www.combinatorics.ir

Transactions on Combinatorics
ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 6 No. 1 (2017), pp. 1-11.
(C) 2017 University of Isfahan

ON ANNIHILATOR GRAPHS OF A FINITE COMMUTATIVE RING

SANGHITA DUTTA* AND CHANLEMKI LANONG

Communicated by Dariush Kiani

Abstract

The annihilator graph $A G(R)$ of a commutative ring R is a simple undirected graph with the vertex set $Z(R)^{*}$ and two distinct vertices are adjacent if and only if $\operatorname{ann}(x) \cup \operatorname{ann}(y) \neq \operatorname{ann}(x y)$. In this paper we give the sufficient condition for a graph $A G(R)$ to be complete. We characterize rings for which $A G(R)$ is a regular graph, we show that $\gamma(A G(R)) \in\{1,2\}$ and we also characterize the rings for which $A G(R)$ has a cut vertex. Finally we find the clique number of a finite reduced ring and characterize the rings for which $A G(R)$ is a planar graph.

1. Introduction

The study of rings using the properties of graphs lead to many interesting results. The zero-divisor graph of R, denoted by $\Gamma(R)$, is an undirected graph with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$ and two distinct vertices x, y are adjacent if and only if $x y=0$. The concept of a zero divisor graph goes back to I. Beck [8], who considered all elements of R as the set of vertices and was mainly interested in coloring of a graph. The zero-divisor graph $\Gamma(R)$ was introduced by David F. Anderson and Philip S. Livingston [2], where it was shown among other results that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \in\{0,1,2,3\}$ and $\operatorname{girth}(\Gamma(R)) \in\{3,4\}$. Many mathematicians have studied the zero divisor graph of a ring and obtained many interesting results regarding ring theoretic properties as well as graph theoretic properties of this graph. Badawi [7] defined a graph associated with a commutative ring called the annihilator graph of a ring R, denoted by $A G(R)$. The vertex set of this graph is $Z(R)^{*}$ and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}(x) \cup \operatorname{ann}(y) \neq a n n(x y)$. Badawi [7] proved that $A G(R)$ is a connected graph, diameter of $A G(R)$ is atmost two, girth of $A G(R)$ is atmost four if it has a cycle and if R is a

[^0]reduced ring then $A G(R)$ is identical to $\Gamma(R)$ if and only if the ring R has exactly two minimal prime ideals. D.A Mojdeh et al. [10] found the domination number of a zero divisor graph, zero divisor graph with respect to an ideal of a ring R and T. Tamish Chelvam et al. [9] found the domination number of total graph of a ring. M. Axtell et al. [6] have found the condition for a vertex x to be a cut vertex of $\Gamma(R)$.

In section 2, we discuss about the existence of a vertex which is adjacent to all vertices of $A G(R)$, sufficient condition for $A G(R)$ to be a complete graph and a regular graph and we show that the domination number of $A G(R)$ is less than or equal to 2 for any finite ring. We find that if R is a finite ring and $A G(R)$ has a cut vertex then $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, where \mathbb{F} is a finite field with $\mathbb{F} \not \not \mathbb{Z}_{2}$. We also compute $\alpha(A G(R))$ and $\omega(A G(R))$ for some classes of rings. We show that $A G(R)$ is Hamiltonian if $R \cong A \times A$ where A is a finite local ring with identity. In section 3, we characterize rings for which $A G(R)$ is planar.

Throughout the paper, all rings are assumed to be commutative ring with unity $1 \neq 0$. A ring R is said to be reduced if R has no non-zero nilpotent element. Let $Z(R)$ denote the set of zero-divisors of a ring R. If X is either an element or a subset of R, then $\operatorname{ann}(X)$ denotes the annihilator of X in R, i.e., $\operatorname{ann}(X)=\{r \in R \mid r X=0\}$. For any subset X of R let $X^{*}=X \backslash\{0\}$. A ring R is said to be decomposable if R can be written as $R_{1} \times R_{2}$, where R_{1} and R_{2} are rings; otherwise R is said to be indecomposable.

All graphs considered in this paper are simple graphs. For a graph G, the degree of a vertex v in G, denoted by $\operatorname{deg}(v)$ is the number of edges incident to v. A graph G is said to be regular if the degrees of all vertices of G are same. A graph G is said to be complete if every pair of distinct vertices are connected by an edge. A bipartite graph is a graph whose set of vertices can be partitioned into two sets U and V such that every edge is between a vertex of U and a vertex of V. We denote the complete graph with n vertices and complete bipartite graph with two sets of sizes m and n by K_{n} and $K_{m, n}$ respectively. The complete bipartite graph $K_{1, n}$ is called a star graph. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(x, y): x$ and y are distinct vertices of $G\}$. A vertex a in a connected graph G is a cut-vertex if G can be expressed as a union of two sub graphs X and Y such that $E(X) \neq \emptyset, E(Y) \neq \emptyset$, $E(X) \cup E(Y)=E(G), V(X) \cup V(Y)=V(G), V(X) \cap V(Y)=\{a\}, X \backslash\{a\} \neq \emptyset$, and $Y \backslash\{a\} \neq \emptyset$. A subset D of the set of vertices $V(G)$ of a graph G is called a dominating set, if every vertex of $V(G) \backslash D$ is adjacent to some vertex of D. The minimum size of such a subset is called the domination number of G and is denoted by $\gamma(G)$. A set $S \subseteq V(G)$ is independent set of G, if no two vertices of S are adjacent. The independence number of a graph G denoted by $\alpha(G)$ is the size of the maximum independent set in G. A clique of a graph is a maximal complete subgraph and the number of vertices in the largest clique of a graph G, denoted by $\omega(G)$, is called the clique number of G.

A Hamiltonian cycle (resp. path) in a graph is a cycle (resp. path) including all the vertices of the graph. Similarly, an Eulerian tour or circuit(resp. trail) in a graph is a closed walk (resp. walk) including all the edges of the graph. A graph is Hamiltonian if it has a Hamiltonian cycle and it is Eulerian if it has an Eulerian tour or circuit. A graph G is said to be planar if it can be drawn in the
plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths.

2. Properties of $A G(R)$

In this section, we find for which ring R there exist a vertex which is adjacent to all vertices of $A G(R)$ and then find some more properties of $A G(R)$. We note here the following proposition from Axtell et.al [6] which will be used frequently in this paper.

Proposition 2.1. [6] Let R be a finite commutative ring with identity. Then the following are equivalent:
(1) $Z(R)$ is an ideal;
(2) $Z(R)$ is a maximal ideal;
(3) R is local;
(4) Every $x \in Z(R)$ is nilpotent.

The following two propositions give criterion for existence of a vertex which is adjacent to all vertices of $A G(R)$ for finite rings. These propositions will be used to derive the other properties of $A G(R)$ graph.

