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Abstract. The annihilator graph AG(R) of a commutative ring R is a simple undirected graph with

the vertex set Z(R)∗ and two distinct vertices are adjacent if and only if ann(x) ∪ ann(y) ̸= ann(xy).

In this paper we give the sufficient condition for a graph AG(R) to be complete. We characterize rings

for which AG(R) is a regular graph, we show that γ(AG(R)) ∈ {1, 2} and we also characterize the

rings for which AG(R) has a cut vertex. Finally we find the clique number of a finite reduced ring and

characterize the rings for which AG(R) is a planar graph.

1. Introduction

The study of rings using the properties of graphs lead to many interesting results. The zero-divisor

graph of R, denoted by Γ(R), is an undirected graph with the vertex set Z(R)∗ = Z(R)\{0} and two

distinct vertices x, y are adjacent if and only if xy = 0. The concept of a zero divisor graph goes back to

I. Beck [8], who considered all elements of R as the set of vertices and was mainly interested in coloring

of a graph. The zero-divisor graph Γ(R) was introduced by David F. Anderson and Philip S. Livingston

[2], where it was shown among other results that Γ(R) is connected with diam(Γ(R)) ∈ {0, 1, 2, 3} and

girth(Γ(R)) ∈ {3, 4}. Many mathematicians have studied the zero divisor graph of a ring and obtained

many interesting results regarding ring theoretic properties as well as graph theoretic properties of this

graph. Badawi [7] defined a graph associated with a commutative ring called the annihilator graph of

a ring R, denoted by AG(R). The vertex set of this graph is Z(R)∗ and two distinct vertices x and y

are adjacent if and only if ann(x) ∪ ann(y) ̸= ann(xy). Badawi [7] proved that AG(R) is a connected

graph, diameter of AG(R) is atmost two, girth of AG(R) is atmost four if it has a cycle and if R is a

MSC(2010): Primary: 05C69; Secondary: 13H05.

Keywords: Annihilator, Clique number, Domination Number.

Received: 02 July 2015, Accepted: 16 February 2016.

∗Corresponding author.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201848504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.combinatorics.ir
http://www.ui.ac.ir


2 Trans. Comb. 6 no. 1 (2017) 1-11 S. Dutta and C. Lanong

reduced ring then AG(R) is identical to Γ(R) if and only if the ring R has exactly two minimal prime

ideals. D.A Mojdeh et al. [10] found the domination number of a zero divisor graph, zero divisor graph

with respect to an ideal of a ring R and T. Tamish Chelvam et al. [9] found the domination number of

total graph of a ring. M. Axtell et al. [6] have found the condition for a vertex x to be a cut vertex of

Γ(R).

In section 2, we discuss about the existence of a vertex which is adjacent to all vertices of AG(R),

sufficient condition for AG(R) to be a complete graph and a regular graph and we show that the

domination number of AG(R) is less than or equal to 2 for any finite ring. We find that if R is a finite

ring and AG(R) has a cut vertex then R ∼= Z2 × F, where F is a finite field with F ≇ Z2. We also

compute α(AG(R)) and ω(AG(R)) for some classes of rings. We show that AG(R) is Hamiltonian if

R ∼= A × A where A is a finite local ring with identity. In section 3, we characterize rings for which

AG(R) is planar.

Throughout the paper, all rings are assumed to be commutative ring with unity 1 ̸= 0. A ring R

is said to be reduced if R has no non-zero nilpotent element. Let Z(R) denote the set of zero-divisors

of a ring R. If X is either an element or a subset of R, then ann(X) denotes the annihilator of X in

R, i.e., ann(X) = {r ∈ R| rX = 0}. For any subset X of R let X∗ = X\{0}. A ring R is said to be

decomposable if R can be written as R1 × R2, where R1 and R2 are rings; otherwise R is said to be

indecomposable.

All graphs considered in this paper are simple graphs. For a graph G, the degree of a vertex v in G,

denoted by deg(v) is the number of edges incident to v. A graph G is said to be regular if the degrees

of all vertices of G are same. A graph G is said to be complete if every pair of distinct vertices are

connected by an edge. A bipartite graph is a graph whose set of vertices can be partitioned into two

sets U and V such that every edge is between a vertex of U and a vertex of V . We denote the complete

graph with n vertices and complete bipartite graph with two sets of sizes m and n by Kn and Km,n

respectively. The complete bipartite graph K1,n is called a star graph. The diameter of a graph G is

diam(G) = sup{d(x, y) : x and y are distinct vertices of G}. A vertex a in a connected graph G is a

cut-vertex if G can be expressed as a union of two sub graphs X and Y such that E(X) ̸= ∅, E(Y ) ̸= ∅,
E(X) ∪ E(Y ) = E(G), V (X) ∪ V (Y ) =V (G), V (X) ∩ V (Y ) = {a}, X\{a} ≠ ∅, and Y \{a} ̸= ∅. A

subset D of the set of vertices V (G) of a graph G is called a dominating set, if every vertex of V (G)\D
is adjacent to some vertex of D. The minimum size of such a subset is called the domination number of

G and is denoted by γ(G). A set S ⊆ V (G) is independent set of G, if no two vertices of S are adjacent.

