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Abstract. Feature extraction is one of the core problems in condition monitoring and fault 
diagnosis of mechanical equipment. In this study, an OMP-NWE method of feature extraction is 
proposed, aiming at the problem of low accuracy of existing feature extraction method. The 
OMP-NWE method integrates the strengths of orthogonal matching pursuit (OMP) algorithm with 
the benefits of nonparametric waveform estimation (NWE). Signal feature extraction model is 
constructed by design of filter bank and adaptive template signal. Then the vibration signal is 
linearly decomposed into a set of best matching waveform, which solves the problem that the basis 
function must be chosen in advance in OMP algorithm. The OMP-NWE method is applied to the 
feature extraction of the simulation and experimental vibration signal of rolling bearing, compared 
with the traditional OMP algorithm. Results show that the SNR of the extracted feature signal 
using OMP-NWE method increased by 19.22 % compared with that using the OMP method, 
which illustrates that OMP-NWE method has a higher accuracy in the feature extraction of 
unknown complex vibration signals. This work provides a new idea and a successful example for 
the feature extraction of vibration signal in the condition monitoring and fault diagnosis of 
mechanical equipment. 
Keywords: vibration signal, feature extraction, orthogonal matching pursuit, nonparametric 
waveform estimation. 

1. Introduction 

In the condition monitoring and fault diagnosis of mechanical equipment, how to accurately 
extract the feature signal from the complex vibration signals is one of the key problems [1, 2]. In 
the acquisition process of vibration signals, a variety of symbiotic factors such as noise and signal 
modulation caused the redundant information. Therefore, the feature components of mechanical 
fault are often sparse in the whole vibration signal (or in certain transform domain). In other words, 
the feature extraction of vibration signal in equipment condition monitoring and fault diagnosis 
essentially is a redundancy compression process of information. Based on this, the sparse 
decomposition algorithms, which can accurately characterized and extracted different components 
and details of the signal, have become a new research hotspot in the feature extraction of vibration 
signal [3]. 

Mota et al. proposed a distributed algorithm, Basis Pursuit algorithm for solving the 
optimization problem, which is a decentralized implementation of the alternating direction method 
of multipliers [4]. He and Ding put forward an iterative transient feature extraction approach based 
on time-frequency domain sparse representation to extract the transients from the bearing 
vibration or acoustic signals [5]. Cui et al. studied an adaptive matching pursuit algorithm that 
uses an impulse dictionary for rolling bearing vibration signal processing and fault diagnosis [6]. 
He et al. divided the fault signal into segments and the matching pursuit algorithm was carried out 
by segments, so that the fault feature was extracted successfully [7].  

Compared to above signal sparse decomposition algorithms, OMP algorithm [8] can find the 
global optimal solution [9, 10]. Schiavazzi et al. proposed a novel nonintrusive, i.e., sampling-
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based, framework for approximating stochastic solutions of interest admitting sparse 
multiresolution expansions, which was applied to quantifying the efficiency of a passive vibration 
control system operating under uncertainty [11]. Li and Varshney studied micro-doppler 
parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit 
[12]. Wang et al. detected fault features from a small number of samples based on orthogonal 
matching pursuit approach, which can overcome the shortcomings of the multiple down-sample 
algorithm [13]. 

Anyway, OMP method although has the optimal iteration to obtain favourable matching  
results, the priori knowledge of the vibration signal must be known in advance. In another words, 
we must design different basis function with different characteristic according to the compositions 
of original signal, in order to construct reasonable over-complete dictionary of atoms, so that the 
sparse decomposition results can preferably meet the requirements of the feature signal [14]. 
When OMP method is applied to the condition monitoring and fault diagnosis of mechanical 
equipment, in order to describe the time-varying characteristics of nonstationary vibration signals, 
the atoms of over-complete dictionary must preserve superb time-frequency concentration, 
namely in the time and frequency domain both have good resolution [15]. As a matter of fact, this 
is very  
difficult. Previous studies have mainly focused on the existing analytical dictionary, which cannot 
satisfy the requirements of high precision in the characterization of the internal components of the 
fault signal, noise reduction and weak feature extraction [16]. 

