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The overall success of human reproduction, either spontaneously or after IVF, is highly 
dependent upon maternal age. The main reasons for age-related infertility include 
reduced ovarian reserve and decreased oocyte/embryo competence due to aging insults, 
especially concerning an increased incidence of aneuploidies and possibly decreased 
mitochondrial activity. Age-related chromosomal abnormalities mainly arise because of 
meiotic impairments during oogenesis, following flawed chromosome segregation pat-
terns such as non-disjunction, premature separation of sister chromatids, or the recent 
reverse segregation. In this review, we briefly discuss the main mechanisms putatively 
impaired by aging in the oocytes and the deriving embryos. We also report the main 
strategies proposed to improve the management of advanced maternal age women in 
IVF: fertility preservation through oocyte cryopreservation to prevent aging; optimization 
of the ovarian stimulation and enhancement of embryo selection to limit its effects; and 
oocyte donation to circumvent its consequences.
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iNTRODUCTiON

Human reproduction success is highly dependent upon the age at which women attempt to 
conceive, which is progressively increasing worldwide (1, 2). Fertility decreases as the woman 
ages, while the incidence of miscarriage and the prevalence of vital chromosomal abnormalities 
follow an opposite trend (2–4) (Figure 1). In IVF, maternal age is among the strongest predictors 
of success (5). Specifically, advanced maternal age (AMA; defined as ≥35  years) shows just a 
negligible impact upon fertilization rate (6, 7) and a mild impact upon embryo development 
to the blastocyst stage (8, 9), but results in a dramatic impact upon blastocyst aneuploidy rate  
(10, 11) (Figure 1). However, the molecular and biochemical mechanisms involved in age-related 
infertility and their impact on oocyte and embryo quality remain to be clearly elucidated. Up to 
date, several dysfunctions have been associated with impaired fertility in aged women. Together 
with a progressive reduction of the ovarian reserve, woman aging involves also a compromised 
competence of the oocytes/embryos because of defective physiological pathways, such as energy 
production and balance, metabolism, epigenetic regulation, cell cycle checkpoints, and increased 
meiotic missegregation (11, 12). In this review, we provide a summary of the main putative 
causes for the age-related decrease in oocyte/embryo competence, along with the mechanisms 
underlying aging and the main clinical strategies proposed to prevent/limit the impact of AMA 
upon IVF success.
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FiGURe 1 | Effect of advanced maternal age on oocyte/embryo competence and putative mechanisms impaired by aging. Aging in women causes both a reduction 
of the ovarian reserve and of the oocyte competence. All the processes impaired may result into a lower energy production/balance involving a small reduction of 
embryo developmental rate to the blastocyst stage, as well as a higher frequency of chromosome missegregation during maternal meiosis leading to a high increase 
in blastocyst aneuploidy rate (especially in women older than 35) [data adapted from Franasiak et al. (10) and Capalbo et al. (11)]. Ultimately, these mechanisms 
converge into a decreased fertility, an increased prevalence of vital chromosomal abnormalities, an increased miscarriage rate, as well as an increased prevalence of 
numerical chromosomal abnormalities in the newborns [data adapted from Hassold and Hunt (13) and Heffner (4)]. The aneuploidy rate is estimated per biopsied 
blastocyst; the fertility is estimated as number of babies born per 1,000 married women; the overall prevalence of vital aneuploidies is estimated per clinically 
recognized pregnancy; the miscarriage rate is estimated per clinical pregnancy; at last, the overall prevalence of numerical chromosomal abnormalities is estimated 
per number of newborns.
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MATeRNAL AGiNG AND ANeUPLOiDieS

The oocyte must sustain embryo development until embryonic 
genome activation (EGA) (14). To effectively reach EGA, syn-
chronous nuclear and cytoplasmic maturation are required. Any 
failure in these processes may cause an incorrect transition from 
a maternal to an embryonic control upon embryo development. 
However, after birth and until follicle recruitment and ovulation, 
the oocytes enter a protracted arrest in the prophase of meiosis I, 
during which they are subject to the detrimental effects of aging, 
especially impairing the genetic stability (15), and ultimately 
affecting the chance of success in human reproduction. Indeed, 
the oocytes hold most of the reproductive potential in humans, 
as demonstrated by the restored fertility in women who undergo 
egg donation (16).

