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THE LOG-CONVEXITY OF THE FUBINI NUMBERS
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Abstract. Let fn denote the nth Fubini number. In this paper, first we give upper and lower

bounds for the Fubini numbers fn. Then the log-convexity of the Fubini numbers has been obtained.

Furthermore we also give the monotonicity of the sequence { n
√
fn}n≥1 by using the aforementioned

bounds.

1. Introduction

The nth Fubini number (also called ordered Bell number, or geometric number [1], or surjection

number [2]), which is denoted by fn for n ≥ 0, counts all the possible ordered partitions of a set with

n elements. The Fubini numbers are also the number of different ways to arrange the ordering of sums

and integrals in Fubini’s theorem [3]. The first several terms of the Fubini numbers are

f0 = 1, f1 = 1, f2 = 3, f3 = 13, f4 = 75, f5 = 541, f6 = 4683, f7 = 47293.

The Fubini numbers can be given by the following exponential generating function,

∞∑
n=0

fn
xn

n!
=

1

2− ex
.

MSC(2010): Primary: 05A20; Secondary: 05A10, 11B83.

Keywords: Fubini number, log-convexity, monotonicity.

Received: 19 May 2017, Accepted: 25 August 2017.

http://dx.doi.org/10.22108/toc.2017.104212.1496

.

17

http://www.combinatorics.ir
http://www.ui.ac.ir
http://dx.doi.org/10.22108/toc.2017.104212.1496


18 Trans. Comb. 7 no. 2 (2018) 17-23 Q. Zou

The nth Fubini number may also be given by a summation formula involving the Stirling numbers of

the second kind S(n, k), which count the number of partitions of an n elements set into k nonempty

subsets,

fn =
n∑

k=1

k!S(n, k).

One of the most beautiful properties that holds for Fubini numbers is the modular periodicity. For

example, for large n,

fn+4 ≡ fn (mod 10),

fn+20 ≡ fn (mod 100),

fn+100 ≡ fn (mod 1000),

fn+500 ≡ fn (mod 10000).

Fubini numbers can also be characterized through the following recurrence relation [4] which is a

consequence of the exponential generating function for the Fubini numbers,

(1.1) fn =

n−1∑
j=0

(
n

j

)
fj .

Actually, this recursive formula is equivalent to the following recurrence relation obtained in [5, 6],

fn =
n∑

j=1

(
n

j

)
fn−j .

In [4], Dil and Kurt stated that

fn = −2
n−1∑
j=0

(
n

j

)
(−1)n−jfj .

This formula shows that all Fubini numbers, not including f0 are even. However, after looking at the

first several terms of Fubini numbers, one can easily find that the identity above is not correct. In

fact, the correct version should be

2

n∑
j=0

(
n

j

)
(−1)jfj = (−1)nfn + 1,

which indicates that all the Fubini numbers must be odd.

In this paper, we will mainly focus on the log-behavior of Fubini numbers.

A sequence {an}n≥0 of positive numbers is said to be log-convex (resp. log-concave) if for all n ≥ 1,

a2n ≤ an−1an+1 (resp. a2n ≥ an−1an+1),

and it is said to be strictly log-convex (resp. strictly log-concave) if the above inequalities is strict.

Log-convexity (or log-concavity) is an important property of combinatorial sequences. They are fertile

sources of inequalities. In [7], Sun raised many conjectures on the log-behavior and monotonicity of

combinatorial sequences of positive integers. After Sun raised those conjectures, the log-behavior of
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some combinatorial sequences have been studied in some literatures (see for example [8, 9, 10, 11]). It

seems that the log-behavior of {fn}n≥0 has not been investigated. In this paper, we will discuss the

log-convexity of {fn}n≥0.

2. Bounds for Fubini numbers

Before showing the log-convexity of Fubini numbers, we would like to discuss on upper and lower

bounds of Fubini numbers first.

First of all, let us give an upper bound for Fubini numbers.

Theorem 2.1. For n ≥ 1, fn < (n+ 1)n.

Proof. In [12], Barthelemy proved that

fn =
n!

2(log 2)n+1
+ o((n− 1)!).

If we follow the idea of Barthelemy and use the fact that 2(log 2)n+1 < 1 for n ≥ 1, we can derive that

when n ≥ 1,

fn <
n!

2(log 2)n+1
+ n! <

n!

2(log 2)n+1
+

n!

2(log 2)n+1
=

n!

(log 2)n+1
.

Next, we use induction to show that for n ≥ 1,

(2.1)
n!

(log 2)n+1
< (n+ 1)n.

The base case n = 1 is straightforward. Now, suppose (2.1) holds for n− 1, i.e.,

(n− 1)!

(log 2)n
< nn−1.

Then

n!

(log 2)n+1
=

n

log 2
· (n− 1)!

(log 2)n

<
n

log 2
· nn−1 =

1

log 2
· nn

<
3

2
nn < (n+ 1)n.

The last inequalities is due to the easily checked fact that for n ≥ 1,

2

3

(
1 +

1

n

)n
> 1.

Thus, we get that for n ≥ 1,

fn <
n!

(log 2)n+1
< (n+ 1)n.

This completes the proof. □
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Remark 2.2. From the process of the proof, one can find that n!
(log 2)n+1 is a better upper bound for

fn. While the upper bound (n + 1)n is more useful in the proof of the monotonicity of the sequence

{ n
√
fn}n≥1.