The independence number of a graph G denoted by α(G) is the size of the maximum independent set

in G. A clique of a graph is a maximal complete subgraph and the number of vertices in the largest

clique of a graph G, denoted by ω(G), is called the clique number of G.

A Hamiltonian cycle (resp. path) in a graph is a cycle (resp. path) including all the vertices of

the graph. Similarly, an Eulerian tour or circuit(resp. trail) in a graph is a closed walk (resp. walk)

including all the edges of the graph. A graph is Hamiltonian if it has a Hamiltonian cycle and it is

Eulerian if it has an Eulerian tour or circuit. A graph G is said to be planar if it can be drawn in the
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plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from

it by replacing edges with pairwise internally-disjoint paths.

2. Properties of AG(R)

In this section, we find for which ring R there exist a vertex which is adjacent to all vertices of AG(R)

and then find some more properties of AG(R). We note here the following proposition from Axtell et.al

[6] which will be used frequently in this paper.

Proposition 2.1. [6] Let R be a finite commutative ring with identity. Then the following are equiva-

lent:

(1) Z(R) is an ideal;

(2) Z(R) is a maximal ideal;

(3) R is local;

(4) Every x ∈ Z(R) is nilpotent.

The following two propositions give criterion for existence of a vertex which is adjacent to all vertices

of AG(R) for finite rings. These propositions will be used to derive the other properties of AG(R)

graph.

Proposition 2.2. Let R be a finite reduced ring. Then there exists a vertex x ∈ Z(R)∗ such that x is

adjacent to all vertices of AG(R) if and only if R ∼= Z2 × F where F is a finite field.

Proof. Suppose R is a finite reduced ring then we have R ∼= F1×F2× · · ·×Fn, where each Fi is a finite

field for 1 ≤ i ≤ n.

Suppose x = (x1, x2, . . . , xn) ∈ Z(R)∗ is a vertex which is adjacent to all the vertices of R.

First we consider n ≥ 3 and let e1 = (1, 0, 0, . . . , 0) ∈ Z(R)∗. Then xe1 = (x1, 0, 0, . . . , 0) and so

ann(xe1) = ann(e1). Thus for x and e1 to be adjacent we must have x1 = 0. Similarly taking

ei = (0, 0, . . . , 0, 1, 0, . . . , 0), where 1 is in the ith entry, for 1 ≤ i ≤ n and continuing the same way we

have x = (0, 0, . . . , 0), which is a contradiction. Hence if n ≥ 3, there does not exist x ∈ Z(R)∗ such

that x is adjacent to all vertices of AG(R). So we consider n ≤ 2. If n = 1 then AG(R) is an empty

graph. Now for n = 2, R ∼= F1 × F2 and so by [3, Thereom 3.6] AG(R) = Γ(R). But for Γ(R), there

exists x ∈ Z(R)∗ which is adjacent to all vertices of AG(R) if only if R ∼= Z2 × F where F is a field or

R is a local ring by [2, Corrolary 2.7]. But since R is a reduced ring, we must have R ∼= Z2 × F.
If R ∼= Z2 × F, where F is a field, then clearly there is a vertex adjacent to all vertices of AG(R). □

Proposition 2.3. Let R be a finite non-reduced ring with identity. If R ∼= R1 ×R2 × · · · ×Rn, where

each Ri are finite local rings but not field, then there exists a vertex x ∈ Z(R)∗ such that x is adjacent

to all vertices of AG(R).

Proof. Assume that R is a finite non-reduced ring. Then R ∼= R1 × R2 × · · · × Rn, where each Ri

are finite local ring. Let x = (x1, x2, . . . , xn) ∈ Z(R)∗ be a vertex which is adjacent to all vertices of

AG(R). If atleast one of xi is zero then for z = (1, 1, . . . , 1, 0, 1, . . . , 1) ∈ Z(R)∗, where zero is in the ith
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position, we have ann(xz) = ann(x). So by [7, lemma 2.1(1)] x is not adjacent to z. Hence, if atleast

one entry in x is zero then x cannot be adjacent to every vertex of Z(R)∗. Thus all entries of x must

be non-zero. Suppose now, the kth entry of x say xk is invertible, i. e., there exists y ∈ Rk such that

xky = 1. Then for v = (0, 0, . . . , 0, y, 0, . . . , 0) ∈ Z(R)∗, ann(xv) = ann(v). So x is not adjacent to

some vertex of Z(R)∗, which is a contradiction. So we consider that each Ri is not a field. Now assume

that all entries of x are non-zero and non-unit. Let z = (z1, z2, . . . , zn) ∈ Z(R)∗. Then ann(x) =

ann(x1)× ann(x2)× .× ann(xn) and ann(z) = ann(z1)× ann(z2)× · · · × ann(zn). But as z ∈ Z(R)∗,

so there exists z′is, say zk, where zk ∈ Z(Rk)
∗. As Rk is a local ring we have AG(Rk) is complete

and therefore ann(xkzk) ̸= ann(xk) ∪ ann(zk). So there exists tj ∈ ann(xkzk)\ann(xk) ∪ ann(zk).

