type 1 and Type 2 performance. These
findings corroborate theMAPmodel perspective because the two
optimal performances (Type 1 and 2) showed similar functional
connectivity patterns, which were different from those observed
for Type 3 performance (Bertollo et al., 2016; di Fronso et al.,
2016, 2017). However, our findings are not conclusive in regard
to our second hypothesis, and further investigation is needed to
more deeply explore sensory motor integration and perception-
action coupling. From an applied perspective, this study suggests
the use of bio-neurofeedback not just to help people divert
their attention away from dysfunctional sensations (Bertollo
et al., 2015), but also to stimulate functional connectivity among
specific brain areas for performance optimization, according
to the explanation provided by Poldrack (2015) on neural
efficiency theory. He suggested that “the total amount of energy
consumed by neuronal computations depends not just upon
the function of individual neurons, but also on how those
neurons are connected to one another” (p. 16). Neurofeedback
training could be used together with relaxation and mental
skills training to help athletes modulate alpha or beta brain
waves, and therefore self-regulate their functional arousal level
(di Fronso et al., 2017).

Some limitations of the current study need to be addressed
in future research. From a methodological point of view,
performing EEG studies in sport is still hard due to different
types of artifacts affecting the EEG recordings.We conducted this
study with a stationary EEG system and wet electrodes, which did
not totally allow to avoid the artifacts in low frequency ranges.
More advanced EEG equipment (e.g., mobile EEG systems, dry-
electrode technology) and new algorithms for EEG data pre-
processing (Stone et al., 2018; Tamburro et al., 2018) could
allow to consider also the theta band, hence paving the way to
a better interpretation of EEG data in the light of the neural
efficiency hypothesis. From a theoretical point of view, it might
be important to investigate also cortico-muscolar coherence
during voluntary movements (Marsden et al., 2000), as it could
provide useful information on specific functional connections
between the cortex and the engaged muscles (Travis et al., 2002),
and a better understanding of the brain-body interaction and
integration (Tang and Bruya, 2017). Finally, future studies should
engage a larger number of participants to provide more reliable
results, especially about peak performance experiences that are
rare to find and difficult to reproduce. Research should also be
extended to different endurance sports and more experienced
athletes to attain more generalizable findings. Other functional
neuroimaging techniques (e.g., NIRS) and analytic procedures
(i.e., LORETA) could also enable a better understanding of
structure-function and brain-body connections.
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