Maternal age is the main cause of embryonic aneuploidies  
(4, 13, 17). More than 90% of these imbalances are indeed of 
maternal origin caused by chromosomal missegregation during 
oogenesis (15). Mainly meiosis I errors may occur (>70% of cases),  
which although can be “corrected” in meiosis II, thereby resolving 
the initial error (11).

If full-chromosome constitutive aneuploidies are mainly gen-
erated by a defective maternal meiosis, structural chromosomal 
abnormalities (e.g., balanced translocations) seem instead inde-
pendent from maternal age and may equally affect both the 
partners together with segmental aneuploidies, copy number 
variations, microdeletions/microduplications, and post-zygotic 
mitotic errors. Indeed, they probably arise from de novo events 
during either oogenesis and spermatogenesis or mitosis (18, 19).

The maintenance of the bivalent structure is a critical issue 
in maternal meiosis. In humans, homologous chromosomes 
recombine in primary oocytes during fetal development to form 
a bivalent configuration at meiotic prophase I. This configuration 
must be maintained for years, along which the oocytes remain 
arrested at the G2/M transition (dictyate stage) until menarche. 
At this stage, meiosis resumption and chromosome segregation 
take place. However, during this extended period of quiescence, 
the bivalent structure may weaken, leading to the formation 
of univalents or to sister chromatids splitting at meiosis I. The 
incidence of both these events indeed correlates with increased 
maternal age and reduced recombination rate (20–25), but the 
related causative mechanisms are still unclear. Two hypotheses 
have been proposed: (i) the univalents originate from bivalents 
deterioration throughout the dictyate arrest or (ii) the oocytes 
that underwent deficient recombination are ovulated last from 
the ovary.

Surprisingly, Ottolini and colleagues recently reported, via 
the karyomapping technique (a method that through the specific 
parental haplotypes allows the definition of an SNPs-based map 
of each chromatid) applied to artificially activated human oocytes 
and their polar bodies, that the most common non-canonical 
segregation pattern is reverse segregation (26). According to 
this novel segregation scheme, which cannot be identified by 
conventional copy number analysis, the non-sister chromatids, 
instead of the homologous, segregate together in meiosis I. This 
pattern, even if unconventional, does not result in an unbal-
anced chromosomal constitution per se, unless it is followed by 
a further error during meiosis II. Therefore, the most common 
segregation error of maternal meiosis reported in the majority 
of activated/fertilized oocytes is still the premature separation of 
sister chromatids (PSSC) in meiosis I (27–30). At last, meiosis 
I or meiosis II non-disjunction events should be accounted as 
causes of maternal meiotic impairments, even though probably 
less frequent than what previously reported (31, 32).

Hereafter, we summarize the molecular and cellular processes 
that may be affected because of aging in the oocytes (33, 34): 
mitochondrial dysfunction, shortening of telomeres, cohesins 
dysfunction, and meiotic spindle abnormalities due to spindle-
assembly checkpoint (SAC) impairment. Reduced development 
to the blastocyst stage and/or chromosomal abnormalities are 
their putative consequences (Figure 1).

PUTATive MeCHANiSMS iMPAiReD BY 
AGiNG AND LeADiNG TO A ReDUCeD 
OOCYTe/eMBRYO COMPeTeNCe