Therefore, in the current work we aimed to propose a new feature extraction method to 
overcome the shortcoming of OMP algorithm that the basis function must be chosen in advance, 
which can more accurately extract the feature of complex vibration signal. The main objectives of 
this study were four folds: (1) to establish the model of OMP-NWE method by introducing the 
NWE methods; (2) to design the adaptive template signal and the filter banks to make the extracted 
feature waveform have the characteristics of physical interpretation and can adjust the shape and 
position; (3) to design the efficient algorithm of OMP-NWE method to realize the feature 
extraction of vibration signal; (4) to validate OMP-NWE method through the simulation and 
engineering experiment. 

2. Materials and methods 

2.1. Principle of orthogonal matching pursuit 

The basic principle of OMP algorithm is to form an over-complete dictionary of atoms using 
different basis functions with different feature waveforms. Through the gradual iteration, the best 
atom is selected to match the waveform of vibration signal. In order to ensure the best direction 
and global optimal solution in each iteration, the selected atoms must be orthogonal. Then the 
signal is projected in the space composed by the processed atoms to obtain the component and 
residual component on the selected atom. The global optimal solution can be found by ensuring 
that the residual signals are orthogonal to all the selected atoms. OMP is an iterative greedy 
algorithm, and its basic process is as follows [18]: ܪ  is Hilbert space, ܦ = {݃௥(ݐ)}௥∈୻ ܦ , ⊂ ܪ  is the over-complete dictionary for sparse 
decomposition. Γ is the parameter set, ݃௥  is the atom defined by parameter ݎ, and ‖݃௥‖ = 1. 
Assuming the signal to be decomposed is ݂ , ݂ ∈ ݂ ,ܦ by orthogonal projection in ,ܪ  can be 
decomposed as: ݂ = ൻܴ଴݂, ݃௥బൿ݃௥బ + ܴଵ݂, (1)

where ݃௥బ ∈  .ଵ݂ is the residual signal of the approximation of ݂ at ݃௥బ directionܴ ,ܦ
Obviously, ܴଵ݂ and ݃௥బ are orthogonal. So, we can obtain: 
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‖݂‖ଶ = ห〈݂, ݃௥బ〉ห݃௥బ + ܴଵ݂. (2)

In order to make the residual signal ܴଵ݂ as little as possible, the selected optimal vector ݃௥బ 
should satisfy with: ห〈݂, ݃௥బ〉ห = max௥∈୻ഀ|〈݂, ݃௥〉| ≥ ߙ sup௥∈୻ഀ|〈݂, ݃௥〉|, (3)

where Γ௔ is parameter set and Γ௔ ∈ Γ, ߙ is optimal factor which meets 0 < ߙ < 1. Using the same 
method ܴଵ݂ can be continually approximated. 

In the iterative process of the matching pursuit algorithm, the best matched atom ݃௥೙ and the 
previously matched atom are not orthogonal. Therefore, when the projection of the approximation 
error ܴ௡݂  on atom ݃௥೙  is calculated, a new component will be generated along the direction {݃௥ೖ}଴ஸ௞ஸ௡. 

In order to avoid the non-orthogonal projection and over-matched phenomenon, OMP adopted 
Gram-Schmidt orthogonalization procedure to guarantee that best matched atoms of every 
selection in each iteration are orthogonal to the previous best matched atoms. Let be ݑ଴ = ݃௥బ, we 
can select the best matched atom ݃௥೙ in accordance with Eq. (3), then the atom can be orthogonal 
to the obtained atom. The equation is as follows: 

௡ݑ = ݃௥೙ − ෍ ห〈݃௥೙, ௡‖ଶ௡ିଵݑ‖௞〉หݑ
௞ୀ଴ ௞. (4)ݑ

The approximation error is redefined as: 

ܴ௡ାଵ݂ = ܴ௡݂ − |〈ܴ௡݂, ௡‖ଶݑ‖|〈௡ݑ ௡. (5)ݑ

In this case the residual signal ܴ௡݂  is the orthogonal projection in the space, whose 
complement space is composed of {݃௥ೖ}଴ஸ௞ஸ௡. From Eq. (4), we can obtain: ܴۦ௡݂, ௡ۧݑ = ൻܴ௡݂, ݃௥೙ൿ. (6)