Proposition 2.2. Let R be a finite reduced ring. Then there exists a vertex $x \in Z(R)^{*}$ such that x is adjacent to all vertices of $A G(R)$ if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{F}$ where \mathbb{F} is a finite field.

Proof. Suppose R is a finite reduced ring then we have $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$, where each \mathbb{F}_{i} is a finite field for $1 \leq i \leq n$.

Suppose $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z(R)^{*}$ is a vertex which is adjacent to all the vertices of R. First we consider $n \geq 3$ and let $e_{1}=(1,0,0, \ldots, 0) \in Z(R)^{*}$. Then $x e_{1}=\left(x_{1}, 0,0, \ldots, 0\right)$ and so $\operatorname{ann}\left(x e_{1}\right)=\operatorname{ann}\left(e_{1}\right)$. Thus for x and e_{1} to be adjacent we must have $x_{1}=0$. Similarly taking $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$, where 1 is in the $i^{t h}$ entry, for $1 \leq i \leq n$ and continuing the same way we have $x=(0,0, \ldots, 0)$, which is a contradiction. Hence if $n \geq 3$, there does not exist $x \in Z(R)^{*}$ such that x is adjacent to all vertices of $A G(R)$. So we consider $n \leq 2$. If $n=1$ then $A G(R)$ is an empty graph. Now for $n=2, R \cong \mathbb{F}_{1} \times \mathbb{F}_{2}$ and so by [3, Thereom 3.6] $A G(R)=\Gamma(R)$. But for $\Gamma(R)$, there exists $x \in Z(R)^{*}$ which is adjacent to all vertices of $A G(R)$ if only if $R \cong \mathbb{Z}_{2} \times \mathbb{F}$ where \mathbb{F} is a field or R is a local ring by [2, Corrolary 2.7]. But since R is a reduced ring, we must have $R \cong \mathbb{Z}_{2} \times \mathbb{F}$. If $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, where \mathbb{F} is a field, then clearly there is a vertex adjacent to all vertices of $A G(R)$.

Proposition 2.3. Let R be a finite non-reduced ring with identity. If $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local rings but not field, then there exists a vertex $x \in Z(R)^{*}$ such that x is adjacent to all vertices of $A G(R)$.

Proof. Assume that R is a finite non-reduced ring. Then $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local ring. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z(R)^{*}$ be a vertex which is adjacent to all vertices of $A G(R)$. If atleast one of x_{i} is zero then for $z=(1,1, \ldots, 1,0,1, \ldots, 1) \in Z(R)^{*}$, where zero is in the $i^{\text {th }}$
position, we have $\operatorname{ann}(x z)=\operatorname{ann}(x)$. So by [7, lemma 2.1(1)] x is not adjacent to z. Hence, if atleast one entry in x is zero then x cannot be adjacent to every vertex of $Z(R)^{*}$. Thus all entries of x must be non-zero. Suppose now, the $k^{t h}$ entry of x say x_{k} is invertible, i. e., there exists $y \in R_{k}$ such that $x_{k} y=1$. Then for $v=(0,0, \ldots, 0, y, 0, \ldots, 0) \in Z(R)^{*}, a n n(x v)=a n n(v)$. So x is not adjacent to some vertex of $Z(R)^{*}$, which is a contradiction. So we consider that each R_{i} is not a field. Now assume that all entries of x are non-zero and non-unit. Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in Z(R)^{*}$. Then ann $(x)=$ $\operatorname{ann}\left(x_{1}\right) \times \operatorname{ann}\left(x_{2}\right) \times . \times \operatorname{ann}\left(x_{n}\right)$ and $\operatorname{ann}(z)=\operatorname{ann}\left(z_{1}\right) \times \operatorname{ann}\left(z_{2}\right) \times \cdots \times \operatorname{ann}\left(z_{n}\right)$. But as $z \in Z(R)^{*}$, so there exists z_{i}^{\prime} s, say z_{k}, where $z_{k} \in Z\left(R_{k}\right)^{*}$. As R_{k} is a local ring we have $A G\left(R_{k}\right)$ is complete and therefore $\operatorname{ann}\left(x_{k} z_{k}\right) \neq \operatorname{ann}\left(x_{k}\right) \cup \operatorname{ann}\left(z_{k}\right)$. So there exists $t_{j} \in \operatorname{ann}\left(x_{k} z_{k}\right) \backslash \operatorname{ann}\left(x_{k}\right) \cup \operatorname{ann}\left(z_{k}\right)$. Now $t=\left(0,0, \ldots, 0, t_{j}, 0, \ldots, 0\right) \in \operatorname{ann}(x z)$ but $t=\left(0,0, \ldots, 0, t_{j}, 0, \ldots, 0\right) \notin \operatorname{ann}(x) \cup \operatorname{ann}(z)$, for if $t \in \operatorname{ann}(x) \cup \operatorname{ann}(z)$ then we have either $x_{j} t_{j}=0$ or $z_{j} t_{j}=0$ which is a contradiction. Hence there exists a vertex $x \in Z(R)^{*}$ such that x is adjacent to all vertices of $A G(R)$ if $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local rings but not field.

In the next proposition we characterize a finite complete $A G(R)$ graph.
Proposition 2.4. If $A G(R)$ is a finite complete graph then either R is a finite local ring or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. If $A G(R)$ is finite complete graph, the set of vertices of $A G(R)$ is same as $\Gamma(R)$, by $[1$, theorem 2.2] R must be a finite ring. So let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local ring. Let $x=(1,0,0, \ldots, 0) \in Z(R)^{*}$ and $y=(1,1,0, \ldots, 0) \in Z(R)^{*}$. We assume that $n \geq 3$. Then $\operatorname{ann}(x)=\operatorname{ann}(x y)$ shows that x is not adjacent to y, which is a contradiction. So we must have $n \leq 2$. If $n=2$ then $R \cong R_{1} \times R_{2}$. By proposition 2.3, we have either $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, where \mathbb{F} is a field, or each R_{i} a local ring but not a field. First we consider that atleast one of R_{i}, say R_{2} is not a field. Then for $t=(1,0)$ and $w=(1, x)$, where $x \in Z\left(R_{2}\right)^{*}$, we get $\operatorname{ann}(t)=a n n(t w)$. This shows that $(1,0)$ is not adjacent to $(1, x)$, which is a contradiction as $A G(R)$ is a complete graph. So we consider that both R_{i} are fields. But if both R_{i} are fields, there exists a vertex which is adjacent to all vertices of $A G(R)$ since $A G(R)$ is a complete graph. Hence, $R \cong \mathbb{Z}_{2} \times \mathbb{F}$. As $A G(R)$ is a complete graph, we must have $\mathbb{F} \cong \mathbb{Z}_{2}$. Now for $n=1$ we have R is a finite local ring. Thus, $A G(R)$ is a finite complete graph if R is a finite local ring or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

In the following proposition we characterize the finite rings for which $A G(R)$ is a regular graph.
Proposition 2.5. If R is a finite ring with identity and $A G(R)$ is a regular graph then $R \cong \mathbb{F} \times \mathbb{F}$, i.e., $A G(R) \cong K_{t-1, t-1}$ with $|F|=t$ or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or R is a local ring or a field.

