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Crop diseases have the potential to cause devastating epidemics that threaten the

world’s food supply and vary widely in their dispersal pattern, prevalence, and severity. It

remains unclear what the impact disease will have on sustainable crop yields in the future.

Agricultural stakeholders are increasingly under pressure to adapt their decision-making

to make more informed and efficient use of irrigation water, fertilizers, and pesticides.

They also face increasing uncertainty in how best to respond to competing health,

environment, and (sustainable) development impacts and risks. Disease dynamics

involves a complex interaction between a host, a pathogen, and their environment,

representing one of the largest risks facing the long-term sustainability of agriculture. New

airborne inoculum, weather, and satellite-based technology provide new opportunities

for combining disease monitoring data and predictive models—but this requires a

robust analytical framework. Integrated model-based forecasting frameworks have the

potential to improve the timeliness, effectiveness, and foresight for controlling crop

diseases, while minimizing economic costs and environmental impacts, and yield losses.

The feasibility of this approach is investigated involving model and data selection.

It is tested against available disease data collected for wheat stripe (yellow) rust

(Puccinia striiformis f.sp. tritici) (Pst) fungal disease within southern Alberta, Canada.

Two candidate, stochastic models are evaluated; a simpler, site-specific model, and

a more complex, spatially-explicit transmission model. The ability of these models

to reproduce an observed infection pattern is tested using two climate datasets

with different spatial resolution—a reanalysis dataset (∼55 km) and weather station

network township-aggregated data (∼10 km). The complex spatially-explicit model using

weather station network data had the highest forecast accuracy. A multi-scale airborne

surveillance design that provides data would further improve disease risk forecast

accuracy under heterogeneous modeling assumptions. In the future, a model-based

forecasting approach, if supported with an airborne surveillance monitoring plan, could

be made operational to provide agricultural stakeholders with reliable, cost-effective, and

near-real-time information for protecting and sustaining crop production against multiple

disease threats.
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INTRODUCTION

Crop diseases have the potential to cause devastating epidemics
that threaten the world’s food supply and vary widely in their
dispersal pattern, prevalence, and severity (Chakraborty and
Newton, 2011). Diseases like stripe rust (Puccinia striiformis f. sp.
tritici) (Pst) and fusarium head blight (Fusarium graminearum)
(FHB) on wheat, and powdery mildew (Erysiphe necator) on
grapes, to highlight just a few, cause major crop losses globally
(Hovmøller, 2001; Carisse et al., 2009; Haran et al., 2010;
Newberry et al., 2016). Plant breeding to increase host resistance
remains the primary approach for managing diseases and to help

sustainable agricultural yields, as crop breeding networks that
deploy resistance genes decrease the likelihood that pathogens
will overcome resistance (Ojiambo et al., 2017). Nonetheless,
despite the introduction of crop cultivars/varieties with higher
resistance, new disease races, with increased virulence, continue
to emerge. Environmental conditions affect resistance gene
performance, but the basis for this is poorly understood (Bryant
et al., 2014). Moreover, environmental drivers and pressures are
increasing in their influence over agroecosystems; climate change
and variability is raising temperatures and lengthening growing
seasons, especially in northern climates (Canada) or temperate
zones (Australia), producing more days without frost, and more
intense heatwave and rainfall events. Disease dynamics itself
involves a complex interaction between a host, a pathogen, and
their environment, representing one of the largest integrated
risks facing the long-term sustainability of agriculture. Genetic

factors (e.g., emergence of new diseases and of new races),
environmental-driven influence (e.g., global climate change
impacts on disease spread), and management-intervention
driven agroecosystem interactions (e.g., crop breeding and
monitoring technologies) are all important considerations in
disease risk mitigation.

The cost of pesticides (e.g., fungicides, insecticides, herbicides)
is a substantial burden for growers—with substantial uncertainty
involved in deciding when and howmuch to apply to commercial
fields, especially as multiple diseases often affect crops at the
same time. Currently, when monitoring their fields for disease,
growers often rely on simple, visual identification, assessing
severity using standard area diagrams (SADs), disease progress

(AUDPC) curves, and weather/forecast conditions (Contreras-
Medina et al., 2009; Nopsa and Pfender, 2014; Ojiambo et al.,
2017). Pesticides are then applied either preventatively, or even
if no disease is detected, on a calendar-based schedule, based on
perceived risk (Carisse et al., 2009). This approach is, however,
limited in its ability to detect and control disease. Pesticide
application must generally occur during the early stages of
epidemics, and at sufficient rates. Over-application is costly
and creates added selection pressure for more pesticide tolerant
strains, while under-application may also be cost-prohibitive in
regions where expected yield is lower (Chen, 2007). Moreover,
high pesticide concentrations are not only costly, but are also
associated with detrimental environmental and human health
impacts (Newlands, 2016). Reducing pesticide use is a major
focus of global agricultural sustainability efforts (Nicolopoulou-
Stamati et al., 2016). The effectiveness of applications are also

highly dependent on timing, stage of disease progression, and
the strength and directionality of micro- and meso-scale wind
currents (Meyer M. et al., 2017).

Integrated Pest Management (IPM) is the deployment of a
variety of methods of pest control designed to complement,
reduce, or replace the application of synthetic pesticides.
It involves regular monitoring, use of decision thresholds,
combining approaches for targeted pesticide management and
substitution to broader agroecosystem considerations (Pretty and
Bharucha, 2015). For a comprehensive global overview of the
history, programs, and adoption of IPM programs around the
world, readers are referred to Peshin et al. (2009). They highlight
problems with assessing the adoption and success of IPM
programs and how pesticide use has not consistently decreased
in the majority of programs, despite reduction of pesticide use
being one of their primary goals. Here predictive models may
not only enable better program assessment and adoption, but
also help to identify how to optimize changes in the timing and
application of pesticides (e.g., fungicides) in time and space to
reduce pesticide use where predicted disease risk is sufficiently
low. Disease prediction models using advanced statistical
methods (e.g., artificial neural networks) integrating weather and
aerobiological monitoring data have been successfully developed
and validated for Ganoderma spp. and white blister on Brassica
crops (Brassica spotTM) (Minchinton et al., 2013; Sadyś et al.,
2016). Such prediction models need to be adapted and extended
for other crop diseases and then integrated into operational
IPM programs. For many IPM programs, there is a crucial
need to develop and involve a more reliable and effective
approach (i.e., analytical framework) for managing disease risk
that establish relationships between the amount of airborne
inoculum and disease development, combined use of models
that integrate theoretical knowledge on crop (host) growth,
disease (pathogen) development, and environmental influences;
alongside data from disease monitoring, climate/weather, and
other explanatory variables for assessing and predicting disease
(Juroszek and von Tiedemann, 2013; Ojiambo et al., 2017). Past
efforts have been hindered by sparse spatial data, limited use of
field monitoring technology, and a need for greater integration
and quantification. Past efforts have also concentrated mainly on
understanding the physical and biological mechanisms of plant
(crop) pathogen spore dispersal linked disease development,
outbreaks and spatial epidemic patterning and spread. Improved
detection of new airborne inoculum, weather, and satellite-based
technology, however, provide new opportunities for combining
disease monitoring data with predictive models. This has the
potential to improve the timeliness, effectiveness and foresight
for controlling crop diseases, while minimizing crop loss (Isard
et al., 2011; Devadas et al., 2015; West and Kimber, 2015;
Mahlein, 2016).