Then we can deduce: 

ܴ௡ାଵ݂ = ܴ௡݂ − ห〈ܴ௡݂, ݃௥೙〉ห‖ݑ௡‖ଶ ௡. (7)ݑ

As ܴ௡݂ and ݑ௡ are orthogonal, Eq. (8) can be derived: 

‖ܴ௡ାଵ݂‖ଶ = ‖ܴ௡݂‖ଶ − ห〈ܴ௡݂, ݃௥೙〉หଶ‖ݑ௡‖ଶ . (8)

If ܴ௡݂ ≠ 0, and ห〈ܴ௡݂, ݃௥೙〉ห ≠ 0 , ܴ௡݂  and all the atoms that are selected previously are 
orthogonal, then all the vectors of {݃௥ೖ}଴ஸ௞ஸ௡ are linearly independent with each other. Thus, we 
can deduce: 

݂ = ෍ ห〈ܴ௡݂, ݃௥೙〉ห‖ݑ௡‖ଶ௠ିଵ
௡ୀ଴ ௡ݑ + ܴ௠݂. (9)
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2.2. Model of OMP-NWE method  

Suppose that the vibration signal ݕ(݈) is composed of the feature signal ݏ(݈) and the noise  ݒ(݈), which is expressed as: 

(݈)ݕ = ෍ (݈)௜ݏ + ݈     ,(݈)ݒ = 1, … , ௠ܮ
௜ୀଵ . (10)

Because the compositions of ݏ(݈) are not clearly known, it is difficult to extract the feature 
signal directly using OMP algorithm. Therefore, we propose a novel feature extraction method in 
this paper, as shown in Fig. 1. The basic procedure is as following: first of all by choosing the 
proper filter bank and template signal, the template signal is adaptively adjusted in the iteration of 
OMP. Then the optimal estimation ݏపෝ(݈) of the signal feature components ݏ௜(݈) (݅ = 1, … ,  is (ܮ
calculated by using the nonparametric waveform estimation method. Then update the signal 
residue and further find out the optimal estimation according to the OMP principle. Repeat this 
procedure until the energy of the signal residue has met the requirements. 

 
Fig. 1. Model of OMP-NWE method 

The basis function isn’t taken into account in the proposed method, but in order to accurately 
extract the feature of the signal, it is necessary to select the appropriate filter bank and the template 
signal. Filter bank should be selected to ensure that the frequency response of each sub filter does 
not overlap. Therefore, the frequency response ܪ௜(݂) of sub filter should meet the request as 
following: 

อ෍ ௜(݂)௅ܪ
௜ୀଵ อ = 1. (11)

Ideal template signal ݔ should contain all the components of the vibration signal y, otherwise 
the solved results maybe not fit the real cases to a great extent. In the engineering practice the 
waveform of vibration signal is not clearly known, so it is difficult to design an appropriate 
template signal. In this paper, a reasonable method of selecting the template signal is given, that 
is, a recursive algorithm is introduced in each iteration of OMP. According to Eq. (12), the 
template signal is adaptively adjusted: 

(݈)௠ݔ = (݈)௠ିଵݔߚ + (1 − (ߚ ൥ݕ(݈) − ෍ పෝ(݈)௠ିଵݏ
௜ୀଵ ൩. (12)

In Eq. (12), compensation factor ߚ < ݉ ௠ିଵ(݈) is the template signal in theݔ ,1 − 1 times 
iteration, and ݔ௠(݈) is the template signal in the ݉ times iteration. In order to improve the SNR 
of the template signal, the output with larger energy in the filter bank is usually chosen as the basis 
function by Eq. (13) [19]: 

min ቊ∑ ∑௜௜∈ூܧ ௜௅௜ୀଵܧ ቋ ≥ (13) .ߣ
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2.3. Algorithm design 

After determining the template signal and filter bank, the specific algorithm steps to extract 
the signal feature are shown in Fig. 2: 

(1) Set the initial value: signal residue ܴ଴ݕ = ݕ , arbitrarily select a simple function as a 
template signal. 