Now t = (0, 0, . . . , 0, tj , 0, . . . , 0) ∈ ann(xz) but t = (0, 0, . . . , 0, tj , 0, . . . , 0) /∈ ann(x) ∪ ann(z), for if

t ∈ ann(x) ∪ ann(z) then we have either xjtj = 0 or zjtj = 0 which is a contradiction. Hence there

exists a vertex x ∈ Z(R)∗ such that x is adjacent to all vertices of AG(R) if R ∼= R1 × R2 × · · · × Rn,

where each Ri are finite local rings but not field. □

In the next proposition we characterize a finite complete AG(R) graph.

Proposition 2.4. If AG(R) is a finite complete graph then either R is a finite local ring or R ∼= Z2×Z2.

Proof. If AG(R) is finite complete graph, the set of vertices of AG(R) is same as Γ(R), by [1, theorem

2.2] R must be a finite ring. So let R ∼= R1 × R2 × · · · × Rn, where each Ri are finite local ring.

Let x = (1, 0, 0, . . . , 0) ∈ Z(R)∗ and y = (1, 1, 0, . . . , 0) ∈ Z(R)∗. We assume that n ≥ 3. Then

ann(x) = ann(xy) shows that x is not adjacent to y, which is a contradiction. So we must have n ≤ 2.

If n = 2 then R ∼= R1 ×R2. By proposition 2.3, we have either R ∼= Z2 × F, where F is a field, or each

Ri a local ring but not a field. First we consider that atleast one of Ri, say R2 is not a field. Then for

t = (1, 0) and w = (1, x), where x ∈ Z(R2)
∗, we get ann(t) = ann(tw). This shows that (1, 0) is not

adjacent to (1, x), which is a contradiction as AG(R) is a complete graph. So we consider that both

Ri are fields. But if both Ri are fields, there exists a vertex which is adjacent to all vertices of AG(R)

since AG(R) is a complete graph. Hence, R ∼= Z2 × F. As AG(R) is a complete graph, we must have

F ∼= Z2. Now for n = 1 we have R is a finite local ring. Thus, AG(R) is a finite complete graph if R is

a finite local ring or R ∼= Z2 × Z2. □

In the following proposition we characterize the finite rings for which AG(R) is a regular graph.

Proposition 2.5. If R is a finite ring with identity and AG(R) is a regular graph then R ∼= F × F,
i.e., AG(R) ∼= Kt−1,t−1 with |F | = t or R ∼= Z2 × Z2 × Z2 or R is a local ring or a field.

Proof. Let R be a finite commutative ring with identity and AG(R) be a regular graph. Since R is a

finite ring, R ∼= R1 × R2 × · · · × Rn, where each Ri are finite local ring and n ≥ 1. Now if atleast one

of R′
is is not a field, say R1, then consider e1 = (1, 0, . . . , 0) ∈ Z(R)∗ and y = (y1, 0, . . . , 0) ∈ Z(R)∗

with y1 ∈ Z(R1)
∗. Then clearly deg(y)>deg(x), which is a contradiction. Hence if n ≥ 2, each Ri

must be field. So R ∼= F1 × F2 × · · · × Fn, where n ≥ 2 and Fi’s are finite fields. If we consider e1

as above then the vertices that are adjacent to e1 in AG(R) are those vertices y such that e1y = 0.

So deg(e1) = |F2||F3| · · · |Fn| − 1 and similarly if we take e2 = (0, 1, 0, . . . , 0) ∈ Z(R)∗ then deg(e2) =
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|F1||F3| · · · |Fn| − 1. As AG(R) is regular, we have deg(e1) = deg(e2) and so |F1| = |F2|. Thus taking

each ei for 1 ≤ i ≤ n, we see that all Fi have the same cardinality and hence R ∼= F × F × · · · × F.
Let |F| = t. We consider n ≥ 3 and let z = (1, 1, 0, . . . , 0). Then we have deg(e1) = |F|(n−1) − 1

and deg(z) = (|F|(n−2) − 1) + 2(|F| − 1)(|F|(n−2) − 1). Now if n ≥ 4 then deg(z)>deg(e1), which is a

contradiction. If n = 3 and |F| ≥ 3 then also deg(z)>deg(e1), which is a contradiction. If n = 3 and

|F| = 2 then clearly AG(R) is regular with R ∼= Z2 × Z2 × Z2. Now if n = 1, then R is a finite local

ring or a field and clearly AG(R) is regular. For n = 2, we have AG(R) = Γ(R) by [7, Theorem 3.6]

and for Γ(R) to be regular we must have R = F× F by [5, Theorem 8] and so Γ(R) = Kt−1,t−1. □

In the following proposition we find the domination number of AG(R) graph.

Proposition 2.6. If R is a finite ring then γ(AG(R)) ≤ 2.

Proof. Let us consider first that R is a decomposable ring with R ∼= R1 × R2. Now let us consider

the sets A = {(x1, 0)|x1 ∈ R∗
1}, B = {(0, x2)|x2 ∈ R∗

2}, C = {(x1, x2)|x1 ∈ Z(R1)
∗, x2 ∈ R∗

2} and

D = {(x1, x2)|x1 ∈ R∗
1, x2 ∈ Z(R2)

∗}. Then Z(R)∗ = A ∪ B ∪ C ∪D. Next we consider two vertices

x = (1, 0) ∈ Z(R)∗ and y = (0, 1) ∈ Z(R)∗ of AG(R). Let z = (z1, z2) ∈ Z(R). If z1 ∈ U(R1)

then clearly z cannot be adjacent to x. Hence z is adjacent to x if z1 ∈ Z(R1) and similarly z is

adjacent to y if z2 ∈ Z(R2). Now xz = (z1, 0), ann(x) = B ∪ {(0, 0)}, ann(xz) = ann(z1, 0) =

B ∪ {(q, t)|q ∈ ann(z1), t ∈ R2}. If z2 ∈ U(R2) then ann(z) = {(q, 0)|q ∈ ann(z1)} and if z2 ∈ Z(R2)
∗

then ann(z) = {(q1, q2)|q1 ∈ ann(z1), q2 ∈ ann(z2)}. Thus in all the cases we get ann(xz) ̸= ann(x) ∪
ann(z) and so x is adjacent to z. Hence we get Nbd(x) = B ∪C and similarly we get Nbd(y) = A∪D.