In a recent review of modeling the impact of climate on
crop disease, improvements in measuring the uncertainty of
climate change projected impacts using multi-model ensembles
are highlighted. This synthesis identifies the need to explore
other sources of uncertainty inherent in disease models that
still remain unexplored and unreported (Newberry et al., 2016).
They articulate the crucial need to investigate crop disease
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dynamics at the landscape spatial scale, across a broader range
of crops and pathogens. This study also identifies the need
for new frameworks and models to improve the ability of
models to predict impacts of climate change on crop diseases
for guiding the planning of climate change adaptation strategies
to ensure future food security. Because disease patterns can
change in unintended ways when interventions take place
across spatially heterogeneous landscapes, Newberry et al.
(2016) articulate five key challenges for advancing models: (1)
flexibility and accuracy, (2) interaction and contact assumptions
and statistical representation, (3) how to define and estimate
a critical threshold of transmissibility, while recognizing a
mixture of infection types under changing susceptibility, (4)
how to model disease dynamics that depends on long-distance
interaction (e.g., air transmission via wind trajectories with
deposition via rainfall events), and, (5) identifying the natural
scale (i.e., operational resolution) for modeling (and forecasting)
transmission and interaction, and how this relates to the
scale at which intervention is most effective, recognizing that
different sources of data are typically available at different scales
(Riley et al., 2015).

Model uncertainty and reliability remain two major issues
challenging the development of more robust and effective
quantitative approaches for disease management. To address
these aspects requires an integrated model-based framework
and statistical approach that can integrate new types of
data, model spatial and temporal dependence and interaction,
quantify uncertainties, evaluate multiple scenarios, and bridge
empirical-theory knowledge gaps (Held et al., 2004; Contreras-
Medina et al., 2009; Haran et al., 2010; Savage and Renton,
2014; Kouadio and Newlands, 2015; Riley et al., 2015;
Newlands, 2016; Höhle et al.,, 2017; Ojiambo et al., 2017).
Dennis (1987) derived a simple, multivariate regression-based
model of Pst disease infection based on air temperature and
surface wetness period. Incorporating Monte-Carlo simulation
to model uncertainty, El Jarroudi et al. (2017) further
incorporated the Dennis disease infection model into a
threshold-based weather model to guide fungicide applications
for Pst. They show that an optimal combination of high humidity
(>92%), temperature (4–16oC) for at least 4 consecutive
hours was sufficient to cause an epidemic. Audsley et al.
(2005) developed a simulation model integrating it within the
Decision Support System for Arable Crops (DESSAC) system
that uses a genetic algorithm for the selection of fungicide
spray plans (Parsons and Te Beest, 2004; Audsley et al., 2005),
integrating major risk variables for pathogen (i.e., inoculum
source and transfer), host (cultivar-specific resistance, leaf
age, nitrogen uptake), and weather conditions (temperature,
rain, humidity, wind), Using the simple, multiple regression
modeling approach, Kuang et al. (2013) demonstrated a model-
based, operational prediction system for wheat stripe rust that
integrates geospatial and internet/networking technology to
enable multiple users to interact, share data, automate, and
update model design, combining regional predictions and testing
statistical significance. The inter-comparison of assumptions
(models), spatial resolution and uncertainty (climate datasets),
spatial correlation/dependence of host-pathogen-environmental

interaction, and its effect on model performance and forecast
accuracy is lacking.

In this paper, an integrated modeling framework to forecast
disease risk is proposed. The feasibility of model-based,
operational disease risk forecasting is investigated, using data
available for wheat stripe (yellow) rust (Puccinia striiformis f.sp.
tritici) (hereafter, Pst) fungal disease within southern Alberta,
Canada. Two candidate, stochastic models are evaluated; a
simpler, site-specific model, and a more complex, transmission
model. These models are calibrated using airborne inoculum
data by a Burkard cyclone spore collector, for the first time. In
addition, satellite measurements of major disease risk variables
(i.e., canopy temperature and liquid water on the canopy
surface) are integrated. The ability of these models to reproduce
an observed infection pattern is tested using two climate
datasets with different spatial resolution—a reanalysis dataset
(∼55 km) and a weather station network township-aggregated
data (∼10 km).

MATERIALS AND METHODS

Integrated Modeling Approach
The integrated framework was designed to take into account
major aspects and considerations involved in operational
model-based forecasting of crop disease at the regional-scale
(Figure 1). This approach combines data on host, pathogen
and environment, and models to capture different aspects of
disease dynamics under different assumptions. In this figure,
starting and end points are shownwith respect to seasonal disease
progression. Boxes represent model components—dashed boxes
are disease aspects not considered in the current modeling. Full
boxes are those that are currently considered. This design is a
prototype, and while not exhaustive of all general and pathogen-
specific aspects, is based on published scientific studies, evidence,
and in consultation with several expert AAFC/Canadian
pathologists. This design supports feasibility testing, involving
the evaluation of different models, datasets, and forecast
metrics. The framework integrates threshold-based infection and
multivariate spatial assumptions, extending previous approaches
to include a broader, more representative set of disease dynamic
parameters, climate covariates, and assumptions on disease-
climate interaction and spatial dependence. Its component-
wide structure permits scaling-up from homogeneous to
heterogeneous assumptions, whereby a region is divided into
smaller subregions, with transmission assumed to occur between
them and a calibrated model used to capture their specific disease
dynamics, susceptibility, incidence, and risk. Further details
of the model input and output parameters and variables are
provided for a non-spatial/site-specific (CLR) and spatial model
(hhh4) formulation in this section.