Proof. Let R be a finite commutative ring with identity and $A G(R)$ be a regular graph. Since R is a finite ring, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local ring and $n \geq 1$. Now if atleast one of $R_{i}^{\prime} s$ is not a field, say R_{1}, then consider $e_{1}=(1,0, \ldots, 0) \in Z(R)^{*}$ and $y=\left(y_{1}, 0, \ldots, 0\right) \in Z(R)^{*}$ with $y_{1} \in Z\left(R_{1}\right)^{*}$. Then clearly $\operatorname{deg}(y)>\operatorname{deg}(x)$, which is a contradiction. Hence if $n \geq 2$, each R_{i} must be field. So $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$, where $n \geq 2$ and \mathbb{F}_{i} 's are finite fields. If we consider e_{1} as above then the vertices that are adjacent to e_{1} in $A G(R)$ are those vertices y such that $e_{1} y=0$. So $\operatorname{deg}\left(e_{1}\right)=\left|\mathbb{F}_{2}\right|\left|\mathbb{F}_{3}\right| \cdots\left|\mathbb{F}_{n}\right|-1$ and similarly if we take $e_{2}=(0,1,0, \ldots, 0) \in Z(R)^{*}$ then $\operatorname{deg}\left(e_{2}\right)=$
$\left|\mathbb{F}_{1}\right|\left|\mathbb{F}_{3}\right| \cdots\left|\mathbb{F}_{n}\right|-1$. As $A G(R)$ is regular, we have $\operatorname{deg}\left(e_{1}\right)=\operatorname{deg}\left(e_{2}\right)$ and so $\left|\mathbb{F}_{1}\right|=\left|\mathbb{F}_{2}\right|$. Thus taking each e_{i} for $1 \leq i \leq n$, we see that all \mathbb{F}_{i} have the same cardinality and hence $R \cong \mathbb{F} \times \mathbb{F} \times \cdots \times \mathbb{F}$. Let $|\mathbb{F}|=t$. We consider $n \geq 3$ and let $z=(1,1,0, \ldots, 0)$. Then we have $\operatorname{deg}\left(e_{1}\right)=|\mathbb{F}|^{(n-1)}-1$ and $\operatorname{deg}(z)=\left(|\mathbb{F}|^{(n-2)}-1\right)+2(|\mathbb{F}|-1)\left(|\mathbb{F}|^{(n-2)}-1\right)$. Now if $n \geq 4$ then $\operatorname{deg}(z)>\operatorname{deg}\left(e_{1}\right)$, which is a contradiction. If $n=3$ and $|\mathbb{F}| \geq 3$ then also $\operatorname{deg}(z)>\operatorname{deg}\left(e_{1}\right)$, which is a contradiction. If $n=3$ and $|\mathbb{F}|=2$ then clearly $A G(R)$ is regular with $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Now if $n=1$, then R is a finite local ring or a field and clearly $A G(R)$ is regular. For $n=2$, we have $A G(R)=\Gamma(R)$ by [7, Theorem 3.6] and for $\Gamma(R)$ to be regular we must have $R=\mathbb{F} \times \mathbb{F}$ by $[5$, Theorem 8$]$ and so $\Gamma(R)=K_{t-1, t-1}$.

In the following proposition we find the domination number of $A G(R)$ graph.
Proposition 2.6. If R is a finite ring then $\gamma(A G(R)) \leq 2$.
Proof. Let us consider first that R is a decomposable ring with $R \cong R_{1} \times R_{2}$. Now let us consider the sets $A=\left\{\left(x_{1}, 0\right) \mid x_{1} \in R_{1}^{*}\right\}, B=\left\{\left(0, x_{2}\right) \mid x_{2} \in R_{2}^{*}\right\}, C=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in Z\left(R_{1}\right)^{*}, x_{2} \in R_{2}^{*}\right\}$ and $D=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in R_{1}^{*}, x_{2} \in Z\left(R_{2}\right)^{*}\right\}$. Then $Z(R)^{*}=A \cup B \cup C \cup D$. Next we consider two vertices $x=(1,0) \in Z(R)^{*}$ and $y=(0,1) \in Z(R)^{*}$ of $A G(R)$. Let $z=\left(z_{1}, z_{2}\right) \in Z(R)$. If $z_{1} \in U\left(R_{1}\right)$ then clearly z cannot be adjacent to x. Hence z is adjacent to x if $z_{1} \in Z\left(R_{1}\right)$ and similarly z is adjacent to y if $z_{2} \in Z\left(R_{2}\right)$. Now $x z=\left(z_{1}, 0\right)$, $\operatorname{ann}(x)=B \cup\{(0,0)\}$, ann $(x z)=\operatorname{ann}\left(z_{1}, 0\right)=$ $B \cup\left\{(q, t) \mid q \in \operatorname{ann}\left(z_{1}\right), t \in R_{2}\right\}$. If $z_{2} \in U\left(R_{2}\right)$ then $\operatorname{ann}(z)=\left\{(q, 0) \mid q \in \operatorname{ann}\left(z_{1}\right)\right\}$ and if $z_{2} \in Z\left(R_{2}\right)^{*}$ then $\operatorname{ann}(z)=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in \operatorname{ann}\left(z_{1}\right), q_{2} \in \operatorname{ann}\left(z_{2}\right)\right\}$. Thus in all the cases we get $\operatorname{ann}(x z) \neq \operatorname{ann}(x) \cup$ $\operatorname{ann}(z)$ and so x is adjacent to z. Hence we get $N b d(x)=B \cup C$ and similarly we get $N b d(y)=A \cup D$. Therefore we have $N b d(x) \cup N b d(y)=Z(R)^{*}$. Now for $1 \neq y_{k} \in U\left(R_{2}\right)$, we have $\left(0, y_{k}\right) \in N b d(x)$ but $\left(0, y_{k}\right) \notin N b d(y)$. Similarly if $x_{k} \in U\left(R_{1}\right)$ then $\left(x_{k}, 0\right) \in N b d(y)$ but $\left(x_{k}, 0\right) \notin N b d(x)$. Thus if we take $S=\{x, y\}$, then S is a dominating set of $A G(R)$. Hence for any finite commutative ring we have $\gamma(A G(R)) \leq 2$.

From propositions 2.2, 2.3 and 2.6, we have the following corollary.
Corollary 2.7. If $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local ring but not fields or $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, then $\gamma(A G(R))=1$.

