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Background: Overexpression of epidermal growth factor receptor (EGFR) has been
reported to be implicated in the pathogenesis of non-small cell lung cancer (NSCLC).
Several EGFR inhibitors have been used in clinical treatment of NSCLC, but the
emergence of EGFRL858R/T790M resistant mutation has reduced the efficacy of the
clinical used EGFR inhibitors. There is an urgent need to develop novel EGFRL858R/T790M

inhibitors for better NSCLC treatment.

Methods: By screening a natural product library, we have identified gossypol as a novel
potent inhibitor targeting EGFRL858R/T790M. The activity of gossypol on NSCLC cells was
evaluated by cell proliferation, cell apoptosis and cell migration assays. Kinase activity
inhibition assay and molecular docking were used to study the inhibition mechanism of
gossypol to EGFRL858R/T790M. Western blotting was performed to study the molecular
mechanism of gossypol inhibiting the downstream pathways of EGFR.

Results: Gossypol inhibited the cell proliferation and cell migration of NSCLC cells,
and induced caspase-dependent cell apoptosis of NSCLC cells by upregulating the
expression of pro-apoptotic protein BAD. Molecular docking revealed that gossypol
could bind to the kinase domain of EGFRL858R/T790M with good binding affinity through
hydrogen bonds and hydrophobic interactions. Gossypol inhibited the kinase activity of
EGFRL858R/T790M with EC50 of 150.1 nM. Western blotting analysis demonstrated that
gossypol inhibited the phosphorylation of EGFR and its downstream signal pathways in
a dose-dependent manner.

Conclusion: Gossypol inhibited cell proliferation and induced apoptosis of NSCLC
cells by targeting EGFRL858R/T790M. Our findings provided a basis for developing novel
EGFRL858R/T790M inhibitors for treatment of NSCLC.

Keywords: gossypol, molecular docking, NSCLC, EGFR, TKI

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for approximately 85-90% of lung cancers, which
has proven to be difficult to be treated due to poorly understood the pathogenesis (Oyewumi
et al., 2014; Siegel et al., 2017). Conventional treatment strategies are used for NSCLC including
surgical operation, radiotherapy and chemotherapy (Scott et al., 2007; Onishi et al., 2011;
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Uzel and Abacıoğlu, 2015). In addition, tyrosine kinase-based
inhibitors (TKIs) molecular-targeted therapy are also employed
to the treatment of NSCLC patients with EGFR mutations.
Overexpression of EGFR has been reported and implicated in
the pathogenesis of NSCLC, which account for more than 60% of
NSCLC (Ohsaki et al., 2000). Therefore, it is increasing in clinic
application as molecular targets for NSCLC patients with EGFR
mutation.