Wheat Stripe Rust Disease
Stripe (yellow) rust (Pst) is a prevalent fungal disease in all
wheat (Triticum aestivum) growing regions around the world,
occurring in most production zones having cool and moist
weather conditions during the growing season (Chen et al.,
2014). This disease has the potential to cause devastating
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FIGURE 1 | A prototype integrated, model-based framework for forecasting disease risk. Risk components for the major disease progression stages (i.e.,

immigration, deposition, germination, infection, incubation/residency, multiplication, re-dispersal, perennation) are included, alongside major risk variables, e.g.,

weather trigger events and conditions, host exposure and susceptibility, pathogen survival, residency, latency, endemic infection, cycling, epidemic transmission and

dispersal, and evolved virulence associated with the risk of resistance breakdown in the field (i.e., finer subregions compared to the ROI). Full boxes are components

of the framework that are considered in the current disease risk modeling, while dashed boxes will be considered in future extended modeling.

outbreaks/severe epidemics that threaten the world’s wheat
supply and, in turn, global food security, as 88% of the world’s
wheat production of 760 million metric tons (∼$185 USD/mt
or $140.6 billion USD in 2017/18) is susceptible (World Bank
Group, 2017; Food and Agriculture Organization of the United
Nations (FAO), 2018). This fungus (a wind-dispersed, obligate
biotroph that only infects and survives in a living host) has
yellow urediniospores during its asexual infection cycle and
is able to disperse over long distances across continents. It
is also adapting and overcoming resistance genes via rapid
stepwise evolution (Lei et al., 2017; Schwessinger, 2017). There
are different types of resistance depending on host wheat plant
growth stages and environment (laboratory or field), such that
stripe rust resistances can be separated into all-stage (also
called seedling) resistance (ASR) verses adult-plant resistance
(APR); greenhouse resistance and field resistance; temperature
insensitive resistance verses temperature sensitive resistance; and
non-durable resistance vs. durable resistance (Wang and Chen,
2017). With the constant evolution of new rust strains, and
their adaptation to higher temperatures, consistent and durable
disease resistance is a key challenge. The dual/split application
of fungicide, with half rates applied early and later, can reduce
disease intensity (AUDPC metric) close to that of a single,
full application, based on field trials of fungicide effectiveness
(Braithwaite, 1998). Crop rotation likely does not prevent the

spread of Pst, given its rate of spread is so fast across large
areas (Xi et al., 2015). Nonetheless, delayed planting, reduced
irrigation, avoidance of excessive nitrogen use, and elimination
of volunteer and grass plants can reduce stripe rust severities—
but these cultural practices are often not profitable, conflict
with conservation farming, and/or reduce yield potential (Chen,
2007). A consideration of host resistance, pathogen survival
and dynamics, alongside best management or cultural practices,
enabling farmers to use fungicides more judicially, is a long-term,
ultimate need and goal to minimize the risk of this disease (Xi
et al., 2015).

Most areas of the United States are not suitable for Pst
survival in both summer and winter, and only the Pacific Rim
states (California, Oregon, and Washington) have favorable
areas where the disease survives in summer and winter (i.e.,
oversummering and overwintering), based on summer/winter
survival indices linked to climate conditions (Sharma-Poudyal,
2012; Sharma-Poudyal et al., 2014). The major source of stripe
rust inoculum for Alberta (Western Canada) is considered to
be from this Pacific Northwest region (hereafter PNW) (Xi
et al., 2015). Pst occurrence is generally associated with higher
elevations, northern latitudes or cooler years (Newberry et al.,
2016). For regions north of latitude 40◦N, it infects both
winter wheat and spring wheat (winter wheat is generally more
susceptible than spring wheat), surviving in cool summers, with
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hot summers substantially decreasing the chance of its survival,
and severe winters preventing its survival (Xi et al., 2015). Pst
development becomes dormant for longer durations (slower
cycle time) as night-time temperatures cool. In this way, indices
based on average daily mean temperatures may overestimate
infection risk, especially in early spring and late summer,
when cooler nights are more frequent. Because different races
can infect different wheat varieties/cultivars having different
resistance to the pathogen, the reaction of different resistance
genes on selected host varieties/cultivars (differentials) is used to
determine the “race spectrum” for a given pathogen population
(e.g., within a single field). As with most other wheat-growing
regions, urediniopores (asexual cycle) are the only inoculum
source for the initial and recurrent infection of wheat, with an
infection cycle time that varies through the growing season.
New and older rust isolates (i.e., pathogen isolated in field
samples that are geographically or location specific) within
Western Canada have similar urediniospore rates of germination,
occurring between 2 and 20◦C, and highest/optimal close to 5◦C,
with cooler temperatures favoring spore germination (Tran and
Kutcher, 2015). While Pst outbreaks have been documented in
Alberta since 1925, the variable virulence of Pst has enabled it
to overcome the resistance of wheat cultivars, with increasing
epidemics occurring in the 1990s, whereby the older population
of races (i.e., pathotypes) in the United States have been replaced
by a new population since 2000 with germination occurring at
higher temperatures between (16–18◦C) and being more tolerant
of higher summer temperatures (Chen, 2010; Xi et al., 2015).

Warm chinook winds create milder winter weather conditions
across southern Alberta and change snow cover. Snow cover is
beneficial to urediniospore survival during the winter, whereby
areas in the vicinity of Olds are more conducive for spore survival
than areas near Lethbridge. This enables Pst to overwinter in this
region, and cause outbreaks in early spring when the weather
is cool and wet (Conner et al., 1988; Phillips and Newlands,
2011; Xi et al., 2015). Significant snow cover (>7.6 cm) has
an insulative effect, enabling Pst to infect wheat within 4–6 h
and survive at temperatures down to −10◦C. With no snow
cover and with temperatures less than −5◦C, Pst goes dormant
(Sharma-Poudyal et al., 2014). Newer isolates have thus adapted
to warmer temperatures and have higher germination rates
at higher temperatures than older isolates. The definition of
latent period is the approximate time taken for an infection
to result in new spores and is temperature-dependent; within
an optimal temperature range between 12 and 20◦C. Latent
period is 10–14 days (Anonymous, 2018) and is cultivar-
dependent; a susceptible cultivar AC Bellatrix of red winter wheat
(first released by AAFC in Lethbridge in 1999) was shorter
at higher temperature for new isolates, with a higher disease
intensity over time for new isolates, compared to older ones
(i.e., measured as the area under the disease progress curve or
AUDPC) (Tran and Kutcher, 2015). This evidence supports the
hypothesis that new stripe rust populations continue to adapt
to warming temperatures, with increased aggressiveness and
explains its expansion into Alberta, including other Canadian
Prairie Provinces (i.e., Western Saskatchewan). For Eastern
Saskatchewan and Manitoba the source of Pst is from the

Mississippi Valley, recent field surveys conducted during July,
August, and September 2016 on winter and spring wheat indicate
that Pst is found with varying levels of infection depending on
spatial location. Winter wheat lines, depending on location and
cultivar, can have upwards of 70% infection (2016 Cereal Disease
Situation Report, Western Committee on Plant Disease, WCPD.
Unpubl.). A recent global analysis of Pst outbreaks involving
887 genetically diverse isolates across 35 countries (2009–2005)
reveals that a few, highly divergent genetic races are driving
its epidemics and that its populations are being largely shaped
by invasion across geographical areas (Ali et al., 2017). With
such high epidemic potential, there is greater urgent need for
improved predictability of its emergence and dynamics.