Next we find the criterion for the existence of a cut vertex in $A G(R)$ graph.
Proposition 2.8. Let R be a finite ring such that $A G(R)$ has a cut vertex. Then $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, where \mathbb{F} is a finite field and $\mathbb{F} \nsubseteq \mathbb{Z}_{2}$.

Proof. Let $x \in Z(R)^{*}$ be a cut vertex of $A G(R)$. Clearly $A G(R)$ cannot be a complete graph and so $\operatorname{diam}(A G(R))=2$. Now we have, $A G(R)=X \cup Y$, where $X \cap Y=\{x\}$. As x is a cut vertex and $\operatorname{diam}(A G(R))=2$, there exist $a \in X$ and $b \in Y$ which are adjacent to x. So $a-x-b$ is a path from a to b in $A G(R)$. Now let $c \in X$, such that c is not adjacent to x in $A G(R)$ and as $\operatorname{diam}(A G(R))=2$, so we have either c is adjacent to b or there exists a path $c-d-b$ in $A G(R)$ where $d \neq x$. In either case we get that x is not a cut vertex of $A G(R)$, which is a contradiction. Hence any vertex in $X \backslash\{x\}$ is adjacent to x. Similarly any vertex in $Y \backslash\{x\}$ is adjacent to x. Thus x is a vertex which is adjacent
to all vertices of $A G(R)$. Hence by propositions 2.2 and 2.3 either $R \cong \mathbb{Z}_{2} \times \mathbb{F}$ where \mathbb{F} is a finite field or $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are finite local ring but not field. If $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ and if atleast one of R_{i} is such that $\left|Z\left(R_{i}\right)^{*}\right| \geq 2$ then $A G(R)$ does not have a cut vertex, which is a contradiction. Hence for each R_{i} we have $\left|Z\left(R_{i}\right)^{*}\right|=1$. But when $\left|Z\left(R_{i}\right)^{*}\right|=1$ we have either $R_{i} \cong \mathbb{Z}_{4}$ or $R_{i} \cong \mathbb{Z}_{2}[t] /\left(t^{2}\right)$ [1, Example 2.1(i)]. So $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ where either $R_{i} \cong \mathbb{Z}_{4}$ or $R_{i} \cong \mathbb{Z}_{2}[t] /\left(t^{2}\right)$. Let $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{i}=2$ if $R_{i} \cong \mathbb{Z}_{4}$ and $y_{i}=t$ if $R_{i} \cong \mathbb{Z}_{2}[t] /\left(t^{2}\right)$. Here y is adjacent to all vertices of $A G(R)$. Now let us consider the vertices $w=\left(0, y_{2}, \ldots, y_{n}\right)$ and $z=\left(y_{1}, \ldots, y_{n-1}, 0\right)$. Then the vertices which not adjacent to z are the elements of the set $S=\left\{u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mid u_{i} \in U\left(R_{i}\right)\right.$ for $i=1,2, \ldots, n-1$ and $\left.u_{n} \in Z\left(R_{n}\right)\right\}$ and the vertices which are not adjacent to w are the elements of the set $S^{\prime}=\left\{v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mid v_{1} \in Z\left(R_{1}\right)\right.$ and $v_{i} \in U\left(R_{i}\right)$ for $\left.i=2, \ldots, n\right\}$. But z is adjacent to each element of S^{\prime} and similarly w is adjacent to each element of S. So the subgraph of the annihilator graph whose set of vertices is $Z(R)^{*} \backslash\{y\}$ is still a connected graph which shows that y is not a cut vertex of $A G(R)$. Hence $A G(R)$ does not have any cut vertex which is a contradiction. So $A G(R)$ has a cut vertex if $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, where $\mathbb{F} \nsubseteq \mathbb{Z}_{2}$, for if $\mathbb{F} \cong \mathbb{Z}_{2}$ then $A G(R)$ is complete graph and a complete graph does not have a cut vertex.

In the following two propositons we find the independence number of $A G(R)$ graph for certain classes of finite rings.

Proposition 2.9. Let R be a finite reduced ring not a field such that $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$, where each \mathbb{F}_{i} are finite field, such that $\left|\mathbb{F}_{1}\right| \geq\left|\mathbb{F}_{2}\right| \geq\left|\mathbb{F}_{3}\right| \geq \cdots \geq\left|\mathbb{F}_{n}\right|$ then $\alpha(A G(R))=\left|\mathbb{F}_{1}^{*}\right|+\left|\mathbb{F}_{1}^{*}\right|\left|\mathbb{F}_{2}^{*}\right|+$ $\cdots+\left|\mathbb{F}_{1}^{*}\right|\left|\mathbb{F}_{2}^{*}\right| \cdots\left|\mathbb{F}_{n-1}^{*}\right|$.

Proof. As R is a finite reduced ring, $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$. Consider the set $S_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}=0\right.$ for all but one $i, 1 \leq i \leq n\}$. The independent subsets of S_{1} are $S_{11}=\left\{\left(x_{1}, 0, \ldots, 0\right) \mid x_{1} \in F_{1}^{*}\right\}, \ldots$, $S_{1 n}=\left\{\left(0,0, \ldots, x_{n}\right) \mid x_{n} \in F_{n}^{*}\right\}$. Among these independent sets, the one with maximum number of elements is S_{11} as $\left|\mathbb{F}_{1}\right| \geq\left|\mathbb{F}_{i}\right| \forall_{i}, 1 \leq i \leq n$. Consider the set $S_{2}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}=0\right.$ for all but $2 \mathrm{i}, 1 \leq i \leq n\}$. The maximal independent subset of S_{2} is $S_{12}=\left\{\left(x_{1}, x_{2}, 0, \ldots, 0\right) \mid x_{i} \in F_{i}^{*}, i=\right.$ $1,2\}$. Continuing in this way we get the maximal independent subset of S_{n-1} is $S_{1(n-1)}$. Let $S^{\prime}=$ $S_{11} \cup S_{12} \cup \ldots \cup S_{1(n-1)}$. Clearly each pair of elements in S^{\prime} are nonadjacent. Also for any element $x \in Z(R)^{*}$ either it belong to S^{\prime} or there exist an element $y \in S^{\prime}$ such that x is adjacent to y. Hence we have $\alpha(A G(R))=\left|\mathbb{F}_{1}^{*}\right|+\left|\mathbb{F}_{1}^{*}\right|\left|\mathbb{F}_{2}^{*}\right|+\cdots+\left|\mathbb{F}_{1}^{*}\right|\left|\mathbb{F}_{2}^{*}\right| \cdots\left|\mathbb{F}_{n-1}^{*}\right|$.