(2) Repeat step (3) to step (5) until the termination condition ‖ܴ௞ݕ‖ଶ < ݁ has been met, where ݁ is the predetermined threshold and ܴ௞ݕ = ܴ௞ିଵݕ − ∑ (ܴ௞ିଵݕ, ݁௜)݁௜௞௜ୀଵ . 
(3) Calculate Eq. (12) by using the adaptive template signal to update the template signal ݔ௠. 
(4) Calculate the optimal estimation ̂ݏ௠(݊) using NEW method. That is to say the vibration 

signal y and the template signal ݔ are transformed in the same filter bank, then they are matched 
according to the principle of minimum mean squared error. Finally, the optimal estimation ̂ݏ௠(݊) 
is obtained by the linear superposition of every optimal estimation ݏపෝ [20]. 

(5) Update the signal residue ܴ௞ିଵݕ = ܴ௞ݕ − ∑ (ܴ௞ିଵݕ, ݁௜)݁௜௞௜ୀଵ . 

 
Fig. 2. Algorithm flow chart 

2.4. Simulation and engineering verification 

2.4.1. Simulation verification 

Because of the structure characteristics and working principle of the rolling bearing, the early 
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failure is often local pitting of some parts. When the moving parts contact with the position of the 
local pitting, the impact force will be produced. The periodic impact attenuation signal is the 
typical vibration signal of fault bearing. In addition, improper installation will lead to 
misalignment or unbalance of bearing, and then the bearing will produce an additional incentive 
in operation which will cause strong vibration. The vibration is a periodic sinusoidal signal that is 
also a typical characteristic of fault bearing. 

Therefore, in the condition monitoring and fault diagnosis of rolling bearing, the most common 
vibration signal of rolling bearing fault is composed of fundamental frequency signal, harmonic 
signal, the impact attenuation signal and noise. The waveform of fundamental frequency is the 
same as sinusoidal and cosine wave; harmonic frequencies are integer multiples of the 
fundamental frequency, also similar to the sinusoidal and cosine signals; impact attenuation 
signals are similar to an exponential decay signals; the noise of the vibration signal is approximate 
to white noise. So, the simulation signal is consisted of the sinusoidal and cosine signals with 
different frequencies, exponential decay signals and white noise, which is expressed as: (ݐ)ݕ = ଵ݁ି௣భ(௧ି௧భ)ܣ sin(2ߨ ଵ݂ݐ + ߮ଵ) + ଶ݁ି௣మ(௧ି௧మ)ܣ cos(2ߨ ଶ݂ݐ + ߮ଶ)      +ܣଷ sin(2ߨ ଷ݂ݐ + ߮ଷ) + ସܣ cos(2ߨ ସ݂ݐ + ߮ସ) +  ,(ݐ)ݒ
where ܣଵ = ଵ݌ ,12  =  10, ଵ݂ =  10.5 Hz, ݐଵ =  0.1, ߮ଵ = 4/ߨ3 ଶܣ , ଶ݌ ,8 = =  5, ଶ݂ =  15 Hz,  ݐଶ = 0.5, ߮ଵ = ଷܣ ,8/ߨ3 = 15, ଷ݂ = 20.5 Hz, ߮ଷ = ସܣ ,4/ߨ = 1, ସ݂ = 30 Hz, ߮ସ =  .4/ߨ5

The sampling interval is ܶ = 0.01 s, (ݐ)ݒ is Gauss white noise with a mean value of 0 and a 
variance of 1. The time domain of simulation signal is shown in Fig. 3. From the waveform it can 
be found that the impact attenuation signal and the sinusoidal and cosine signal are aliasing 
together. It is difficult to accurately extract the feature signal using the general method. 

 
Fig. 3. The time domain of simulation signal  

2.4.2. Engineering verification 

In order to verify the feature extraction effect of the proposed OMP-NEW method, an 
experiment table of rotor vibration was built, including the experimental bearing NSK#1302 (the 
detailed parameters are shown in Table 1), spindle, bearing seat, inverter motor, frequency 
converter and vibration sensor, shown in Fig. 4. 