Study Region (Southern Alberta, Canada)
The region of interest (hereafter, ROI) is southern Alberta (within
Western Canada), a major area of agricultural production with a
growing season of about 123 days (May-August). Wheat is the
largest crop, followed by barley and canola. Crops are irrigated
in this region due to reduced rainfall (semi-arid conditions:
300–450 mm/year). In 2015, adverse weather conditions (i.e.,
dry spring, low night-time temperatures and frost in fields, hot
summer with limited moisture) led to poor growing conditions
with yields being lower than long term averages. It first affects
winter wheat fields before spreading into spring wheat, as winter
wheat (e.g., AC Bellatrix and Radiant varieties) is direct-seeded
in early September and harvested several weeks earlier than
spring wheat the next year. Pst immigrates into this region
from the south (i.e., PNW and areas in the vicinity of Portland,
Oregon), as well as, from the north where it overwinters in central
Alberta. Backward, diagnostic trajectories (5-day time frames)
using analyzed wind fields, indicate that Pst within the NWR
of the United States is the main Pst source region for southern
Alberta, Canada (AAFC Cereal Rust/Wind Trajectory Event
Update Report (Summer 2015) by Turkington et al. Unpubl.).
Also, forward, prognostic trajectories using NOAA’s HYSPLIT
model (April-May, 1995) and forecast wind fields (discrete fields
700–850 hPa) having starting points within the PNW region
(vicinity of Portland, Oregon USA) show an immigration zone
for high potential for spore dispersion into southern Alberta (not
included here for brevity, Newlands unpubl.). These simulations
use archived (2-hourly) weather data from Regional Analysis
and Forecast System (RAFS)’s Nested Grid Model (NGM) (US
National Centers for Environmental Prediction, NCEP). The
atmospheric deposition of spores onto the ground still needs to
be accounted for, using models such as the one developed by
Chamecki et al. (2012) to know more accurately where and when
they fall.

Airborne inoculum sample data (weekly, June-October) was
obtained for 2015 at Lethbridge (Fairfield site: N 49◦ 42.493/ W
112◦ 41.738) from the first year of sampling (Figure 2) with sticky
microscope slides placed on a Burkard cyclone spore collector.
This is considered a passive method of spore trapping/collection,
instead of active sampling of the air. The slides were attached
on the cap of the Burkard cyclone instrument, just below the
collection orifice, so that the slide was always facing the prevailing
wind (i.e., 180◦ incidence angle). Double-sided adhesive tape (#M
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FIGURE 2 | The southern Alberta, Canada region of interest (ROI): The Lethbridge site (located within township TW008R21W4) is indicated; areas where wheat

(winter, spring) are grown are indicated (brown) superimposed on a grid of Alberta townships (∼10 km). A sub-region of 40 municipalities was selected surrounding the

Lethbridge site for model computations (upper inset).

Scotch R© Removable Poster Tape 3/4′ (199mm) wide, clear) was
used. The adhesive tape covered almost the whole translucid
surface of the slide, covering an area of 19 × 50mm. The slides
were kept inside a slide box at room temperature for a few
days until they were analyzed under a light microscope (Laroche
et al., 2018). While it could have been located anywhere in the
study region for the entire growing season, it was fixed in its
location in an agricultural field (Fairfield) located in Lethbridge,
given the high Pst visual occurrence historically detected in fields
near this site. Microscopy, Polymerase chain reaction (PCR), and
multiplex qPCR molecular techniques were used to identify Pst
urediniospores and quantify the concentration of spores collected
by the cyclone collector instrument (Araujo et al., 2016) (PCR is a
technique tomakemany copies of a specific DNA region in vitro).

Satellite measurements of major disease risk variables
(i.e., canopy temperature and liquid water on the canopy
surface) (Laroche et al., 2018), regional-scale climate reanalysis
(Kobayashi et al., 2015), and quality-controlled weather
station network data (hourly scale), spatially-interpolated
to the regional municipality scale were provided by the
Alberta Climate Information Service (ACIS) (1961-2016)1. The
ACIS interpolation method linearly weights station-based air
temperature estimates of up to 8 closest neighboring stations
by inverse-distance, within a correlation radius of 60 km.
Precipitation is inversely-weighted by distance (i.e., cube of the
inverse distance within a correlation radius of 200 km), with
the inverse distance monthly totals redistributed proportionally,
relative to the nearest station with a complete monthly record.
The JRA-Year Reanalysis (JRA-55) high-resolution, climate

1Alberta Climate Information Service (ACIS): https://agriculture.alberta.ca/acis/.

reanalysis dataset was used, being among the most sophisticated
reanalyses currently available. It also includes pathology-relevant
variables with a spatial resolution of 0.55◦ × 0.55◦ (∼55 km) and
3-hourly (and 6-hourly) temporal resolution for years 1990-2015
(Bebber et al., 2016). Figure 3 compares the distribution of
potential disease risk based simply on climate variables (i.e.,
thresholds in mean daily temperature and humidity range)
illustrating how the importance of finer resolution in revealing
spatial trends and correlation patterns, and the need to model
such spatial impacts to predict disease risk rather than relying on
climate threshold-based information alone. Simple thresholds
are typically assumed in many current operational, weather-
based disease risk forecasting systems, avoiding the use of models
with assumptions of pathogen-host-environmental interaction
that adds additional uncertainty to risk forecasts. The finer-scale
pattern of potential Pst pathogen infection risk revealed across
the townships (∼10 km) varies considerably from the host (i.e.,
wheat) distribution pattern, pointing to the need and importance
of disease risk modeling to explain and better predict differences
in host and pathogen distribution and variability in relation
to environmental (e.g., climate) uncertainty (Figure 2). Also,
information on fungicide efficacy in relation to spray timing
and varietal response for stripe rust control is limited in central
Alberta, contributing additional uncertainty (Xi et al., 2015).

Hourly leaf wetness duration (LWD) and canopy temperature
(Tc) data was obtained from the JRA-55 reanalysis dataset.
Canopymoisture (kg m−2) and temperature (◦C) was converted2

from the JRA-55 variables named “moisture storage on canopy”
(code 223) (m) and “canopy temperature” (code 114) (K) from

2Water weight to water column: 1 kg m−2 = 1mm = 0.001m, T(◦C) = T(K) −

273.15.
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FIGURE 3 | Spatial distribution of potential Pst infection risk between June 17 and Sept 1 in 2015 (in units of total number of growing season days having conditions

favorable to infection). The total number of growing season days was based on threshold range of mean daily temperature 3–25oC, average humidity >57% (ACIS)

and hourly canopy moisture >0 (wet days) (JRA-55), illustrating the effect of spatial resolution and importance of capturing spatial dependence (in finer-scale climate

data) for improving model-based disease prediction. (ESRI ArcGIS 10.4, Canada Albers Equal Area Conic Projection).

the ground/land surface forecast fields (fcst_land125) produced
every 3 h (at 00, 03, 06, 09, 12, 15, 18, and 21UTC) (Figure 4).
Leaf wetness duration (LWD) is highly skewed, with many dry
days (Figure 4A). Leaf wetness is the presence of free water
on the surface of a crop canopy comprising canopy-intercepted
rainfall/fog, irrigation, and dew (dewfall/dew-rise) that forms
on leaves where water vapor condenses on a surface; it is
triggered when the temperature of a canopy surface drops below
the dew point temperature of the surrounding air (Rolandson
et al., 2015). In June-Oct of 2015, coinciding with the airborne
sampling measurement, the majority of wetness events were
below 0.001m (or 0.10 kg m−2) early in the season (June), but
increases through the season reaching 0.30–0.35 kg m−2 at end-
of-season (August-Oct) (Figure 4B). There were 54 days with
rainfall (of 77 total of airborne sampling in 2015). Canopy
temperature showed considerable variability through the 2015
growing season (Figure 4C).