Mitochondrial Dysfunction
Mitochondria are the most numerous organelles in the oocyte 
and represent its powerhouse. They are characterized by their  
own genome (mtDNA) and constitute the main maternal contri-
bution to embryogenesis (35). Indeed, the sperm does not pro-
vide mitochondria to the offspring. They are considered pivotal 
especially in the delicate first phases of preimplantation deve-
lopment, when a balanced energy consumption is crucial for an 
efficient oocyte cytoplasmic and nuclear maturation, throughout 
processes such as germinal vesicle breakdown, or microtubule 
assembly and disassembly during meiotic spindle formation  
(36, 37). Moreover, mitochondria cover an essential role in vari-
ous signaling pathways, such as Ca2+ signaling and regulation of 
the intracellular red-ox potential, particularly important for 
fertilization and early development (36, 38).
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The adverse effect of aging upon the mitochondria within the 
oocyte has been widely reported: mitochondrial swelling, vacuo-
lization, and cristae alteration have been described as common 
structural features of oocytes from AMA patients (39, 40). For 
instance, the mitochondrial membrane potential, which mirrors 
mitochondrial activity, is progressively altered (41). Similarly, 
a reduced ATP production and decreased metabolic activity in 
aged oocytes has been highlighted, which in turn may contribute 
to impairments in meiotic spindle assembly, cell cycle regulation, 
chromosome segregation, embryo development, and finally 
implantation (40, 42).

Mitochondrial-DNA lacks protective histones and efficient 
DNA repair mechanisms. Therefore, mtDNA mutation rate is 
about 25-times higher than nuclear-DNA one (43). Clearly, 
the longer the quiescent period, the higher the risk for mtDNA 
errors. Furthermore, also the overall concentration of mtDNA 
seems to be decreased in the oocytes from older patients (44, 45),  
thereby concurring to a lower oocyte/embryo competence 
(46–48). Of note, in humans, mitochondrial biogenesis is physi-
ologically activated only at the blastocyst stage (40, 49) to limit 
the oxidative phosphorylation-induced stress in the first phases 
of embryo development. In older patients, the reduced amount 
and/or faulty activity of the pre-existing mitochondria within 
the oocyte may induce a compensatory premature initiation of 
mitochondrial biogenesis (50), which in turn may contribute to 
early embryo developmental failure (48).

Recently, mtDNA content in trophectoderm biopsies at the 
blastocyst stage has been proposed as a putative biomarker 
of implantation potential. However, the clinical studies con-
ducted to date reported controversial results (48, 51–54). Indeed, 
lately, Humaidan and colleagues warned that it is still difficult 
to discriminate between “fact and fiction” in the current sce-
nario and mtDNA cannot be considered a new biomarker of 
embryonic implantation potential (55): extensive validation, 
as well as more pre-clinical and possibly non-selection data, 
are yet required. Until then, the quantification of mtDNA from 
trophectoderm biopsies should be considered still an experi-
mental procedure.

The mitochondria are also present in the granulosa cells (GCs) 
surrounding the oocyte already in the early phases of oogenesis. 
GCs are directly involved in establishing oocyte competence 
during oogenesis thanks to the well-known bi-directional dialog 
between these two sections of the follicle (56, 57). As for the 
oocytes, also GCs from AMA women showed higher levels of 
mtDNA deletions (58) and damaged mitochondria (59). The 
amount of mtDNA in GCs has been also reported to correlate 
with embryo quality (60) and poor ovarian reserve. The current 
hypothesis is that as the mtDNA in the oocyte supports the early 
embryonic development, similarly the mtDNA on its related GCs 
supports oocyte maturation, both possibly modulating embryo 
competence. Such hypothesis is supported by the high correla-
tion between the mtDNA levels in the two compartments of the 
follicle (61).

In summary, aging can compromise both mtDNA integrity 
and/or mitochondria morphology or alter the microenvironment 
within the follicle and perturbate the mutual crosstalk between 
the oocyte and its GCs (39, 40, 62).