Proposition 2.10. Let R be a finite ring such that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ where each R_{i} are local ring and $\left|U\left(R_{1}\right)\right| \geq\left|U\left(R_{2}\right)\right| \geq \cdots \geq\left|U\left(R_{n}\right)\right|$ then $\alpha(A G(R))=\left|U\left(R_{1}\right)\right|+\left|U\left(R_{1}\right)\right|\left|U\left(R_{2}\right)\right|+\cdots+$ $\left|U\left(R_{1}\right)\right|\left|U\left(R_{2}\right)\right| \cdots\left|U\left(R_{n-1}\right)\right|+2$.

Proof. Let $S_{1}=\left\{U\left(R_{1}\right) \times 0 \times \cdots \times 0,0 \times U\left(R_{2}\right) \times 0 \times \cdots \times 0,0 \times 0 \times \cdots \times 0 \times U\left(R_{n}\right)\right\}$. Then each element of S_{1} form an independent set of $A G(R)$ and the maximal among these independent sets is $A_{1}=U\left(R_{1}\right) \times 0 \times \cdots \times 0$. Also in the set $S_{2}=\left\{U\left(R_{1}\right) \times U\left(R_{2}\right) \times 0 \times \cdots \times 0, U\left(R_{1}\right) \times 0 \times U\left(R_{3}\right) \times 0 \times\right.$ $\left.\cdots \times 0, \ldots, 0 \times 0 \times \cdots \times 0 \times U\left(R_{n-1}\right) \times U\left(R_{n}\right)\right\}$ each element is an independent set of $A G(R)$ and the maximal among these independent sets is $A_{2}=U\left(R_{1}\right) \times U\left(R_{2}\right) \times 0 \times \cdots \times 0$ since $\left|U\left(R_{1}\right)\right| \geq\left|U\left(R_{2}\right)\right| \geq$
$\left|U\left(R_{i}\right)\right|$ for $3 \leq i \leq n$. Also $A_{1} \cup A_{2}$ is an independent set of $A G(R)$. Hence continuing similarly, we get $A_{n-1}=U\left(R_{1}\right) \times U\left(R_{2}\right) \times U\left(R_{3}\right) \times \cdots \times U\left(R_{n-1}\right) \times 0$ as the element of S_{n-1} that is a maximal independent set of $A G(R)$. Now if $H=A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}$, then H is also an independent set of $A G(R)$. Let $x=\left(x_{1}, 0,0, \ldots, 0\right)$ where $x_{1} \in Z\left(R_{1}\right)^{*}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{n} \in Z\left(R_{n}\right)^{*}$ and $y_{i} \in U\left(R_{i}\right)$ for $1 \leq i \leq n-1$. Then $H^{\prime}=H \cup\{x, y\}$ is a maximal independent set of $A G(R)$. For if $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in Z(R)^{*} \backslash H^{\prime}$, then atleast one of z_{i} must belong to $Z\left(R_{i}\right)$ for some $1 \leq i \leq n$; if $z_{n} \in Z\left(R_{n}\right)^{*}$ then clearly z is adjacent to y and if $z_{i} \in Z\left(R_{i}\right)^{*}$ for $1 \leq i \leq n-1$ then clearly z is adjacent to x. Also x and y are not adjacent. So H^{\prime} is disjoint and H^{\prime} is maximal and hence $\alpha(A G(R))$ $=\left|U\left(R_{1}\right)\right|+\left|U\left(R_{1}\right)\right|\left|U\left(R_{2}\right)\right|+\ldots+\left|U\left(R_{1}\right)\right|\left|U\left(R_{2}\right)\right| \ldots\left|U\left(R_{n-1}\right)\right|+2$.

We now derive the following lemma which will be needed to find the clique number of $A G(R)$ graph in the next proposition.

Lemma 2.11. If R is a non-local ring with $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} are local rings, then any two distinct elements which has the same number of non-zero entries but not identical are adjacent in $A G(R)$.

Proof. Let $x, y \in Z(R)^{*}$ be non identical vertices having exactly i number of non-zero entries with $1 \leq i \leq n-1$. So there exist atleast one entry in x, say $j^{\text {th }}$ with $1 \leq j \leq n$, which is non-zero in x but zero in y. If $x y=0$ then clearly there exist an edge between x and y as ann $(x y)=R \neq$ $\operatorname{ann}(x) \cup \operatorname{ann}(y) \subseteq Z(R)$. So we assume that $x y \neq 0$. As total number of zero entries are equal in x and y, there exists another entry, say $k^{t h}$, which is zero in x but not in y where $1 \leq k \leq n$ and $k \neq j$. Then $x y$ has less number of non-zero entries than in x and y with $j^{t h}$ and $k^{t h}$ entry zero. Now we consider $z=(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$ with 1 in $j^{\text {th }}$ and $k^{\text {th }}$ entry and 0 in the remaining entries. Then $z \in \operatorname{ann}(x y)$ but $z \notin \operatorname{ann}(x) \cup \operatorname{ann}(y)$. This shows that $\operatorname{ann}(x y) \neq \operatorname{ann}(x) \cup \operatorname{ann}(y)$. Hence x is adjacent to y in $A G(R)$.

Proposition 2.12. If $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$, where each \mathbb{F}_{i}^{\prime} s are finite field, $\omega(A G(R))=\binom{n}{\frac{n}{2}}$ if n is odd or $\binom{n}{\frac{n}{2}}$ if n is even.