Therefore we have Nbd(x) ∪ Nbd(y) = Z(R)∗. Now for 1 ̸= yk ∈ U(R2), we have (0, yk) ∈ Nbd(x)

but (0, yk) /∈ Nbd(y). Similarly if xk ∈ U(R1) then (xk, 0) ∈ Nbd(y) but (xk, 0) /∈ Nbd(x). Thus if we

take S = {x, y}, then S is a dominating set of AG(R). Hence for any finite commutative ring we have

γ(AG(R)) ≤ 2. □

From propositions 2.2, 2.3 and 2.6, we have the following corollary.

Corollary 2.7. If R ∼= R1×R2×· · ·×Rn, where each Ri are finite local ring but not fields or R ∼= Z2×F,
then γ(AG(R)) = 1.

Next we find the criterion for the existence of a cut vertex in AG(R) graph.

Proposition 2.8. Let R be a finite ring such that AG(R) has a cut vertex. Then R ∼= Z2 × F, where
F is a finite field and F ≇ Z2.

Proof. Let x ∈ Z(R)∗ be a cut vertex of AG(R). Clearly AG(R) cannot be a complete graph and so

diam(AG(R)) = 2. Now we have, AG(R) = X ∪ Y , where X ∩ Y = {x}. As x is a cut vertex and

diam(AG(R)) = 2, there exist a ∈ X and b ∈ Y which are adjacent to x. So a− x− b is a path from a

to b in AG(R). Now let c ∈ X, such that c is not adjacent to x in AG(R) and as diam(AG(R)) = 2,

so we have either c is adjacent to b or there exists a path c − d − b in AG(R) where d ̸= x. In either

case we get that x is not a cut vertex of AG(R), which is a contradiction. Hence any vertex in X\{x}
is adjacent to x. Similarly any vertex in Y \{x} is adjacent to x. Thus x is a vertex which is adjacent



6 Trans. Comb. 6 no. 1 (2017) 1-11 S. Dutta and C. Lanong

to all vertices of AG(R). Hence by propositions 2.2 and 2.3 either R ∼= Z2 × F where F is a finite field

or R ∼= R1 ×R2 × · · · ×Rn, where each Ri are finite local ring but not field. If R ∼= R1 ×R2 × · · · ×Rn

and if atleast one of Ri is such that |Z(Ri)
∗| ≥ 2 then AG(R) does not have a cut vertex, which is a

contradiction. Hence for each Ri we have |Z(Ri)
∗| = 1. But when |Z(Ri)

∗| = 1 we have either Ri
∼= Z4

or Ri
∼= Z2[t]/(t

2) [1, Example 2.1(i)]. So R ∼= R1×R2×· · ·×Rn where either Ri
∼= Z4 or Ri

∼= Z2[t]/(t
2).

Let y = (y1, y2, . . . , yn) where yi = 2 if Ri
∼= Z4 and yi = t if Ri

∼= Z2[t]/(t
2). Here y is adjacent to all

vertices of AG(R). Now let us consider the vertices w = (0, y2, . . . , yn) and z = (y1, . . . , yn−1, 0). Then

the vertices which not adjacent to z are the elements of the set S = {u = (u1, u2, . . . , un)|ui ∈ U(Ri)

for i = 1, 2, . . . , n− 1 and un ∈ Z(Rn)} and the vertices which are not adjacent to w are the elements

of the set S′ = {v = (v1, v2, . . . , vn)|v1 ∈ Z(R1) and vi ∈ U(Ri) for i = 2, . . . , n}. But z is adjacent to

each element of S′ and similarly w is adjacent to each element of S. So the subgraph of the annihilator

graph whose set of vertices is Z(R)∗\{y} is still a connected graph which shows that y is not a cut

vertex of AG(R). Hence AG(R) does not have any cut vertex which is a contradiction. So AG(R) has

a cut vertex if R ∼= Z2 × F, where F ≇ Z2, for if F ∼= Z2 then AG(R) is complete graph and a complete

graph does not have a cut vertex. □

In the following two propositons we find the independence number of AG(R) graph for certain classes

of finite rings.

Proposition 2.9. Let R be a finite reduced ring not a field such that R ∼= F1 × F2 × · · · × Fn, where

each Fi are finite field, such that |F1| ≥ |F2| ≥ |F3| ≥ · · · ≥ |Fn| then α(AG(R)) = |F∗
1| + |F∗

1||F∗
2| +

· · ·+ |F∗
1||F∗

2| · · · |F∗
n−1|.