The role of aberrant activation of the EGFR in NSCLC
is well-documented (Sordella et al., 2004; Tracy et al., 2004;
Gazdar and Minna, 2005; Sharma and Settleman, 2007; Sharma
et al., 2007). The most common activating mutations, including
point mutation L858R in exon 21 and deletions within exon
19 (del746-750) (Riely et al., 2006; Sharma et al., 2007),
promote EGFR-driven cell proliferation and survival. Both
first and second generation EGFR-targeted TKIs (gefitinib
and erlotinib) targeting those activating mutants have been
demonstrated to have a remarkable clinical response in the
treatment of EGFR-mutated NSCLC (Lynch et al., 2004; Paez
et al., 2004; Jackman et al., 2009; Rosell et al., 2009; Sequist
et al., 2010). Although the early clinical results of first-
generation EGFR inhibitors are impressive, unfortunately, most
NSCLC patients with activating mutations eventually develop
acquired resistance to EGFR inhibitors within several months.
The most common mechanism of acquired resistance is the
secondary T790M (gatekeeper residue Thr790 to methionine
within the EGFR kinase domain) point mutation in exon
20 that occurs with an EGFR mutation (e.g., L858R), which
accounts for approximately 60% in these acquired resistances
(Balak et al., 2006; Kosaka et al., 2006; Yu et al., 2013).
To overcome the acquired resistance to first-generation TKIs,
several second- and third-generation EGFR TKIs [such as EKB-
569 (Kwak et al., 2005), BIBW2992 (Li et al., 2008) and
PF00299804 (Engelman et al., 2007)] have been developed.
However, these agents still display limited clinical benefit
for NSCLC patients with T790M mutation owing to dose-
limiting toxicities (Oxnard et al., 2011; Miller et al., 2012).
Recently, third-generation covalent EGFR inhibitor osimertinib
(Ward et al., 2013; Cross et al., 2014) has been developed
as mutant-selective EGFR inhibitor that specifically targeting
EGFRL858R/T790M mutation. However, the effective treatment
of patients that harbor the EGFR T790M drug resistance
mutation with osimertinib is limited by the emergence of
new drug resistances to the tyrosine kinase inhibitor therapy
(Thress et al., 2015; Büttner et al., 2017). C797S mutation
was reported to be a major mechanism for resistance to third
generation EGFR TKIs (Yu et al., 2015). In addition to C797S
mutation, other rare tertiary EGFR mutations have also been
reported, including novel solvent front mutations (G796S/R),
hinge pocket mutations of the leucine residue at position 792
(L792F/H), binding interference at position 798 (L798I), and
steric hindrance at position 718 (L718Q) (Bersanelli et al.,
2016; Chabon et al., 2016; Chen et al., 2017; Ou Q. et al.,
2017; Ou S.-H.I. et al., 2017). With the emergence of resistance
mechanisms, there is an urgent need to discover a novel
class of EGFR inhibitors that effectively inhibits drug-resistant
EGFRL858R/T790M mutation.

Natural products have been widely regarded as a pivotal source
of leading compounds for drug development, recently, several
natural products have been identified targeting EGFRL858R/T790M

to overcome resistance. (Jung et al., 2015; Xiao et al., 2016). In
our previous studies, we have successfully identified several small
molecules from natural products library that could inhibit the
growth of gefitinib resistant NSCLC via different mechanisms.
(Fan et al., 2015; Li et al., 2017). These compounds demonstrated
significant anti-proliferative effects on a variety of NSCLC cell
lines, including those with T790M and L858R/T790M mutations.
In this study, we identified a small molecule gossypol from
cottonseed, as a potent inhibitor targeting EGFRL858R/T790M.
Gossypol and its derivatives exert antitumor effects on different
cancer types in vitro and in vivo, including breast cancer
(Xiong et al., 2017), colon cancer (Lan et al., 2015), chronic
myeloid leukemia (Goff et al., 2013) and prostate cancer
(Volate et al., 2010) by targeting MDM2, VEGFR, Bcl-2 and
p53. Herein, the results from our work proved that gossypol
could inhibit the proliferation of NSCLC cells by targeting
EGFRL858R/T790M. Gossypol also inhibited the phosphorylation
of EGFR and suppressed the phosphorylation of extracellular
signal–regulated protein kinase (ERK) and AKT. These results
indicated that gossypol could be developed as a new potent
EGFRL858R/T790M inhibitor and could inhibit the proliferation of
NSCLC.