Proof. We'll prove it by induction on n. If $n=2$, then clearly $A G(R) \cong K_{m, n}$ which is a complete bipartite graph. Hence $\omega(A G(R))=2$. So result is true for $n=2$. Now let us assume that result hold for k less than n. Assume that $R \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$, where each \mathbb{F}_{i} 's are finite field. Let $R^{\prime} \cong \mathbb{F}_{1} \times \mathbb{F}_{2} \times$ $\cdots \times \mathbb{F}_{n-1}$. Then by induction hypothesis we have $\omega\left(A G\left(R^{\prime}\right)\right)=\binom{n-1}{\frac{n-1}{2}}$ if n is odd and $\binom{n-1}{\frac{n}{2}}$ if n is even. Let $S=\left\{\left(x_{1}, x_{2}, \ldots, x_{t}, 0, \ldots, 0\right),\left(x_{1}, x_{2}, \ldots, x_{t-1}, 0, x_{t+1}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, 0, x_{n-t}, \ldots, x_{n-1}, 0\right)\right\}$ be a set of vertices in $A G\left(R^{\prime}\right)$. Then clearly by lemma 2.11, S is a complete subgraph of $A G\left(R^{\prime}\right)$ and $|S|=\binom{n-1}{t}$ where $t=\frac{n}{2}$ when n is even and $\frac{n-1}{2}$ when n is odd. Hence S is a maximal complete subgraph of $A G\left(R^{\prime}\right)$. Now we extend S into S^{\prime} in $A G(R)$ by adding elements $x_{n} \in F_{n}^{*}$ in the $n^{\text {th }}$ co-ordinate of each element of S. Then S^{\prime} is also a complete subgraph of $A G(R)$ and $|S|=\left|S^{\prime}\right|=\binom{n-1}{t}$ where $t=\frac{n}{2}$ if n is even and $\frac{n-1}{2}$ if n is odd. Now we take T to be set of elements in $V\left(A G\left(R^{\prime}\right)\right)$ which has $t+1$ non-zero component entries. Then T is a complete subgraph of $A G\left(R^{\prime}\right)$. Again we extend T to T^{\prime} by adding zero element of \mathbb{F}_{n} in the $n^{\text {th }}$ coordinate of each element of T. Then T^{\prime} is a complete
subgraph of $A G(R)$ and $\left|T^{\prime}\right|=|T|=\binom{n-1}{t+1}$ where $t=\frac{n}{2}$ or $\frac{n-1}{2}$. Clearly T^{\prime} and S^{\prime} are disjoint sets, so $\left|T^{\prime} \cup S^{\prime}\right|=\left|T^{\prime}\right|+\left|S^{\prime}\right|=\binom{n-1}{t+1}+\binom{n-1}{t}=\binom{n}{t+1}$. Here $S^{\prime} \cup T^{\prime}$ is a complete subgraph of $A G(R)$. If $x \notin S^{\prime} \cup T^{\prime}$ then $\{x\} \cup S^{\prime} \cup T^{\prime}$ cannot be a complete subgraph of $A G(R)$. Since x has lesser or equal or greater number of zero entries than that of elements of $S^{\prime} \cup T^{\prime}$.
Case 1: Suppose that x has lesser number of zero entries than that of elements of $S^{\prime} \cup T^{\prime}$ then we take $y \in S^{\prime} \cup T^{\prime}$ such that y has exactly the same position of non zero entries in x but y has more zero entries, say $x=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}, 0, \ldots, 0\right), y=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, \ldots, 0\right)$. Then $\operatorname{ann}(x y)=\operatorname{ann}(y)$ and hence x cannot be adjacent to y.
Case 2: Suppose that x has lesser number of non-zero entries than that of elememts of $S^{\prime} \cup T^{\prime}$ then we take $y \in S^{\prime} \cup T^{\prime}$ such that y has exactly the same position of non zero entries in x but y has less number of zero entries, say $x=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, \ldots, 0\right), y=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, x_{k+1}, 0, \ldots, 0\right)$. Then clearly $\operatorname{ann}(x y)=\operatorname{ann}(x)$ and hence x cannot be adjacent to y. Hence in both cases $\{x\} \cup S^{\prime} \cup T^{\prime}$ cannot form a complete subgraph of $A G(R)$.
Case 3: If x has the same number of zero entries as that of elements of $S^{\prime} \cup T^{\prime}$ then there exists an element $y \in S^{\prime} \cup T^{\prime}$ such that x and y have the same position of zero entries, so $a n n(x y)=a n n(x)=$ $\operatorname{ann}(y)$ which shows that x cannot be adjacent to y. Hence $\{x\} \cup S^{\prime} \cup T^{\prime}$ cannot be a complete subgraph of $A G(R)$.

So in order that the set of $S^{\prime} \cup T^{\prime}$ form a complete subgraph with $\{x\}$ we have to removed the vertices from $S^{\prime} \cup T^{\prime}$ which are not adjacent to x and we rename that set to be H. Then $|H \cup\{x\}| \leq\binom{ n}{t+1}$. Similarly if we take $y \neq x \in Z(R)^{*}$ where x is adjacent to y then by similar argument we see that the complete subgraph formed by the set of vertices of $S^{\prime} \cup T^{\prime}$ with that of $\{x, y\}$ must be even smaller than $\binom{n}{t+1}$. Hence continuing in this way we see that the complete subgraph formed by the set of vertices of S^{\prime} and that with other vertex of $A G(R)$ must have cardinality less than $\binom{n}{t+1}$. Hence the set of vertices which can form a complete subgraph with S^{\prime} must have size same as that of T^{\prime}. Hence $\omega(A G(R))=$ $\binom{n}{\frac{n}{2}}$ or $\binom{n}{\frac{n}{2}}$.

For any ring $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ the above theorem is not true in general for if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{8}$ then $\omega(A G(R)) \neq 2$ but $\omega(A G(R))=6$.

Remark 2.13. If $R \cong R_{1} \times R_{2} \times \cdots \times R_{n} \times \mathbb{F}_{1} \times \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{n}$ where R_{i} are local ring not fields and \mathbb{F}_{i} are fields then $\omega(A G(R)) \geq \max \left\{\left|Z\left(R_{1}\right)^{*}\right|\left|R_{2}\right| \cdots\left|R_{n}\right|\left|\mathbb{F}_{1}\right| \cdots\left|\mathbb{F}_{n}\right|, \ldots,\left|R_{1}\right| \ldots .\left|R_{n-1}\right|\left|Z\left(R_{n}\right)^{*}\right|\left|\mathbb{F}_{1}\right| \cdots\left|\mathbb{F}_{n}\right|\right\}$

The corollary below follows from the above proposition and remarks.
Corollary 2.14. If $R \cong \mathbb{F} \times R^{\prime}$, where \mathbb{F} is a finite field and R^{\prime} is a finite local ring then $\omega(A G(R))=$ $|\mathbb{F}|\left|Z\left(R^{\prime}\right)^{*}\right|$.

The corollary follows from the following well known theorem.
Theorem 2.15. A connected graph G is an Eulerian graph iff all vertices of G are of even degrees.
Corollary 2.16. Let R be a finite local ring with $|R|=2^{m}$ for some $m \geq 3$ then $A G(R)$ is an Eulerian graph.

Now we show that $A G(R)$ is Hamiltonian if $R \cong A \times A$ where A is a finite local ring with identity .
Proposition 2.17. Let R be a finite ring such that $R \cong A \times A$ where A is a finite local ring with identity. Then $A G(R)$ is Hamiltonian.