Shortening of the Telomeres
The telomeres are short tandem repeats of specialized-DNA 
sequences that protect chromosome ends (63). Their function 
is essential for meiosis since, during the early prophase, the 
telomeres tether the chromosomes to the nuclear membrane to 
facilitate homologous pairing and initiate synapsis to form chias-
mata, the physical sites of recombination responsible for nor-
mal segregation, thereby preventing non-disjunction (64, 65).  
Age-related telomeres shortening occurs either in dividing 
or non-dividing cells and has been associated with several 
age-related diseases (e.g., diabetes, cardiovascular diseases, 
and cancer) (66, 67). However, telomere dynamics extensively 
differ according to the cell type and gender. For instance, in the 
male germline, the length of the telomeres is preserved with 
aging, probably due to a constant activity of the telomerase (the 
reverse transcriptase involved in telomeres extension), which is 
expressed at high levels in the spermatogonia (68). Interestingly, 
an even increased mean length of the telomeres, as well as a 
higher length heterogeneity, has been recently reported in aged 
men with respect to younger patients (69). Conversely, the telo-
meres in the oocytes begin shortening during fetal oogenesis, 
and this process is continued in the adult ovary, probably due 
to the chronic effects of oxidative and genotoxic stress, the 
late exit of the female gametes from their cell cycle arrest, as 
well as to a reduced activity of the telomerase (68, 70, 71). 
Further more, it has been demonstrated that the telomeres are 
shorter in oocytes from women who experienced IVF failure 
or recurrent miscarriage (72), as well as in oocytes resulting 
in fragmented (73) or aneuploid embryos (74). To this regard, 
Keefe and colle agues postulated the evolutionistic “telomere-
mediated oocyte aging” theory: preventing AMA women from 
conceiving would, in turn, prevent them from dying because 
of childbirth, thereby affecting the reproductive fitness of their 
offspring (70, 75).

Cohesin Dysfunctions
Loss of cohesion between sister chromatids close to the cent-
romeres is another age-related dysfunction which may cause 
chromosomal missegregation. Cohesins are a complex of pro teins 
that holds sister chromatids together after DNA replication and 
is responsible for maintaining the bivalent structure throughout 
the extended period of quiescence. Only at anaphase, the cohes-
ins are removed to trigger the separation of sister chromatids. 
Gathering evidence is outlining an age-related disruption of 
cohesin function leading to missegregation within the oocyte, 
especially in the presence of low recombination rate (76). For 
instance, cytogenetic studies of human oocytes and embryos 
showed that PSSC is often associated with the age-related 
reduction of cohesins (e.g., Rec8, SA3, and SMC1b) (77, 78). 
Further more, also the activity of the regulatory proteins preven-
ting a precocious removal of the cohesins seems to decline in an 
age-related fashion (79), regardless their nuclear location, which 
theoretically should protect them from the insults of mechanical 
stress and/or reactive-oxygen-species. Finally, a structural and 
functional interaction exists between cohesins and telomeres 
in mice (80). Therefore, in AMA patients, the age-related issues 
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that affect the telomeres may trigger similar dysfunctions in the 
cohesins’ activity (76).

Spindle instability
The meiotic spindle is responsible for the separation of both 
homologous chromosomes and sister chromatids, therefore 
essential to ensure an accurate segregation (81). Aberrations 
in its assembly seem to contribute to the higher prevalence of 
aneuploidies in older women (82). These aberrations may also 
be ascribed to a decreased metabolic activity of mitochondria, 
resulting into a reduced amount of ATP because of AMA. The 
spindle of young oocytes is compact, orthogonally oriented with 
respect to the oolemma and each pole is associated with a ring 
of centrosome proteins. Conversely, nearly 80% of the oocytes 
in AMA patients may exhibit abnormal spindles with an elon-
gated and/or smaller profile and few microtubular foci at the 
cortex (81, 82). To this regard, also the SAC, a ubiquitous safety 
protein complex that ensures a correct spindle formation (83), 
shows a reduced stringency with AMA (84–86). Different protein 
components of SAC (e.g., Mad2 and Bub1) showed indeed lower 
concentrations in oocytes from older women (84, 87).

Other Putative Mechanisms  
impaired by Aging
Gene expression studies in oocytes from several species indicate 
that the activity of gene products involved in cell cycle regula-
tion, spindle formation, and organelle integrity may be altered 
in oocytes from older individuals. For instance, in both murine 
and human oocytes ~5% of all the transcripts detected at the 
MII stage were found to be affected by aging (88, 89). Possibly, 
the divergent signatures derive from the altered patterns of epi-
genetic modifications (e.g., methylation and acetylation), which 
have been indeed reported in both species (90–94). This field of 
reproductive genetics requires extensive investigations in the next 
years to better unveil these mechanisms.