Proof. As R is a finite reduced ring, R ∼= F1×F2×· · ·×Fn. Consider the set S1 = {(x1, . . . , xn)|xi = 0

for all but one i, 1 ≤ i ≤ n}. The independent subsets of S1 are S11 = {(x1, 0, . . . , 0)|x1 ∈ F ∗
1 },. . . ,

S1n = {(0, 0, . . . , xn)|xn ∈ F ∗
n}. Among these independent sets, the one with maximum number of

elements is S11 as |F1| ≥ |Fi| ∀i, 1≤ i ≤ n. Consider the set S2 = {(x1, . . . , xn)|xi = 0 for all but

2 i, 1 ≤ i ≤ n}. The maximal independent subset of S2 is S12 = {(x1, x2, 0, . . . , 0)|xi ∈ F ∗
i , i =

1, 2}. Continuing in this way we get the maximal independent subset of Sn−1 is S1(n−1). Let S′=

S11 ∪ S12 ∪ . . . ∪ S1(n−1). Clearly each pair of elements in S′ are nonadjacent. Also for any element

x ∈ Z(R)∗ either it belong to S′ or there exist an element y ∈ S′ such that x is adjacent to y. Hence

we have α(AG(R)) = |F∗
1|+ |F∗

1||F∗
2|+ · · ·+ |F∗

1||F∗
2| · · · |F∗

n−1|. □

Proposition 2.10. Let R be a finite ring such that R ∼= R1 × R2 × · · · × Rn where each Ri are local

ring and |U(R1)| ≥ |U(R2)| ≥ · · · ≥ |U(Rn)| then α(AG(R)) = |U(R1)| + |U(R1)||U(R2)| + · · · +
|U(R1)||U(R2)| · · · |U(Rn−1)|+ 2.

Proof. Let S1 = {U(R1) × 0 × · · · × 0, 0 × U(R2) × 0 × · · · × 0, 0 × 0 × · · · × 0 × U(Rn)}. Then each

element of S1 form an independent set of AG(R) and the maximal among these independent sets is

A1 = U(R1)× 0× · · · × 0. Also in the set S2 = {U(R1)×U(R2)× 0× · · · × 0, U(R1)× 0×U(R3)× 0×
· · · × 0, . . . , 0× 0× · · · × 0× U(Rn−1)× U(Rn)} each element is an independent set of AG(R) and the

maximal among these independent sets is A2 = U(R1)×U(R2)× 0× · · ·× 0 since |U(R1)| ≥ |U(R2)| ≥
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|U(Ri)| for 3 ≤ i ≤ n. Also A1 ∪ A2 is an independent set of AG(R). Hence continuing similarly, we

get An−1 = U(R1) × U(R2) × U(R3) × · · · × U(Rn−1) × 0 as the element of Sn−1 that is a maximal

independent set of AG(R). Now if H = A1 ∪ A2 ∪ · · · ∪ An−1, then H is also an independent set of

AG(R). Let x = (x1, 0, 0, . . . , 0) where x1 ∈ Z(R1)
∗ and y = (y1, y2, . . . , yn) where yn ∈ Z(Rn)

∗ and

yi ∈ U(Ri) for 1 ≤ i ≤ n − 1. Then H ′ = H ∪ {x, y} is a maximal independent set of AG(R). For

if z = (z1, z2, . . . , zn) ∈ Z(R)∗\H ′, then atleast one of zi must belong to Z(Ri) for some 1 ≤ i ≤ n;

if zn ∈ Z(Rn)
∗ then clearly z is adjacent to y and if zi ∈ Z(Ri)

∗ for 1 ≤ i ≤ n − 1 then clearly z is

adjacent to x. Also x and y are not adjacent. So H ′ is disjoint and H ′ is maximal and hence α(AG(R))

=|U(R1)|+ |U(R1)||U(R2)|+ . . .+ |U(R1)||U(R2)| . . . |U(Rn−1)|+ 2. □

We now derive the following lemma which will be needed to find the clique number of AG(R) graph

in the next proposition.

Lemma 2.11. If R is a non-local ring with R ∼= R1 × R2 × . · · · × Rn, where each Ri are local rings,

then any two distinct elements which has the same number of non-zero entries but not identical are

adjacent in AG(R).

Proof. Let x, y ∈ Z(R)∗ be non identical vertices having exactly i number of non-zero entries with

1 ≤ i ≤ n − 1. So there exist atleast one entry in x, say jth with 1 ≤ j ≤ n, which is non-zero

in x but zero in y. If xy = 0 then clearly there exist an edge between x and y as ann(xy) = R ̸=
ann(x) ∪ ann(y) ⊆ Z(R). So we assume that xy ̸= 0. As total number of zero entries are equal in

x and y, there exists another entry, say kth, which is zero in x but not in y where 1 ≤ k ≤ n and

k ̸= j. Then xy has less number of non-zero entries than in x and y with jth and kth entry zero. Now

we consider z = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) with 1 in jth and kth entry and 0 in the remaining entries.

Then z ∈ ann(xy) but z /∈ ann(x) ∪ ann(y). This shows that ann(xy) ̸= ann(x) ∪ ann(y). Hence x is

adjacent to y in AG(R). □

Proposition 2.12. If R ∼= F1 × F2 × . · · · × Fn, where each F′
is are finite field, ω(AG(R)) =

(
n

n−1
2

)
if n

is odd or
(
n
n
2

)
if n is even.