Proof. First we consider A a local ring but not a field. Let us consider the sets $A^{*} \times 0,0 \times A^{*}$, $A \times Z(A)^{*}, Z(A)^{*} \times A$. Then any non-zero zero divisors of R must belong to either one of these sets. First we show that $Z(A)^{*} \times A$ or $A \times Z(A)^{*}$ is a complete subgraph of $A G(R)$. Let $x, y \in Z(A)^{*} \times A$ such that $x \neq y, x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. If $x_{1} \neq y_{1}$ then as A is a finite local ring so $\operatorname{ann}\left(x_{1} y_{1}\right) \neq \operatorname{ann}\left(x_{1}\right) \cup \operatorname{ann}\left(y_{1}\right)$ which shows that x is adjacent to y. If $x_{1}=y_{1}$ then $x_{1}^{2} \neq x_{1}$ as A is a finite local ring and $\operatorname{ann}\left(x_{1}^{2}\right) \neq \operatorname{ann}\left(x_{1}\right)$ as $\operatorname{Nil}(A)=Z(A)$. Hence x is adjacent to y. Therefore $Z(A)^{*} \times A$ and similarly $A \times Z(A)^{*}$ is a complete subgraph of $A G(R)$. As we can form a complete bipartite graph from the set of vertices $A^{*} \times 0$ and $0 \times A^{*}$, so there exist a path from $(0,1)$ to $(1,0)$ which passes through all the vertices of $A^{*} \times 0$ and $0 \times A^{*}$ exactly once and also connect $(1,0)$ to one vertex of $Z(A)^{*} \times(A \backslash Z(A)),(0,1)$ to one vertex of $(A \backslash Z(A)) \times Z(A)^{*}$ as $Z(A)^{*} \times Z(A)^{*}$ is a complete subgraph of $A G(R)$. So we get a cycle which passes through all the vertices of $A G(R)$ exactly once. Hence $A G(R)$ is a Hamiltonian graph. If A is a field then $A G(R) \cong \Gamma(R) \cong K_{|A|-1,|A|-1}$ which is clearly Hamiltonian.

3. Planarity of $A G(R)$

In this section we characterize the finite commutative rings whose annihilator graph $A G(R)$ is planar.
Theorem 3.1. (Kuratowski) A graph is planar if and only if it contain no sub-division heomomorphic to K_{5} or $K_{3,3}$.

Proposition 3.2. Let R be a non-local ring then $A G(R)$ is planar if R is isomorphic to one of the following ring $\mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{2} \times \mathbb{F}, \mathbb{Z}_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{3} \times \mathbb{F}$.

Proof. Case 1: If $R \cong R_{1} \times R_{2} \times \cdots . \times R_{n}$ and $n \geq 4$ then as $\Gamma(R)$ is non planar by S.Akbari et al. [3], $A G(R)$ is also non-planar.
Case 2: If $R \cong R_{1} \times R_{2} \times R_{3}$ where one of $\left|R_{i}\right|=4$, then $\Gamma(R)$ is non-planar by S. Akbari et al. [3] and so is $A G(R)$. So let $\left|R_{i}\right| \leq 3$ for $i=1,2,3$. If $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ then the subgraph formed by the vertices $\{(2,0,2),(1,2,0),(2,1,0),(2,2,0),(0,0,1),(0,0,2)\}$ contain $K_{3,3}$ and therefore $A G(R)$ is non planar. If $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}$ then the subgraph formed by the vertices $\{(1,2,0),(2,1,0),(1,1,0),(0,2,1),(0,1,1),(0,0,1)\}$, where $X=\{(1,2,0),(2,1,0),(1,1,0)\}$ and $Y=$ $\{(0,2,1),(0,1,1),(0,0,1)\}$, contain $K_{3,3}$ as a subgraph and therefore $A G(R)$ is non planar. If $R \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ then clearly $A G(R)$ is planar. If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ then the subgraph formed by the vertices $\{(0,1,0),(0,1,1),(0,1,2),(1,0,2),(1,0,1),(1,0,0)\}$, where $X=\{(0,1,0),(0,1,1),(0,1,2)\}$ and $Y=\{(1,0,2),(1,0,1),(1,0,0)\}$, contain $K_{3,3}$ as a subgraph and hence $A G(R)$ is non-planar.
Case 3: If $n=2$ then $R \cong R_{1} \times R_{2}$. If both $\left|R_{1}\right|$ and $\left|R_{2}\right|$ are not less than 4 then $K_{3,3}$ is a subgraph of $\Gamma(R)$ and so $A G(R)$ is non planar. So let atleast one of R_{i}, say $\left|R_{1}\right| \leq 3$. If R_{2} such that $\left|Z\left(R_{2}\right)^{*}\right|$
≥ 4 then K_{5} is a subgraph of $A G(R)$. Hence $A G(R)$ is non-planar. So $\left|Z\left(R_{2}\right)^{*}\right| \leq 3$.
SubCase 3.1: If $R_{1} \cong \mathbb{Z}_{2}$ and $\left|Z\left(R_{2}\right)^{*}\right| \leq 3$. When $\left|Z\left(R_{2}\right)^{*}\right|=3$ then $\Gamma\left(R_{2}\right) \cong K_{1,2}$ or K_{3}. If $\Gamma\left(R_{2}\right) \cong K_{1,2}$ then $R_{2} \cong \mathbb{Z}_{8}$ or $\mathbb{Z}_{2}[x] /\left(x^{3}\right)$ or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$. If $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{8}$ then $Z(R)=$ $\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,0),(1,2),(1,4),(1,6)\}$. Now let $X=\{(0,1),(0,3)$, $(0,5),(0,7)\}$ and $Y=\{(1,4),(1,2),(1,6)\}$. As $\operatorname{deg}_{\Gamma(R)}(x, y)=3$ for $x \in X$ and $y \in Y$, by [7, lemma 2.1(5)], $\operatorname{deg}_{A G(R)}(x, y)=1$ and so $K_{4,3}$ is a subgraph of $A G(R)$ showing that $A G(R)$ is non-planar. Similarly if $R \cong \mathbb{Z}_{2} \times\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right), Z\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right)\right)=\left\{(0,0),(0,1),(0, x),\left(0, x^{2}\right),(0,1+x),(0,1+\right.$ $\left.\left.x^{2}\right),\left(0, x+x^{2}\right),\left(0,1+x+x^{2}\right),(1,0),(1, x),\left(1, x^{2}\right),\left(1, x+x^{2}\right)\right\}$, then $K_{4,3}$ is a subgraph of $A G(R)$. Hence $A G\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{2}[x] /\left(x^{3}\right)\right)\right)$ is non-planar. Now if $R \cong \mathbb{Z}_{2} \times\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)$ then $Z\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-\right.\right.\right.$ $2))$) $=\{(0,0),(0,1),(0,2),(0,3),(0, x),(0,1+x),(0,2+x),(0,3+x),(1,0),(1, x),(1,2),(1,2+x)\}$. Now let $X=\{(0,1),(0,3),(0,1+x),(0,3+x)\}$, and $Y=\{(1, x+2),(1,2),(1, x),(1,0)\}$. As for $x \in X$ and $y \in Y \operatorname{deg}_{\Gamma(R)}(x, y)=3, \operatorname{deg}_{A G(R)}(x, y)=1$ so $K_{4,4}$ is a subgraph of $A G\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)\right)$. Hence $A G\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)\right)\right)$ is non-planar.