Remark 2.3. If we combine this upper bound with Lemma 3.1 below, we can get the by-product that

∞∑
k=0

kn

2k
<

2n!

(log 2)n+1
,

∞∑
k=0

kn

2k
< 2(n+ 1)n.

Motivated by this upper bound, we are going to find the lower bound. Here is the lower bound we

found.

Theorem 2.4. For n ≥ 3, fn > 2n.

Proof. Let us prove it by induction.

For n = 3, fn = 13 > 23 = 8. So, the base case holds true. We suppose the conclusion holds for

n− 1. That is

fn−1 =

n−2∑
j=0

(
n− 1

j

)
fj > 2n−1.

Next, we show the conclusion also holds for n. Pascal’s recurrence [13] reads as(
n

j

)
=

(
n− 1

j

)
+

(
n− 1

j − 1

)
.

Then

fn =

n−1∑
j=0

(
n

j

)
fj =

n−1∑
j=0

(
n− 1

j

)
fj +

n−1∑
j=1

(
n− 1

j − 1

)
fj

=

n−2∑
j=0

(
n− 1

j

)
fj +

(
n− 1

n− 1

)
fn−1 +

n−1∑
j=1

(
n− 1

j − 1

)
fj

> 2n−1 + 2n−1 +
n−1∑
j=1

(
n− 1

j − 1

)
fj

> 2n−1 + 2n−1 = 2n.

So, the conclusion also holds for n. Hence we get that for n ≥ 3, fn > 2n. □

3. The log-convexity of the Fubini numbers

The goal of section is to show the log-convexity of the Fubini numbers and the monotonicity of the

sequence { n
√
fn}n≥1.

Before giving the log-convexity of the Fubini numbers, two lemmas need to be introduced.

Lemma 3.1. For n ≥ 1, we have

fn =
1

2

∞∑
k=1

kn

2k
.
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Proof. This lemma follows from the infinite series representation of the Fubini numbers obtained

in [5, 14],

fn =
1

2

∞∑
k=0

kn

2k
, n ≥ 0.

Our lemma exclude the case n = 0 since n = 0 is a very special case that cannot be formulated by the

form given in the lemma. □

Lemma 3.2. [Wang and Zhu [15]] Let α be any nonzero constant. Let {ak}k≥1 and {bk}k≥1 be two

positive sequences and

ai ̸= aj for i ̸= j.

Define {cn}n≥0 as

cn = α

∞∑
k=1

ank
bk

.

Then {cn}n≥0 is strictly log-convex.

Remark 3.3. In [15, Theorem 2.10], Wang and Zhu proved that if

cn =

∞∑
k=1

ak
bnk

and {ak}, {bk} are two nonnegative sequences with {bk} not a constant sequence, then the sequence

{cn} is log-convex. This is a beautiful conclusion that can help us determine the log-behavior of some

combinatorial sequences (see the example given in [15]). Along with the proof of Wang and Zhu, we can

see that if we reverse the numerator and the denominator in {cn}, the log-behavior of the sequence does

not change. Also, if there is a nonzero constant before the sequence, the log-behavior of the sequence

does not change either. So, we can rewrite their conclusion as the form we gave in the lemma above.

Though the form of the sequence changed a little bit, the proof given by Wang and Zhu still works.

With these two lemmas in hand, we can prove the following conclusion.

Theorem 3.4. The sequence {fn}n≥0 is strictly log-convex.

Proof. Let

α =
1

2
, ak = k, bk = 2k

in Lemma 3.2, we can get that {fn}n≥1 is strictly log-convex.

Furthermore, since f0 = 1, then we can check that

1 = f2
1 < f0 · f2 = 3.

Hence, {fn}n≥0 is strictly log-convex. □
http://dx.doi.org/10.22108/toc.2017.104212.1496
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Along with the usual research routine, after investigating the log-convexity of a combinatorial

sequences, the next thing is to research the monotonicity of the sequence { n
√
fn}n≥1. For this point,

we have the following conclusion.

Theorem 3.5. The sequence { n
√
fn}n≥1 is strictly increasing.

Proof. In order to prove that { n
√
fn}n≥1 is strictly increasing, it suffices to show that

n+1
√

fn+1
n
√
fn

> 1,

which is equivalent to show
fn+1

fn · n
√
fn

> 1.

Since

fn+1

fn · n
√
fn

=

∑n
j=0

(
n+1
j

)
fj

fn · n
√
fn

=
(n+ 1)fn +

∑n−1
j=0

(
n+1
j

)
fj

fn · n
√
fn

=
n+ 1
n
√
fn

+

∑n−1
j=0

(
n+1
j

)
fj

fn · n
√
fn

>
n+ 1
n
√
fn

> 1.

The last inequality is due to Theorem 2.1. So, { n
√
fn}n≥1 is strictly increasing.

This completes the proof. □

4. Conclusion

In this paper, we first obtained bounds for the Fubini numbers. With the bounds, we showed that

the sequence { n
√
fn}n≥1 is strictly increasing. We also proved that a sequence of positive integers of

a given form must be log-convex, see Lemma 3.2. By which we also showed that {fn}n≥0 is strictly

log-convex.
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