The eddy current displacement sensor (YXS-DWA) was selected to collect vibration signals 
caused by bearing failure, because of its wide linear range, the strong anti-interference ability, 
wide dynamic range, and less requirement on the installation position. Detailed performance 
parameters of the sensor are shown in Table 2. In the experiment, the rotation of rotor was driven 
by inverter motor. Frequency converter can control the speed of the inverter motor. Experimental 
bearings with the faults of pitting and unbalance were installed on the motor drive end of the rotor. 
Eddy current displacement sensor was installed on the bearing seat to collect the change of radial 
displacement of the bearing during the rotor rotation, which reflects the change of the relative 
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clearance caused by the bearing fault. 

  
Fig. 4. Experiment table of rotor vibration 

Table 1. Bearing parameters 

Type Numbers of rolling 
element 

Diameter of rolling 
element 

Pitch 
diameter 

Contact 
angle 

NSK#1302 10 6.2 27.5 9° 

Table 2. Parameters of the displacement sensor  
Type Range (mm) Nonlinear (% FS) Frequency response (KHz) Power (V)  

YXS-DWA 0-5 1.5 0-10 ±12 

In the experiment the rotor speed was 2000 r/min, the sampling period was 0.01 s, sampling 
points of a period was 512, the time domain of experiment signal was shown in Fig. 5. 

 
Fig. 5. The time domain of experiment signal  

3. Results and discussions 

3.1. Simulation verification 

In order to verify the accuracy of the OMP-NWE method proposed in this paper, OMP method 
and the proposed method are respectively used to extract the features of the simulation signals. 
The results are shown in Fig. 6. 

Fig. 6(a) and (b) have shown that the matched signal for the first time is the impact attenuation 
signal when the vibration of rolling bearing is abnormal. It is different from the template signals. 
The signal waveform extracted by OMP-NWE method is obviously smoother than that extracted 
by OMP. Furthermore, the amplitudes of the signal are almost the same. Thereby the waveform 
extracted by OMP-NWE method can better embody the signal characteristics. 

From Fig. 6(c) and (d), it can be seen that the matched signal for the second time is the 
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sinusoidal signal, which is the fundamental frequency vibration signal of the rolling bearing. It 
has the same characteristics as the original template signal. The signal extracted by OMP has 
serious distortion due to the noise, shown in Fig. 6(c), while the extraction waveform using 
OMP-NWE method is smoother, shown in Fig. 6(d). The result indicates that OMP-NWE method 
is good at restraining the distortion of the signal and can better representation the signal 
characteristics. 

 
Fig. 6. Time-domain graph of feature extraction of the simulation signal, a) matched with OMP for the first 

time; b) matched with OMP-NWE method for the first time; c) matched with OMP for the second time;  
d) matched with OMP-NWE method for the second time 

With the purpose of comparing the results of two methods more specifically, the SNR was 
introduced to evaluate the extraction effect of the signal. The results are shown in Table 3. 

It can be obtained from the simulation results, the highest SNR of the feature signal extracted 
by OMP is 14.9783; while it extracted by OMP-NWE method is 17.8573. The SNR increased by 
19.22 %. That is to say even though the initial values of selected template signal are not similar to 
the signal characteristics, the feature waveform still can be extracted by OMP-NWE method, and 
the extraction accuracy is better than that of OMP method.  

Table 3. Comparison of simulation results 

Feature extraction of simulation signal SNR 
OMP method OMP-NWE method 

Matched signal for the first time 13.5935 16.1368 
Matched signal for the second time 14.9783 17.8573 

3.2. Engineering verification 

3.2.1. Results of feature extraction 

Using OMP and OMP-NWE method in this paper, the feature extraction results of the 
experimental signal are shown in Fig. 7. 

Fig. 7(a) and (b) have shown the time domain graphs of the experimental signal for the first 
feature extraction. The matched signal of feature extraction is the impact attenuation signal caused 
by the abnormal vibration of rolling bearing, which is different from the characteristics of the 
preliminary template signal. The signal extracted by OMP jitter due to the superposition of noise 
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signal, shown in Fig. 7(a), while the impact attenuation component of the vibration signal 
extracted by OMP-NWE method is significantly enhanced, which effectively suppresses the 
influence of the inherent component in the original signal, shown in Fig. 7(b).  