Proof. We’ll prove it by induction on n. If n = 2, then clearly AG(R) ∼= Km,n which is a complete

bipartite graph. Hence ω(AG(R)) = 2. So result is true for n = 2. Now let us assume that result hold

for k less than n. Assume that R ∼= F1×F2×. · · ·×Fn, where each Fi’s are finite field. Let R
′ ∼= F1×F2×

· · ·×Fn−1. Then by induction hypothesis we have ω(AG(R′)) =
(n−1

n−1
2

)
if n is odd and

(
n−1
n
2

)
if n is even.

Let S = {(x1, x2, . . . , xt, 0, . . . , 0), (x1, x2, . . . , xt−1, 0, xt+1, 0, . . . , 0), . . . , (0, 0, . . . , 0, xn−t, . . . , xn−1, 0)}
be a set of vertices in AG(R′). Then clearly by lemma 2.11, S is a complete subgraph of AG(R′) and

|S| =
(
n−1
t

)
where t = n

2 when n is even and n−1
2 when n is odd. Hence S is a maximal complete

subgraph of AG(R′). Now we extend S into S′ in AG(R) by adding elements xn ∈ F ∗
n in the nth

co-ordinate of each element of S. Then S′ is also a complete subgraph of AG(R) and |S| = |S′| =
(
n−1
t

)
where t = n

2 if n is even and n−1
2 if n is odd. Now we take T to be set of elements in V (AG(R′)) which

has t+ 1 non-zero component entries. Then T is a complete subgraph of AG(R′). Again we extend T

to T ′ by adding zero element of Fn in the nth coordinate of each element of T . Then T ′ is a complete
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subgraph of AG(R) and |T ′| = |T | =
(
n−1
t+1

)
where t = n

2 or n−1
2 . Clearly T ′ and S′ are disjoint sets,

so |T ′ ∪ S′| = |T ′| + |S′| =
(
n−1
t+1

)
+

(
n−1
t

)
=

(
n

t+1

)
. Here S′ ∪ T ′ is a complete subgraph of AG(R). If

x /∈ S′ ∪ T ′ then {x} ∪ S′ ∪ T ′ cannot be a complete subgraph of AG(R). Since x has lesser or equal or

greater number of zero entries than that of elements of S′ ∪ T ′.

Case 1: Suppose that x has lesser number of zero entries than that of elements of S′ ∪ T ′ then we

take y ∈ S′ ∪ T ′ such that y has exactly the same position of non zero entries in x but y has more zero

entries, say x = (x1, x2, . . . , xk, xk+1, 0, . . . , 0), y = (x1, x2, . . . , xk, 0, . . . , 0). Then ann(xy) = ann(y)

and hence x cannot be adjacent to y.

Case 2: Suppose that x has lesser number of non-zero entries than that of elememts of S′ ∪ T ′ then

we take y ∈ S′ ∪ T ′ such that y has exactly the same position of non zero entries in x but y has less

number of zero entries, say x = (x1, x2, . . . , xk, 0, . . . , 0), y = (x1, x2, . . . , xk, 0, xk+1, 0, . . . , 0). Then

clearly ann(xy) = ann(x) and hence x cannot be adjacent to y. Hence in both cases {x} ∪ S′ ∪ T ′

cannot form a complete subgraph of AG(R).

Case 3: If x has the same number of zero entries as that of elements of S′ ∪ T ′ then there exists an

element y ∈ S′ ∪ T ′ such that x and y have the same position of zero entries, so ann(xy) = ann(x) =

ann(y) which shows that x cannot be adjacent to y. Hence {x}∪S′∪T ′ cannot be a complete subgraph

of AG(R).

So in order that the set of S′∪T ′ form a complete subgraph with {x} we have to removed the vertices

from S′ ∪ T ′ which are not adjacent to x and we rename that set to be H. Then |H ∪ {x}| ≤
(

n
t+1

)
.

Similarly if we take y ̸= x ∈ Z(R)∗ where x is adjacent to y then by similar argument we see that the

complete subgraph formed by the set of vertices of S′∪T ′ with that of {x, y} must be even smaller than(
n

t+1

)
. Hence continuing in this way we see that the complete subgraph formed by the set of vertices of

S′ and that with other vertex of AG(R) must have cardinality less than
(

n
t+1

)
. Hence the set of vertices

which can form a complete subgraph with S′ must have size same as that of T ′. Hence ω(AG(R)) =(
n

n−1
2

)
or

(
n
n
2

)
. □

For any ring R ∼= R1 × R2 × . · · · × Rn the above theorem is not true in general for if R ∼= Z2 × Z8

then ω(AG(R)) ̸= 2 but ω(AG(R)) = 6.

Remark 2.13. If R ∼= R1×R2×. · · ·×Rn×F1×F2×. · · ·×Fn where Ri are local ring not fields and Fi are

fields then ω(AG(R)) ≥ max {|Z(R1)
∗||R2| · · · |Rn||F1| · · · |Fn|, . . . , |R1| . . . .|Rn−1||Z(Rn)

∗||F1| · · · |Fn|}

The corollary below follows from the above proposition and remarks.