CLR Model (Site-Specific)
A site-specific model was first evaluated in predicting Pst
disease. This model has previously been used to predict disease
risk and a historical 2008-2011 outbreak of Coffee Leaf Rust
(CLR, Hemileia vastatrix) in Colombia (Bebber et al., 2016)
(hereafter, CLR model). The CLR model assumes infection by
germinated fungal spores occurring on leaves that are wet for
longer than a critical leaf wetness duration (Wcrit or LWDcrit)
and specifies a temperature response function [(Yan and Hunt,
1999) Type] of germination and infection based on pathogen-
specific minimum, maximum and optimum temperature (θmin,
θopt, θmax). Sensitivity analysis of a generic fungal model for
Pst using these variables lends further support for their use
in predicting Pst disease dynamics (Bregaglio et al., 2012).
The model assumes: temperature is assumed constant over
each hourly interval, an equal size of new spore cohorts that
being germinating at the start of each wet hour, and no
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FIGURE 4 | (A) Growing season wetness duration (h) distribution, (B) canopy wetness (m), and (C) temperature (oC) within the modeled ROI comprising 40

townships within the 2015 growing season, surrounding the Lethbridge site.

germination during dry periods, with no neighbor infections.
The process of spore germination and appressoria formation
(i.e., infection) over time is modeled as a Weibull-distributed
survival process. This generates a cumulative hazard function
having germination and infection processes that are time-
varying and random, with rates that are greatest at θopt and
decline to zero outside of the temperature range (θmin, θmax).
Disease development is thus assumed to be dormant until the
temperature moves back within the required range. The CLR
model was implemented using validated R code [(Bebber et al.,
2016; R Core Team, 2017) (includes supplement and example
R code)] with the critical wetness, temperature-response, and
germination/infection process (Weibull-distribution) parameters
estimated for Pst, using the JRA-55 reanalysis 3-hourly climate
data.

hhh4 Model (Spatial)
The hhh4 spatio-temporal endemic-epidemic model having
spatial dependence assumptions was selected to compare with
the CLR site-specific model predictions. This model has been
implemented in the surveillance R package (Held and Paul,
2012; Paul and Meyer, 2016; Meyer S. et al., 2017). Separate

runs of the model using JRA-55 reanalysis (∼55 km), ACIS
station-based township (∼10 km) climate data as input, and both
datasets combined, were performed to benchmark the effect of
the spatial resolution of input climate data on disease model
accuracy. The hhh4 model is a multivariate time-series model
for disease incidence, Yit involving multiple, geographical sub-
regions (e.g., units of townships or fields), i = (1,. . . ,I), across
multiple time periods t=(1,. . . ,T). It assumes a negative-binomial
(i.e., clustered) distribution of spore counts, with an additive
mean (Meyer S. et al., 2017),

µit = eit νit + λitYi,t−1 + φit

∑

j 6= i
wjiYj,t−1 (1)

and the over-dispersion parameter, ψi. The additive mean
µit consists of an endemic (eit νit) and epidemic (λitYi,t−1 +

φit
∑

j 6= i wjiYj,t−1) component, where eit is the expected counts

(i.e., a multiplicative offset to the endemic mean νit). The
epidemic component consists of two autoregressive spatial
effects, namely: disease reproduction within region i, and a
neighborhood or spatial-temporal interaction effect involving
spore transmission to other region j. The disease endemic and
epidemic contributions can be assumed identical across regions,
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vary within each region, random, or correlated between regions,
by representing them as log-linear functions having intercept, αi
and associated predictor variables, whereby,

log (νit) = α
(ν)
i + β(ν)Tz

(ν)
it , (2)

log (λit) = α
(λ)
i + β(ν)

T
z
(λ)
it , (3)

log (φit) = α
(φ)
i + β(ν)Tz

(φ)
it , (4)

where T denotes the transpose of a weight vector β(ν) for

covariate vector z(ν)it .If the epidemic parameters, λ = exp(α(λ))

and φ = exp(α(φ)) are assumed homogeneous across all sub-
regions, and constant over time (i.e., λit = λ, = φ, ∀i,t),
an underlying, seasonal temporal trend effecting all regions
equally at time t with annual frequency, ω = 2π/52. Infection
transmission is assumed to occur only between directly adjacent
townships (wji = I), where I is the identity matrix, then Equation
(1) and its component log-linear predictor (Equation 2), becomes
(Meyer S. et al., 2017),

µit = eit νit + λYi,t−1 + φ
∑

j 6= i
wjiYj,t−1 (5)

log (νt) = α
(ν) + βtt + γ sin (ωt)+ δcos (ωt) (6)

For this homogeneous version of the hhh4 model,
weather/climate variables are used to determine the initial
infection profile in each township (Equation 5) and then
scaling adjustments to these township profiles are made as the
model simulation proceeds, whereas the heterogeneous model
inputs the weather/climate variables in the covariate vector
of the log-linear equations (Equations 2–4). A susceptibility
correction to this homogeneous version of the hhh4 model was
considered that assumes a township-specific proportion (1 − νi)
as a proxy for the susceptible population. Model simulations
(i.e., independent runs) were performed with and without a
susceptibility correction (i.e., a specific percentage or population
susceptible to disease) to gauge how susceptibility assumptions
affect model accuracy. This susceptible proportion can be
accounted for either as an offset to the endemic population
i.e., (1 − νi) (i.e., resulting in a form of the model having a
multiplicative offset and log-linear covariates), or as an offset
to the autoregressive component of the model (i.e., resulting
in a model form that has endemic and/or autoregressive
effects). Susceptibility modifies the endemic effect through the
substitution of this component with this offset (refer to Equation
1), whereby,

eit νit ← (1− νi)
βsei (7)

Alternatively, it can be considered as an offset to the epidemic
component (i.e., an autoregressive/covariate effect),