RESULTS AND DISCUSSION

Gossypol Inhibits Cell Proliferation in
NSCLC Cells
To identify potent small molecule inhibitor of EGFRL858R/T790M,
we screened a natural products library with 235 compounds.
We evaluated the anti-proliferative effect of each compound
on H1975 cell line harboring EGFRL858R/T790M. Gossypol was
identified and chosen for further mechanistic investigation due
to its significantly anti-proliferative ability. H1975 cells were
treated with an increasing concentration of gossypol for 72 h,
and then cell viability was determined based on standard
MTT assay protocol. As shown in Figure 1, the growth of
H1975 cells were obviously inhibited by the treatment of
gossypol in a dose-dependent manner, with 50% inhibition
concentration (IC50) of 10.89 ± 0.84 µM. In addition, we have
tested the cytotoxicity effect of gossypol on human normal
lung fibroblast cell line CCD19 (IC50 is 14.89 ± 1.12 µM)
and human NSCLC cell line H358 with EGFRWT (IC50 is
35.26 ± 1.09 µM) (the corresponding results can be seen in
Supplementary Figure S1). Afatinib was used as positive control
(IC50 = 170.4 ± 1.1 nM). The structure and corresponding
cytotoxicity of gossypol were showed in Figure 1. We also
examined the effect of gossypol on cell colony formation
(Figure 2A), in accordance with the cell cytotoxicity, gossypol
significantly inhibited the colony formation capacity in a dose-
dependent manner in H1975 cell line. Collectively, these results
suggested that gossypol could inhibit the proliferation of H1975
cell line.
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FIGURE 1 | Cytotoxicity effect of gossypol on EGFR mutant cell line. (A) The structure of gossypol. (B) Evaluation of cell proliferation by gossypol in H1975 cells.

FIGURE 2 | Effect of gossypol on H1975 cell line. (A) Colony formation of H1975 cells was monitored after gossypol (0–5 µM) treatment for 14 days, and
photomicrographs of crystal violet stained colonies were depicted. (B) H1975 cells were treated with 0, 5, 10, and 20 µM for 24 h, and were analyzed for wound
healing.

Gossypol Induces Cell Apoptosis in
NSCLC Cells
To investigate whether the induction of apoptosis also
contributed to gossypol-mediated growth inhibition of H1975
cells, Annexin V-FITC/PI staining assay was employed to analyze
the number of apoptotic cells after treatment with gossypol using
a flow cytometer. As shown in Figures 3A,B, gossypol induced
cell apoptosis on H1975 cell line with a concentration-dependent
manner.

Bcl-2 family members play key roles in the regulation
of apoptotic progress. To understand how gossypol induced
apoptosis, we next examined whether gossypol could alter the
expression of apoptotic proteins in H1975 cells. As shown
in Figure 3C and Supplementary Figure S4, treatment with
gossypol for 24 h remarkably upregulated the expression level

of proapoptotic protein Bad in a concentration-dependent
manner. Moreover, we also observed that gossypol induced
PARP cleavage, a hallmark of caspase-dependent apoptosis,
in accordance with the expression level of cleaved caspase-3.
Therefore, these results suggested that gossypol induced caspase-
dependent apoptotic cell death by upregulating the expression of
pro-apoptotic protein Bad in NSCLC cells.

Gossypol Inhibits the Cell Migration of
H1975 Cell Line
The effect of gossypol on H1975 cell migration capability was
estimated by a wound-healing assay. In the wound-healing
assay (see Figure 2B), cells treated with gossypol reduced the
rate of wound healing along with the increasing of treatment
concentration, which was significantly lower than the untreated
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FIGURE 3 | Apoptosis effect of Gossypol on H1975 cells. Flow cytometric analysis of cell apoptosis with gossypol at different concentrations (0, 5, 10, and 20 µM)
for 24 h was determined. (A) Flow cytometry analysis of the apoptosis levels of h1975 cells after treatment with gossypol for 24 h. (B) Data from (A) were statistically
analyzed. Mean ± SE. ∗∗P < 0.01. (C) Western blot analysis of apoptotic markers of H1975 cells after treatment of gossypol for 24 h.

cells following incubation. These results demonstrated that
gossypol inhibited the migration ability of H1975 cell lines in a
dose-dependent manner.