Corollary 2.14. If R ∼= F×R′, where F is a finite field and R′ is a finite local ring then ω(AG(R)) =

|F||Z(R′)∗|.

The corollary follows from the following well known theorem.

Theorem 2.15. A connected graph G is an Eulerian graph iff all vertices of G are of even degrees.

Corollary 2.16. Let R be a finite local ring with |R| = 2m for some m ≥ 3 then AG(R) is an Eulerian

graph.
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Now we show that AG(R) is Hamiltonian if R ∼= A×A where A is a finite local ring with identity .

Proposition 2.17. Let R be a finite ring such that R ∼= A × A where A is a finite local ring with

identity. Then AG(R) is Hamiltonian.

Proof. First we consider A a local ring but not a field. Let us consider the sets A∗ × 0, 0 × A∗,

A× Z(A)∗, Z(A)∗ × A. Then any non-zero zero divisors of R must belong to either one of these sets.

First we show that Z(A)∗ × A or A× Z(A)∗ is a complete subgraph of AG(R). Let x, y ∈ Z(A)∗ × A

such that x ̸= y, x = (x1, x2) and y = (y1, y2). If x1 ̸= y1 then as A is a finite local ring so

ann(x1y1) ̸= ann(x1) ∪ ann(y1) which shows that x is adjacent to y. If x1 = y1 then x21 ̸= x1 as

A is a finite local ring and ann(x21) ̸= ann(x1) as Nil(A) = Z(A). Hence x is adjacent to y. Therefore

Z(A)∗ × A and similarly A × Z(A)∗ is a complete subgraph of AG(R). As we can form a complete

bipartite graph from the set of vertices A∗ × 0 and 0 × A∗, so there exist a path from (0, 1) to (1, 0)

which passes through all the vertices of A∗ × 0 and 0× A∗ exactly once and also connect (1, 0) to one

vertex of Z(A)∗ × (A\Z(A)), (0, 1) to one vertex of (A\Z(A))×Z(A)∗ as Z(A)∗ ×Z(A)∗ is a complete

subgraph of AG(R). So we get a cycle which passes through all the vertices of AG(R) exactly once.

Hence AG(R) is a Hamiltonian graph. If A is a field then AG(R) ∼= Γ(R) ∼= K|A|−1,|A|−1 which is

clearly Hamiltonian. □

3. Planarity of AG(R)

In this section we characterize the finite commutative rings whose annihilator graph AG(R) is planar.

Theorem 3.1. (Kuratowski) A graph is planar if and only if it contain no sub-division heomomorphic

to K5 or K3,3.

Proposition 3.2. Let R be a non-local ring then AG(R) is planar if R is isomorphic to one of the

following ring Z2 × Z4, Z2 × Z2[x]/(x
2), Z2 × F, Z3 × Z4, Z3 × Z2[x]/(x

2), Z3 × F .

Proof. Case 1: If R ∼= R1 × R2 × · · · .× Rn and n ≥ 4 then as Γ(R) is non planar by S.Akbari et al.

[3], AG(R) is also non-planar.

Case 2: If R ∼= R1 × R2 × R3 where one of |Ri| = 4, then Γ(R) is non-planar by S. Akbari

et al. [3] and so is AG(R). So let |Ri| ≤ 3 for i = 1, 2, 3. If R ∼= Z3 × Z3 × Z3 then the

subgraph formed by the vertices {(2, 0, 2), (1, 2, 0), (2, 1, 0), (2, 2, 0), (0, 0, 1), (0, 0, 2)} contain K3,3 and

therefore AG(R) is non planar. If R ∼= Z3 × Z3 × Z2 then the subgraph formed by the vertices

{(1, 2, 0), (2, 1, 0), (1, 1, 0), (0, 2, 1), (0, 1, 1), (0, 0, 1)}, where X = {(1, 2, 0), (2, 1, 0), (1, 1, 0)} and Y =

{(0, 2, 1), (0, 1, 1), (0, 0, 1)}, contain K3,3 as a subgraph and therefore AG(R) is non planar. If R ∼=
Z2 × Z2 × Z2 then clearly AG(R) is planar. If R ∼= Z2 × Z2 × Z3 then the subgraph formed by the

vertices {(0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 2), (1, 0, 1), (1, 0, 0)}, where X = {(0, 1, 0), (0, 1, 1), (0, 1, 2)} and

Y = {(1, 0, 2), (1, 0, 1), (1, 0, 0)}, contain K3,3 as a subgraph and hence AG(R) is non-planar.

Case 3: If n = 2 then R ∼= R1 ×R2. If both |R1| and |R2| are not less than 4 then K3,3 is a subgraph

of Γ(R) and so AG(R) is non planar. So let atleast one of Ri, say |R1| ≤ 3. If R2 such that |Z(R2)
∗|
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≥ 4 then K5 is a subgraph of AG(R). Hence AG(R) is non-planar. So |Z(R2)
∗| ≤ 3.