λitYi,t−1 ← exp(α(λ) + βs log(1− νi))Yi,t−1

= exp(α(λ)) (1− νi)
βsYi,t−1 (8)

where, βs ≥ 1 is a power effect of high proportion of susceptible
populations in sub-region iwhich boost new infections (Meyer S.

et al., 2017). The arrow in Equations (7, 8) indicates replacement
of the left side terms by the right side terms when susceptibility
is considered as a model parameter. Both of these candidate
models were evaluated in accounting for wheat cultivar/host
susceptibility for Pst in the ROI, with the best-performing model
(same dataset) selected bymaximizing the likelihood/minimizing
the Akaike Information Criterion (AIC) that corrects for variance
due to the total estimated number of model parameters.
The hhh4 model (homogeneous) has the seven parameters:
(λ, φ, ν, exp(βt), A,ϕ, ψi), where the two sinusoidal terms
of the seasonality-adjustment in Equation (6) are combined
into a sinusoidal wave of amplitude A and phase shift ϕ.
Considering susceptibility adds one more model parameter,
whether included as an offset (βs = 1), or as a covariate (βs
estimated).

The Akaike Information Criterion (AIC) was used in
measuring model accuracy and performance (e.g., best and worst
cases) of the hhh4 model (R stats library). Infection within each
township was modified both by changes in the hhh4 model
parameters and subregion climate variability. Five competing
cases were evaluated:

Case 1 (JRA hourly reanalysis climate)
Case 2 (ACIS daily station-based climate input)
Case 3 (combined JRA and ACIS)
Case 4 (Case 3 with susceptibility offset correction)
Case 5 (Case 3 with susceptibility covariate correction)

The climate variables selected to drive the model differed
depending in each of the cases above, depending onwhich dataset
was used (JRA coarse-scale and/or ACIS fine-scale) and whether
the climate variables was hourly or daily. For case 1, JRA hourly
mean, minimum and maximum canopy temperature, and leaf
wetness duration (LWD) were used to drive the model, For
case 2, ACIS daily mean, minimum and maximum temperature
and daily relative humidity were used. For case 3, JRA hourly
mean, minimum and maximum canopy temperature and leaf
wetness duration were used to determine the infection profile
for a given township using the temperature response function
and assumptions of the CLR site-specific model. This was in
addition to ACIS daily mean temperature and humidity for
determining initial infection profiles in each township before
the model was simulated and dynamical scaling adjustments
made. As the JRA data was hourly and ACIS data was daily,
this model case after initialization was then simulated at a
common (i.e., weekly) aggregation scale, with the two datasets
combined using simple, non-weighted averaging to avoid
introducing any aggregation bias. Cases 4 and 5 used the same
climate variables as in case 3, but with additional susceptibility
corrections [i.e., case 4 with susceptibility correction as an offset
(Equation 7) and case 5, with it introduced as an additional
covariate (Equation 8)]. For the models and their various
cases, Table 1 provides a summary of input datasets, variable
inputs, fixed parameters, data, and model spatial and temporal
resolutions.

For the best-case, One-Step-Ahead forecasting was performed
to approximate forecast error covariance. This was performed
assuming a lead-time of a partial (1–4 weeks) and full season
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TABLE 1 | A summary of input datasets, climate variable inputs, fixed parameters, data and model spatial, and temporal resolutions.

Model Cases Resolutions Dataset Variables Parameters

CLR

(non-spatial)

– Hourly, 55 km Jra Canopy temperature

(Tc)

leaf wetness duration

(LWD)

Temperature

(θmin, θopt, θmax)

Wcrit, scale (α) and shape (γ)

hhh4 (spatial)

(homogeneous)

1 hourly, 55 km JRA Tc, LWD λ, φ, ν, exp(βt ), A,ϕ, ψi, no

susceptibility offset/covariate

2 daily, township ACIS air temperature, relative

humidity

(as above)

3 hourly, 55 km JRA +

ACIS

Tc, LWD,

air temperature, relative

humidity

(as above)

4 daily, township (as above) (as above) λ, φ, ν, exp(βt ), A,ϕ, ψi ,βs

offset

5 (as above) (as above) (as above) λ, φ, ν, exp(βt ), A,ϕ, ψi ,βs

covariate

(1–11 weeks) time-window. The partial time-window could
apply when forecasting disease within a growing season, while
the longer time-window could apply when using data from a
previous season in forecasting a future season. Four different
statistical metrics or “scores” were evaluated in measuring the
discrepancy between amodel’s predictive (i.e., “future” prediction
is also termed a “forecast”) distribution, µP, and future observed
value, y, namely: squared-error score (ses), logarithmic score
(logs), Dawid-Sebastian (dss), and ranked-probability score (rps),
given by,

ses : (y− µP)
2

logs :

(y− µP)

σ 2
p

2

+ 2 log σp

dss :

(y− µP)

2σ 2
p

2

+ 2 log σp +
1

2
log 2π

rps : Ecdf ,P
∣

∣Y − y
∣

∣−
1

2
Ecdf ,P

∣

∣

∣

Y − Y
′
∣

∣

∣

(9)

Y and Y ′ are independent random variables associated with the
distribution function p, y is a future “observed” or measured
value, and µP and σ

2
p are the mean and variance of the predictive

(i.e., forecast) distribution, p. Both the location and spread of
the forecast distribution are taken into account by the logs, dss
and rps scores in judging how close the distribution is to the
observed value. The rps score uses the predictive cumulative
density function (cdf) and reduces to absolute error if p is a
point-forecast rather than a distribution-forecast. It measures
howwell probability distribution-based forecasts match observed
outcomes. These scores are summary measures of the predictive
performance that allow for the joint assessment of calibration
and sharpness are reviewed by Gneiting and Katzfuss (2014) and
were computed using the surveillance R library package (Meyer
S. et al., 2017). Lower scores indicate a model that has better

predictive power, with mean scores used to identify a model with
the best (i.e., minimal) forecast accuracy.

RESULTS

Temperature response function parameters (θmin, θopt, θmax) for
germination and appressorium formation (i.e., infection) were
estimated using data, as (5.91, 15.41, 33.94) for germination,
and (5.57, 15.57, 32.11) for infection (de Vallavieille-Pope
et al., 1995). This optimal germination temperature range lies
within the reported range (i.e., 16–18◦C) of post-2000 Pst
survival/occurrence at warmer temperatures (Chen, 2005; Xi
et al., 2015) and previous reported estimates of (2.6,8.5,18)
(Bregaglio et al., 2011). Critical wetness duration (Wcrit) was
set at 4 h, as a lower bound to the Pst reported range of 5–
8 h (Bregaglio et al., 2011; Rolandson et al., 2015). The 4 h
wetness duration estimate coincides with the timing of a rapid
increase in infection for Pst, confirmed by experimental data
under controlled conditions (de Vallavieille-Pope et al., 1995).
This estimate also is close to observed mean wetness duration
distribution peak for the ROI (Figure 4C). Risk distribution
parameters (i.e., Weibull-distribution) of scale (α) and shape
(γ) were estimated (α, γ), for germination as (13.36, 1.29)
and for infection as (19.1, 2.14). The CLR (site-specific) model
predictions (Figure 5) (scaled) are compared to observed Pst
spore profile, collected at the Lethbridge site (Fairfield) during
the 2015 wheat growing season [AIC = −749.47, root-mean-
squared-error (RMSE)= 312.92].