Fig. 7(c) and (d) have shown the time domain graphs of the experimental signals for the second 
feature extraction. As can be seen from the experimental results, the matched signal of feature 
extraction is the fundamental frequency sinusoidal signal, which has the same characteristics as 
the original template signal. In Fig. 7(c) the feature signal extracted by OMP has a deviation with 
the real signal, and the effect of de-noising is not very obvious; instead in Fig. 7(d) the extraction 
waveforms in OMP-NWE method is smoother than that in OMP method, which can further 
reserve the characteristic signal and restrain the distortion of the signal.  

 
Fig. 7. Time-domain graph of feature extraction of the experimental signal, a) matched with OMP for the 

first time; b) matched with OMP-NWE method for the first time; c) matched with OMP for the second 
time; d) matched with OMP-NWE method for the second time 

Compared the SNR of extracted signal in Table 4, the highest SNR of the feature signal 
extracted by OMP is 14.2582; while it extracted by OMP-NWE method is 16.9965. The SNR 
increased by 19.21 %, which reflected the superiority of the proposed method. 

Table 4. Comparison of experimental results 

Feature extraction of experimental signal  SNR 
OMP method proposed method 

Matched signal for the first time 12.8379 15.9586 
Matched signal for the second time 14.2582 16.9965 

In order to further verify the convergence efficiency of OMP-NWE method, 20 sets of 
vibration signal of bearing were random independently collected by the experiment table of rotor 
vibration described in 2.4.2 Engineering verification. The bearing with the unbalance fault was 
selected in the experiment. The feature signal of unbalance vibration was the sinusoidal signal. So, 
the sinusoidal components of the vibration signal were extracted using the two methods in this 
study. The 20 sets of experiments were independent, thus the two different iteration methods were 
used to extract the feature signal. The iterations of OMP-NWE method and the traditional OMP 
method were compared. 
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The results are shown in Fig. 8. It can be obtained that in 20 sets of experiments, the iterations 
of OMP-NWE method was no more than 1000 times, while that of OMP method was about 
3500 times. So, the iterations of proposed method reduced greatly than that of OMP, and the 
efficiency of OMP-NWE method was significantly improved. 

 
Fig. 8. Iterations of 20 experiments 

3.2.2. Results of fault diagnosis 

To further validate the applicability of OMP-NWE method in mechanical fault diagnosis, the 
bearing with the unbalance fault is selected in the experiment. The fault was produced by randomly 
adding the mass unbalance on the inner ring or outer ring of the bearing. The vibration signal of 
outer ring fault, inner ring fault and normal state were respectively measured, the rotor speed was 
1800 rpm/min in the experiment, the sampling frequency was 4096 Hz, a period of sampling points ܰ was 136. OMP-NEW method was used in the feature extraction of vibration signals, and the 
results were shown in Figure 9. 

 
Fig. 9. Time-domain graph for bearing fault diagnosis, a) normal bearing;  

b) unbalance fault of inner ring; c) unbalance fault of outer ring 

Fig. 9(a) is the time domain waveform of feature signals of the rolling bearing in a normal 
mode. It is approximately sinusoidal signal, whose frequency is equal to rotational frequency and 
amplitude is stable. Fig. 9(b) and (c) are the time domain waveforms of the feature signals with 
inner or outer ring fault. As can be seen that when the rolling bearing is failure, the impact 
interference signal and normal vibration signal are superimposed, which leads to the fluctuations 
in the time domain waveform. In addition, the fluctuation in fault signal of outer ring is greater 
than that of the inner ring. These results are accordance with the actual fault condition, which 
shows that OMP-NWE method is feasible for the fault diagnosis of mechanical equipment. 

For the sake of expressing the fault feature more directly, we defined the concept of periodic 
energy in this paper. Taking the sampling points of one period of vibration signal as the standard, 
the vibration signal is intercepted, and then the energy of the interception signal can be calculated. 
That energy is the so-called periodic energy. Suppose the vibration signal is {ݔ௞} (݇ = 1,2, … , ݊), 
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the sampling frequency is ௦݂, the rotation speed of the rotor is ௥ܸ.  
The periodic energy of vibration signal can be expressed as: 

௠ܧ = ෍ ݉)     ,௜|ଶݔ| = 1,2, … , ݊)ே௠ஸ௡௜ୀே(௠ିଵ)ାଵ , (14)

where ݉ is the ݉th period and ܰ is number of sampling points of one period. 
After the sliding average processing, the periodic energy is normalized within the range of 0-1: 

௠തതതതܧ = ௠ቒܧ maxଵஸ௠ஸ௡(ܧ௠)ቓ ,     ݉ = 1,2, … , ݊. (15)

Because the normalized periodic energy of different fault signal is in different range, the type 
of bearing fault can be identified according to the different range more conveniently. 