SubCase 3.1: If R1
∼= Z2 and |Z(R2)

∗| ≤ 3. When |Z(R2)
∗| = 3 then Γ(R2) ∼= K1,2 or K3. If

Γ(R2) ∼= K1,2 then R2
∼= Z8 or Z2[x]/(x

3) or Z4[x]/(2x, x
2 − 2). If R ∼= Z2 × Z8 then Z(R) =

{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 0), (1, 2), (1, 4), (1, 6)}. Now letX = {(0, 1), (0, 3),
(0, 5), (0, 7)} and Y = {(1, 4), (1, 2), (1, 6)}. As degΓ(R)(x, y) = 3 for x ∈ X and y ∈ Y , by [7, lemma

2.1(5)], degAG(R)(x, y) = 1 and so K4,3 is a subgraph of AG(R) showing that AG(R) is non-planar.

Similarly if R ∼= Z2 × (Z2[x]/(x
3)), Z(Z2 × (Z2[x]/(x

3))) = {(0, 0), (0, 1), (0, x), (0, x2), (0, 1+ x), (0, 1+

x2), (0, x+x2), (0, 1+x+x2), (1, 0), (1, x), (1, x2), (1, x+x2)}, then K4,3 is a subgraph of AG(R). Hence

AG(Z2× (Z2[x]/(x
3))) is non-planar. Now if R ∼= Z2× (Z4[x]/(2x, x

2−2)) then Z(Z2× (Z4[x]/(2x, x
2−

2))) = {(0, 0), (0, 1), (0, 2), (0, 3), (0, x), (0, 1+x), (0, 2+x), (0, 3+x), (1, 0), (1, x), (1, 2), (1, 2+x)}. Now

let X = {(0, 1), (0, 3), (0, 1 + x), (0, 3 + x)}, and Y = {(1, x+ 2), (1, 2), (1, x), (1, 0)}. As for x ∈ X and

y ∈ Y degΓ(R)(x, y) = 3, degAG(R)(x, y) = 1 so K4,4 is a subgraph of AG(Z2 × (Z4[x]/(2x, x
2 − 2))).

Hence AG(Z2 × (Z4[x]/(2x, x
2 − 2))) is non-planar.

If R2 is such that Z(R2) = {0, x, y, z} and xy = yz = xz = 0 then K3,3 is a subgraph of AG(R).

Hence AG(R) is non-planar. We consider |Z(R2)| ≤ 3.

If |Z(R2)
∗| = 2 thenR2

∼= Z9 or Z3[x]/(x
2), Z(Z2×Z9) = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6),

(0, 7), (0, 8), (1, 0), (1, 3), (1, 6)}. Now let X = {(0, 1), (0, 2), (0, 4), (0, 5), (0, 7)}, then Y = {(1, 0), (1, 3),
(1, 6)}. As degΓ(R)(x, y) = 3 for x ∈ X and y ∈ Y , by [7, lemma 2.1(5)] degAG(R)(x, y) = 1 so K6,3

is a subgraph of AG(Z2 × Z9)). Hence AG(R) is non-planar. Similarly for Z2 × Z3[x]/(x
2), AG(R) is

non-planar.

If |Z(R2)
∗| = 1 then R2

∼= Z4 or R2
∼= Z2[x]/(x

2) and AG(R) is clearly planar.

If |Z(R2)
∗| = 0 then R2 is a field or an infinite integral domain and clearly AG(Z2 × R2) ∼= K1,n or

K1,∞ and so AG(R) is planar.

SubCase 3.2: Consider R1
∼= Z3. If |Z(R2)

∗| = 3, then by subcase 3.1 Γ(R2) ∼= K1,2 or K3. In both

the cases as AG(Z2×R2) is a subgraph of AG(Z3×R2), AG(Z3×R2) is non-planar. If |Z(R2)
∗| = 2,

R2
∼= Z9 or R2

∼= Z3[x]/(x
2), as AG(Z2 × Z9) is a subgraph of AG(Z3 × Z9), AG(Z3 × Z9) is non-

planar. Similarly, AG(Z3 × (Z3[x]/(x
2))) is non-planar as AG(Z2 × (Z3[x]/(x

2))) is a subgraph. If

|Z(R2)
∗| = 1 then R2

∼= Z4 or Z2[x]/(x
2). If R ∼= Z3 × Z4, Z(Z3 × Z4) = {(0, 0), (0, 1), (0, 2), (0, 3),

(1, 0), (1, 2), (2, 0), (2, 2)}. Then clearly AG(Z3 × Z4) is planar and similarly for Z3 × (Z2[x]/(x
2)),

AG(Z3 × (Z2[x]/(x
2))) is planar. If |Z(R2)

∗| = 0 then R2 is either a field or integral domain.

AG(Z2 × R2) ∼= K2,n−1 or K2,∞ if R2 is a field, otherwise it is a doubled star graph. In both the

cases AG(R) is planar. □

Proposition 3.3. If R is a local ring such that AG(R) is planar then R is isomorphic to one of

the following Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z2[x, y]/(x, y)
2, Z2[x, y]/(xy, y

2 − x), Z9,Z3[x]/(x
2), Z25,

Z5[x]/(x
2).

Proof. If R is a local ring such that |Z(R)∗|≥ 5 then we have AG(R) is a non-planar graph as K5 is

a subgraph of AG(R). Therefore for a local ring R, AG(R) is planar if and only if 1 ≤| Z(R)∗ |≤
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4. So the local ring for which AG(R) is planar are the following: Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3),

Z2[x, y]/(x, y)
2,Z2[x, y]/(xy, y

2 − x), Z9, Z3[x]/(x
2), Z25, Z5[x]/(x

2) . □
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