Best-fit estimates (and associated Standard Error) of the
spatial model parameters are summarized for the 5 cases
considered (Table 2). AIC values are provided under each
case number in brackets. The predicted Pst spore population
(for township region that contains the Lethbridge sampling
site) through June-October for the 2015 growing season is
shown against the observed Pst/airborne inoculum profile
collected at the Lethbridge site (Figure 6A). Variability in these
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model predictions (case 3) for neighboring regions surrounding
the Lethbridge township is shown for this particular season
(2015) and subregion, to be strongly endemic, with low
autoregressive and transmission contributions from neighboring
regions (Figure 6B). Estimates forecast scores obtained from
one-step-ahead model forecasting are summarized in b. The two
different lead-times assume: (i) only Pst population information
for the first few weeks (i.e., weeks 1–4 occurring before the main
infection peak) is available, and (ii) full data for the entire season
is available.

DISCUSSION

The site-specific model (CLR) with the coarser JRA reanalysis
input was able to reproduce the general shape of the observed
Pst detection (2015 at Lethbridge) based on the assumptions
of critical thresholds of wetness and temperature-response,
and independent, Weibull-distributed germination/infection
processes (Figure 5). The model predicts the rate of infection
(slope of mid-season peak) well, but predicts a narrower peak
width (timing of main infection peak rise and fall) and predicts

FIGURE 5 | CLR model site-specific predicted Pst disease incidence (scaled

0–1), compared to the observed Pst airborne inoculum counts/profile

collected at Lethbridge during the 2015 wheat growing season.

peak infection a week earlier than it occurred. Predictions of
the model are more variable during the early- and late-season,
which is attributed to higher variability in the weather conditions
(i.e., fluctuations in canopy wetness and temperature shown in
Figures 4B,C). Using the same coarse JRA climate input data,
the spatial hhh4 model with spatial transmission assumptions
(case 1), while not the best fit obtained to the observed infection
curve, like the CLR site-specific model, does also predict a
narrow peak. However, the hhh4 model predictions are less
variable in early/late season and it predicts peak infection time
correctly (Figure 6). This indicates that assumptions on how
Pst immigrates, overwinters and moves between subregions, are
important for accurately determining both infection variability
in early/late season as well as the timing of peak infection.
Changing the spatial resolution of climate input data (i.e., from
JRA regional-scale in case 1 to finer ACIS township-scale in case
2), improved the prediction of width of the infection peak, which
is especially crucial, as it is at this time that disease dynamics
can switch from an endemic, to an epidemic disease occurrence
pattern.

Finer scale climate input improved the ability of the spatial
hhh4 model to predict Pst disease dynamics (case 2 vs. case 1)
(Figure 6). The best-performing model (hhh4 case 3 with lowest
AIC) (Table 2) had the strongest endemic contribution (initial
deposition followed by weak transmission of Pst through the
growing season, measured at the Lethbridge site). Comparing
AIC values for the various cases of the hhh4 model (see
Table 2) in terms of relative gain in accuracy [i.e., (|AICold-
AICnew|/|AICold|) x100%, where AICold denotes the model with
the higher AIC, and AICnew the improved model with the
lower AIC] provides quantification of the various improvements
(spatial and temporal resolution, and inclusion of a susceptibility
correction as an offset or covariate). Changing spatial resolution
(55 km to township/10 km) and temporal resolution (hourly
to daily) led to a relative improvement in accuracy (relative
reduction in AIC) of 64% (case 2 vs. case 1). A further relative
accuracy gain of 89% was achieved by combining information at
different spatial and temporal scale (i.e., hourly and daily, 55 km
and township/10 km) (multi-scale case 3 vs. case 2). Correcting
for susceptibility as an offset led to a relative accuracy gain
of <1% , and no change as a covariate, but these quantified
changes are more unreliable due to associated increases in the

TABLE 2 | Best-fit estimates of the hhh4 homogeneous model parameters (Equations 5, 6) and associated Standard Errors (SE) for endemic, ν, and epidemic [i.e.,

autoregressive, λ = exp(α(λ)) , and spatio-temporal, φ = exp(α(φ)) ] contributions are shown for each of the cases considered: case 1—JRA reanalysis only (∼55 km),

case 2—ACIS climate only (∼10 km), and case 3—multiscale with both JRA and ACIS, and two susceptibility corrections of the best-fitting homogeneous model i.e., case

3 (indicated by *) (case 4—offset type, case 5—covariate type).

Model (AIC) λ φ ν exp(βt) A ϕ ψi βs

Case 1 (10106) 0.291 ± 0.051 0.010 ± 0.009 1.06 × 106 ± 2.41 × 105 1.08 ± 0.047 2.98 ± 0.022 −0.839 ± 0.033 0.263 ± 0.017

Case 2 (6160) <0.001 ± 0.000 1.02 ± 0.471 74.8 (error > 100%) 9.49 ± 4.18 10.3 ± 1.46 −4.26 ± 0.068 32.4 ± 2.64

Case 3* (667.22) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 0.093 3.82 ± 1.84 7.20 ± 1.20 −0.786 ± 0.146 20.2 ± 3.84

Case 4 (667.94) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 20.9 3.79 ± 1.62 5.03 ± 1.19 −5.12 ± 1.08 20.4 ± 3.88 1.000 ± 0.000

Case 5 (669.22) <0.001 ± 0.000 <0.001 ± 0.000 0.003 ± 20.6 3.82 ± 1.62 5.09 ± 1.18 −5.10 ± 1.08 20.2 ± 3.84 0.039 (error > 100%)

Estimated AIC associated with each model simulation run is provided in brackets.
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FIGURE 6 | (A) Spatial model predictions of the hhh4 model for cases 1–3 with different climate input data are shown compared to observed at the Lethbridge

collection site, (B) Predicted Pst disease incidence (scaled 0–1) within the Lethbridge township (TW008R21W4) and its neighboring townships for the best-fitting

model (case 3) vs. number of weeks. Variability in the endemic, autoregressive, and spatio-temporal contributions are shown driven by climate variability across the

regions.

standard error of model parameters. Overall all cases, the best
case (Case 3) was identified or defined as the model case that
had the lowest AIC value or highest forecast accuracy) used
multi-scale JRA and ACIS data and assumed no correction for
susceptibility. The worst-case (Case 1) was identified as the

model case that had the highest AIC value or lowest forecast
accuracy using only JRA data and assuming no correction for
sustainability. Case 3 not only obtained the lowest AIC, but also
produced more accurate estimates of the endemic parameter
(smaller standard error). This case explains the data the best
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(with the lowest AIC) as having weak epidemic components,
but strong endemic component, even though the standard
error in some model parameters relative to their estimated
value increased. Case 3, with the lowest AIC value (best case
model), when compared to the highest AIC value (Case 1
worst case model) has a relative overall gain of 93.4% in model
accuracy.