CLiNiCAL CONSiDeRATiONS

A clear correlation exists between increasing maternal age and 
decreasing success in conceiving both spontaneously and after 
IVF (4, 5). Both reduced ovarian reserve and oocyte quality 
contribute to this scenario. Currently, no therapy exists to coun-
teract infertility in AMA patients and we can only try to limit this 
biological and social issue.

First, fertility preservation via oocyte cryopreservation (95, 
96) provides a valuable option to all women (not only oncological 
patients) aiming to prevent the natural decline of oocyte com-
petence. Yet, the age at which fertility preservation is performed 
is an important effector of the ultimate outcome (<35  years is 
preferable), and obviously the pregnancy cannot be guaranteed 
by oocyte banking (97).

Second, the maximization of ovarian reserve exploitation 
through tailored controlled-ovarian-stimulation (COS) is crucial 
to increase the number of oocytes collected, thereby also increas-
ing the chance of success after IVF (98, 99). A higher number 
of oocytes collected per ovarian cycle might indeed compensate 
for the decrease in both oocyte quantity (i.e., ovarian reserve) 

and quality (i.e., competence). Therefore, novel COS strategies, 
such as oocyte/embryo accumulation in consecutive cycles (100) 
or double ovarian stimulation in the same ovarian cycle [i.e., 
the Shanghai (101) or the DuoStim protocol (102)], have been 
recently proposed to shorten the time invested by poor prognosis 
patients in their pursuit of a live birth. Promising data have been 
reported to this regard, especially in terms of cost-effectiveness 
and safety.

Third, the enhancement of embryo selection via preimplan-
tation-genetic-testing represents another important option in 
AMA patients. In fact, the goal of ART is to achieve the birth 
of a healthy child minimizing the risks for the patient, and this 
is particularly true in AMA when the incidence of aneuploidies 
dramatically increases (10). This approach, by avoiding the 
transfer of aneuploid blastocysts and their related risks (i.e., 
implantation failures, miscarriages, and affected child), might 
result in an increased efficiency of each IVF treatment (103, 104).  
Importantly, once an euploid blastocyst is identified, its implan-
tation potential is independent of maternal age (45–50%), 
there by allowing the adoption of a single-embryo-transfer policy 
also in AMA patients, concurrently lowering the risk for multiple 
gestations and their related obstetrical/perinatal risks (105, 106). 
Soon, the implementation of -omic sciences and the pursuit of 
non-invasiveness and higher cost-effectiveness in this field may 
converge and bring about intriguing avant-gardes to further 
improve embryo selection.

Finally, oocyte donation represents an effective approach to 
circumvent the age-related fertility decline. Recently, the opti-
mization of cryopreservation techniques and the constitution 
of oocyte-banking facilities and programs allowed us to avoid 
synchronization between donors and recipients. Indeed, similar 
success rates derive from either fresh or frozen oocytes (107). Yet, 
in some countries oocyte donation is still forbidden and ethical/
psychological concerns limit its large-scale adoption.

CONCLUSiON

Currently in IVF, a panel of experts focused on the management 
of poor prognosis patients, known as the POSEIDON group 
(Patient-Oriented Strategies Encompassing IndividualizeD 
Oocyte Number), has redefined the aim of ovarian stimulation 
(108). Specifically, they claimed that COS should be tailored “to 
retrieve the number of oocytes needed for the specific patient to 
obtain at least one euploid embryo for transfer.” Such statement 
is based on two important assumptions: (i) aneuploidy rate in 
human blastocysts increases from a 30% baseline in women 
younger than 35 to >90% in women older than 44 (10, 11) and 
(ii) the number of eggs collected and embryos obtained during 
IVF does not alter this rate (109). In other terms, the definition 
of the number of oocytes required (quantity) from each patient 
should entail the estimate of their competence (quality) aiming at 
obtaining at least one euploid blastocyst. Then, when performed, 
a euploid blastocyst transfer results into a healthy live birth in 
~50% of cases, regardless woman age (103).

To conclude, evidence-based data should always guide the 
counseling and the patients should be scrupulously informed about 
their estimated chance to conceive, especially if older than 35.  
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