In above experiment, using a period sampling point ܰ = 136 as the standard, the feature 
signals of outer ring fault, inner ring fault and normal mode extracted by OMP-NWE method were 
intercepted into the 50 sections. By Eq. (15), the normalized period energy of signal with inner 
ring fault, outer ring fault and the normal state all can be calculated. The results with periods as 
abscissa against the periodic energy of three feature signals as ordinate are shown in Fig. 10. 

 
Fig. 10. Normalized periodic energy of rolling bearing vibration signal, a) normal bearing;  

b) inner ring fault; c) outer ring fault 

In Fig. 9(a) it can be seen that the normalized periodic energy of the normal rolling bearing is 
in the range of 0.38-0.43. Because the vibration signal of normal bearings is relatively stable, the 
periodic energy is relatively stable, and then the variation range of the normalized periodic energy 
is not large. Fig. 9(b) indicates that the range of the normalized periodic energy of the rolling 
bearing with the inner ring fault is 0.65-0.75, which is due to the instability of the inner ring fault 
signal; Fig. 9(c) shows that the normalized periodic energy of the rolling bearing with outer ring 
fault is in the range of 0.85-0.95, which illustrates that the periodic energy of the outer ring fault 
signal is maximum, and the fluctuation is more obvious. Therefore, it is proved that the fault 
diagnosis is feasible according to the range of normalized periodic energy of feature signal, which 
is extracted by the OMP-NEW method. 

For the sake of further verifying the reliability of OMP-NWE method, aiming at rolling bearing 
unbalance fault, 10 groups of vibration signals of bearing in three states were respectively 
collected to extract the feature signal using the proposed OMP-NEW method, and then normalized 
periodic energy was calculated. The results are shown in Table 5. 

From Table 5 it can be seen that using the proposed OMP-NWE method to identify the three 
state of rolling bearings, the accurate rate for diagnosis of normal state and inner ring fault was 
100 %, of outer ring faults was 90 %. The only wrong diagnosis result is the 30th group  
experiment, as the actual fault is out ring unbalance, while the diagnosis result is inner ring fault. 
The average accuracy rate is 96.7 %, which verify the reliability of OMP-NWE method. 
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Table 5. Identification results of unbalance fault  
ID State Normalized periodic energy Diagnosis result Error rate 
1 

Normal 

0.412 

Normal  0 % 

2 0.425 
3 0.395 
4 0.415 
5 0.405 
6 0.418 
7 0.398 
8 0.394 
9 0.408 
10 0.385 
11 

Inner ring fault 

0.750 

Inner ring fault 0 % 

12 0.685 
13 0.745 
14 0.690 
15 0.736 
16 0.655 
17 0.713 
18 0.675 
19 0.690 
20 0.725 
21 

Outer ring fault 

0.915 

Outer ring fault 10 % 

22 0.945 
23 0.860 
24 0.875 
25 0.935 
26 0.940 
27 0.883 
28 0.895 
29 0.905 
30 0.745 Inner ring fault 

4. Conclusions 

The feature extraction of vibration signal is one of the key problems in the condition 
monitoring and fault diagnosis of mechanical equipment. A new feature extraction method, 
OMP-NWE method was proposed in our study. The recursive algorithm was adopted to adaptively 
adjust the template signal, without any prior knowledge about the signal to know. It is very suitable 
for the feature extraction of uncertain vibration signal. Simulation and experimental results 
indicated that OMP-NWE method had a higher accuracy in feature extraction than OMP method. 
In particular, when the noise and signal frequency band overlap, the feature signal also can be 
effectively extracted using this method, which has good application prospect in condition 
monitoring and fault diagnosis of mechanical equipment. 
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