The small accuracy improvement offered by a susceptibility
correction could be, in part, due to the homogeneous modeling
assumptions. Accounting for susceptibility in the best-fit model
(case 3), reduced model accuracy only slightly. More observed
airborne inoculum sampling data would considerably reduce
the high standard error (SE) of the intercept and susceptibility

coefficient parameters (α(ν),βs). Considering susceptibility as an
endemic offset, rather than an epidemic autoregressive/covariate
effect, produced a model with slightly higher accuracy.
This was largely determined, however, by weather variability.
Accounting for susceptibility increased the uncertainty in the
endemic parameter considerably, pointing to the need for
heterogeneous assumptions, alongside a larger data from Pst
airborne surveillance in the region to reduce it. This also indicates
that the susceptibility parameter is a useful metric for gauging
disease risk and determining where to optimally monitor for Pst
across the entire ROI. Additional susceptibility effects could be
considered if heterogeneous assumptions were considered in the
hhh4 model, whereby a multi-variate, “susceptibility function”
could be defined (i.e., that further modifies Equations 7, 8).
This function could integrate specific-cultivar attributes and/or
fungicide control/spray data, and potential canopy changes due
to disease detected from available vegetation index satellite data
(Davidson, 2015; Devadas et al., 2015). More complex forms
of the hhh4 spatial model with spatial-interaction assumptions,
heterogeneity driven by long-range transmission, and higher-
order neighbors/transmission across sub-regions (power law or
second-order model) could be considered. Also, independent
random effects uncertainty could be included that typically
results from unobserved heterogeneity due to under-reporting
of disease occurrence. The hhh3 case 3 model (relying on multi-
resolution climate data and spatial dependence assumptions) had
reasonable ranges of the predictive assessment scores (Table 3).
Based on a test period of 4 weeks (i.e., in June-July in advance
of peak infection) the best-fit model is able to forecast with 50%
accuracy (using the full window of 11 weeks as a benchmark).
This forecast accuracy was achieved using airborne inoculum
data for a single site and season, alongside disease, environment
and susceptibility assumptions. A larger dataset of Pst infection
data would enable a more reliable determination of the forecast
accuracy of this model and reliable attribution of forecast error
to environmental (i.e., climate/weather) variability, and/or host-
pathogen disease dynamics.

In summary, the integrated framework proposed offers a
feasible way to combine diverse datasets and models with
a wide range of assumptions to explain variability and
uncertainty in observed disease incidence patterns and to
forecast risk. Current findings show that the more complex,
stochastic model (hhh4) using weather station network data
with susceptibility correction provides sufficient accuracy and

TABLE 3 | Performance of model-based forecasting (4 scores) for Pst disease

(i.e., disease risk) within southern Alberta in 2015 for a partial and complete

season lead-time, using the best training case (case 3) of the hhh4 model.

Test period ses logs dss rps

Partial (weeks 1–4) 2155 1.666 −0.414 16.87

Full (All weeks) 1097 0.8851 3.191 7.815

Estimates for squared-error (ses), logarithmic (logs), Dawid-Sebastian (dss), and ranked-

probability (rps) are provided (rounded).

reliability. Machine-learning may further improve model-based
disease risk forecasting under highly unpredictable weather or
management regimes (Liao and Ji, 2009; Wen et al., 2017).
Testing the feasibility of this framework and modeling approach
relied on limited airborne inoculum data for Pst (i.e., available
and high-quality controlled data from the recent 2015 season
at Lethbridge) and homogeneous assumptions. Nonetheless,
this is the first time such data has been collected for Pst
in this region of interest. Current findings are supported by
the integration of knowledge, parameter estimates, multiple
evidence sources (i.e., published empirical data on Pst, included
latest available, quality-controlled climate, satellite and airborne
inoculum).

An expanded evaluation of model-based forecast accuracy
will require a large, seasonal airborne surveillance program
and heterogeneous assumptions. Heterogeneous assumptions
would help to fine-scale incidence and risk variability based
on measured changes in endemic-epidemic transition time,
maximum infection potential, infection peak timing, and width
between regions. The most accurate, efficient, and cost-effective
airborne surveillance monitoring plan may be a multi-resolution
sampling design that could sample disease across the full extent
of a large ROI at a coarser resolution, while sampling denser,
at a finer resolution within known disease hotspots. This is
supported by the current findings; the spatial model (case 1)
using coarser climate input predicted an underlying pattern of
Pst occurrence that is under-dispersed (ψi < 1), while cases 2
and 3 indicated it is over-dispersed (ψi > 1). Given case 3 fit
the observed data better, a more clumped, concentrated pattern is
inferred for Pst based within the 2015 growing season. Hotspots
could be identified as townships or subregions where a disease
overwinters/oversummers across a sufficient number of sampling
seasons, or higher risk clusters of townships within which
Pst disease is first or early-detected. Susceptibility offsets and
covariation provides an important spatial-based sustainability
metric for gauging subregions where disease risk may be highest
and where to more intensively sample (Kouadio and Newlands,
2015). Extensions of the spatial model could also include viability
of inoculum (i.e., variability in the different isolates that are
present into a “natural” inoculum). In laboratory studies, often
a single isolate is used. Field studies can involve both a single
or composite inoculum; when a composite, one can consider
a number of different characterized isolates or assume that a
field isolate that was present in a previous growing season has
been amplified (multiplied) and is re-inoculating. Also, in further
expanded modeling and with the availability of spore data for
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2016-2018, the models could be run for the 2019 growing season
to predict disease risk, using hourly/daily climate data across all
past 4 years where spore data was being collected (i.e., 2015-
2018). The 2016-18 time period could be then used to provide
training/calibration data for the models, and uncertainty in the
model fixed parameters and current season disease risk could be
compared to an uncertainty range estimated using all past climate
information. This would also provide a historical prediction
range to compare against a current-season prediction range. A
multi-scale airborne surveillance design that provides data to
support operational model-based disease risk forecasting, may,
in the future, enable more reliable, timely and cost-effective
decisions in sustaining crop yields against multiple disease
threats. Developing an integrated understanding of disease risks,
impacts, consequences (whether anticipated or unanticipated),
alongside decision trade-offs, could provide crucial, cornerstone
insights to controlling crop disease, and increasing crop yields
sustainably.
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