If R_{2} is such that $Z\left(R_{2}\right)=\{0, x, y, z\}$ and $x y=y z=x z=0$ then $K_{3,3}$ is a subgraph of $A G(R)$. Hence $A G(R)$ is non-planar. We consider $\left|Z\left(R_{2}\right)\right| \leq 3$.

If $\left|Z\left(R_{2}\right)^{*}\right|=2$ then $R_{2} \cong \mathbb{Z}_{9}$ or $\mathbb{Z}_{3}[x] /\left(x^{2}\right), Z\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right)=\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)$, $(0,7),(0,8),(1,0),(1,3),(1,6)\}$. Now let $X=\{(0,1),(0,2),(0,4),(0,5),(0,7)\}$, then $Y=\{(1,0),(1,3)$, $(1,6)\}$. As $d e g_{\Gamma(R)}(x, y)=3$ for $x \in X$ and $y \in Y$, by [7, lemma 2.1(5)] $\operatorname{deg}_{A G(R)}(x, y)=1$ so $K_{6,3}$ is a subgraph of $\left.A G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right)\right)$. Hence $A G(R)$ is non-planar. Similarly for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}[x] /\left(x^{2}\right), A G(R)$ is non-planar.

If $\left|Z\left(R_{2}\right)^{*}\right|=1$ then $R_{2} \cong \mathbb{Z}_{4}$ or $R_{2} \cong \mathbb{Z}_{2}[x] /\left(x^{2}\right)$ and $A G(R)$ is clearly planar.
If $\left|Z\left(R_{2}\right)^{*}\right|=0$ then R_{2} is a field or an infinite integral domain and clearly $A G\left(\mathbb{Z}_{2} \times R_{2}\right) \cong K_{1, n}$ or $K_{1, \infty}$ and so $A G(R)$ is planar.
SubCase 3.2: Consider $R_{1} \cong \mathbb{Z}_{3}$. If $\left|Z\left(R_{2}\right)^{*}\right|=3$, then by subcase $3.1 \Gamma\left(R_{2}\right) \cong K_{1,2}$ or K_{3}. In both the cases as $A G\left(\mathbb{Z}_{2} \times R_{2}\right)$ is a subgraph of $A G\left(\mathbb{Z}_{3} \times R_{2}\right), A G\left(\mathbb{Z}_{3} \times R_{2}\right)$ is non-planar. If $\left|Z\left(R_{2}\right)^{*}\right|=2$, $R_{2} \cong \mathbb{Z}_{9}$ or $R_{2} \cong \mathbb{Z}_{3}[x] /\left(x^{2}\right)$, as $A G\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right)$ is a subgraph of $A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9}\right)$, $A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{9}\right)$ is nonplanar. Similarly, $A G\left(\mathbb{Z}_{3} \times\left(\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right)\right)$ is non-planar as $A G\left(\mathbb{Z}_{2} \times\left(\mathbb{Z}_{3}[x] /\left(x^{2}\right)\right)\right)$ is a subgraph. If $\left|Z\left(R_{2}\right)^{*}\right|=1$ then $R_{2} \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[x] /\left(x^{2}\right)$. If $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}, Z\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)=\{(0,0),(0,1),(0,2),(0,3)$, $(1,0),(1,2),(2,0),(2,2)\}$. Then clearly $A G\left(\mathbb{Z}_{3} \times \mathbb{Z}_{4}\right)$ is planar and similarly for $\mathbb{Z}_{3} \times\left(\mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)$, $A G\left(\mathbb{Z}_{3} \times\left(\mathbb{Z}_{2}[x] /\left(x^{2}\right)\right)\right)$ is planar. If $\left|Z\left(R_{2}\right)^{*}\right|=0$ then R_{2} is either a field or integral domain. $A G\left(\mathbb{Z}_{2} \times R_{2}\right) \cong K_{2, n-1}$ or $K_{2, \infty}$ if R_{2} is a field, otherwise it is a doubled star graph. In both the cases $A G(R)$ is planar.

Proposition 3.3. If R is a local ring such that $A G(R)$ is planar then R is isomorphic to one of the following $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right), \mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x, y] /\left(x y, y^{2}-x\right), \mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{Z}_{25}$, $\mathbb{Z}_{5}[x] /\left(x^{2}\right)$.

Proof. If R is a local ring such that $\left|Z(R)^{*}\right| \geq 5$ then we have $A G(R)$ is a non-planar graph as K_{5} is a subgraph of $A G(R)$. Therefore for a local ring $R, A G(R)$ is planar if and only if $1 \leq\left|Z(R)^{*}\right| \leq$
4. So the local ring for which $A G(R)$ is planar are the following: $\mathbb{Z}_{4}, \mathbb{Z}_{2}[x] /\left(x^{2}\right), \mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$, $\mathbb{Z}_{2}[x, y] /(x, y)^{2}, \mathbb{Z}_{2}[x, y] /\left(x y, y^{2}-x\right), \mathbb{Z}_{9}, \mathbb{Z}_{3}[x] /\left(x^{2}\right), \mathbb{Z}_{25}, \mathbb{Z}_{5}[x] /\left(x^{2}\right)$.

Acknowledgments

The authors wish to thank the referee for careful reading the article and many useful comments.

References

[1] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO,1999), Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001 61-72.
[2] D. F. Anderson and P. S. Livingston, The Zero-divisor graph of a commutative ring, J. Algebra, 217 no. 2 (1999) 434-447.
[3] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra, 270 no. 1 (2003) 169-180.
[4] M. F. Aitiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.
[5] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J.Algebra, 274 no. 2 (2004) 847-855.
[6] M. Axtell, J. Stickles and W. Trampbachls, Zero-divisor ideals and realizable zero-divisor graphs, Involve, 2 no. 1 (2009) 17-27.
[7] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 no. 1 (2014) 108-121.
[8] I. Beck, Coloring of commutative rings, J. Algebra, 116 no. 1 (1998) 208-226.
[9] T. T. Chelvam and T. Asir, Domination in the Total Graph on \mathbb{Z}_{n}, Discrete Math. Algorithms Appl., 3 no. 4 (2011) 413-421.
[10] D. A. Mojdeh and A. M. Rahimi, Dominating Sets of Some Graphs Associated to Commutative Rings, Comm. Algebra, 40 no. 9 (2012) 3389-3396.

Sanghita Dutta

Department of Mathematics, North Eastern Hill University, Shillong - 793022, India
Email: sanghita22@gmail.com

Chanlemki Lanong

Department of Mathematics, North Eastern Hill University, Shillong - 793022, India
Email: lanongc@gmail.com

[^0]: MSC(2010): Primary: 05C69; Secondary: 13H05.
 Keywords: Annihilator, Clique number, Domination Number.
 Received: 02 July 2015, Accepted: 16 February 2016.
 *Corresponding author.