Gossypol Inhibits the Activity of Tyrosine
Kinase
To assess the kinase inhibition activities of gossypol, we
performed a kinase inhibition profile assay of gossypol against
recombinant human EGFRL858R/T790M. The selected compound
gossypol exhibited inhibitory activity, which effectively inhibited
the enzymatic activity of EGFRL858R/T790M with an EC50 value
of 150 ± 30.7 nM (see Supplementary Figure S2). Besides,
gossypol also inhibited the enzymatic activity of EGFRWT with
an EC50 value of 252.9 ± 26.9 nM, higher than that to
EGFRL858R/T790M (the corresponding results can be seen in
Supplementary Figure S2). Afatinib was used as positive control
(EC50 = 9.6 ± 2.9 nM). The effect of gossypol on cells is very
complicated, and it is still difficult to distinguish which part
is caused by EGFR targeting. To ensure the consistency of the
experimental results, we conducted the entire ELISA enzyme
inhibiting assay at the same time. Therefore, EGFRWT could be
used as control to compare with EGFRL858R/T790M.

Molecular Docking Predicts the Potential
Binding of Gossypol to EGFR
Molecular docking calculation was performed to gain insight
into the binding mode between gossypol and EGFRL858R/T790M.
The molecular docking results (see Figure 4 and Supplementary

Figure S3) proved that gossypol could be docked into the kinase
domain mainly composed of hydrophobic residues of C-helix
and A-loop with a docking score of −6.42 ± 0.24 kcal/mol.
Five hydrogen bonds were formed between gossypol and the
carbonyl group of Q791, amino group of M793, hydroxyl group
of T854 and amino group of K875. In addition, the hydrophobic
contacts formed between gossypol and surrounded residues,
including L718, M790, F723, F858, L792, L844, and M793,
which also contributed to the interaction between gossypol and
EGFRL858R/T790M. Therefore, the above results suggested that
gossypol could bind to EGFRL858R/T790M.

Gossypol Effectively Suppresses
Phosphorylation of EGFR as Well as Its
Downstream Signaling Pathway
To determine whether gossypol could inhibit the expression
level of EGFR in cells, we investigated the effect of gossypol
on the phosphorylation of EGFR in NSCLC cells. H1975
cells were treated with gossypol (0–20 µM) for 24 h.
Western blot analysis showed that gossypol inhibited the
phosphorylation of EGFR (Tyr 1068) in a concentration
dependent manner (see Figure 5). To explore the detailed
anti-cancer mechanism of gossypol, we further evaluated the
downstream pathways of EGFR, including ERK and AKT
signaling pathways. Treatment with gossypol also inhibited the
phosphorylation of AKT and ERK in a concentration-dependent
manner, consistent with the tendency of phosphorylation
level of EGFR. Thus, our results indicated that gossypol
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FIGURE 4 | The binding mode between gossypol and EGFRL858R/T790M protein. (A) The 3D structure of EGFRL858R/T790M. (B) Gossypol was docked into the EGFR
kinase domain, showing interactions between gossypol and key residues. (C) A two-dimensional interaction map of gossypol and EGFR. (D) The hydrophobic
surface of EGFRL858R/T790M.

could suppress the phosphorylation of EGFR and its
downstream AKT and ERK signaling pathways, resulting in
induction of apoptosis and proliferation inhibition of H1975
cells.

CONCLUSION

In this study, by screening a natural products library, we
have identified that gossypol was a potential anticancer
agent targeting EGFRL858R/T790M. Our results proved that
gossypol inhibited the proliferation and induced apoptosis
of human NSCLC cell line harboring EGFRL858R/T790M.
Moreover, gossypol decreased the phosphorylation level of
EGFR and its downstream signaling pathways AKT and
ERK. Overall, our findings indicate that gossypol is a novel
potent EGFRL858R/T790M inhibitor, which may serve as a useful
therapeutic agent against NSCLC harboring EGFRL858R/T790M

mutation.

MATERIALS AND METHODS

Reagents
Gossypol was purchased from Selleck Ltd., which was dissolved
in dimethyl sulfoxide (DMSO) to form a 20 mM stock solution.
Fetal bovine serum (FBS), antibiotics and RPMI medium were
purchased from Gibco (Carlsbad, CA, United States). RIPA lysis
buffer and antibodies Bad, Bcl-XL, PARP, Cleaved Caspase-3,
anti-p-EGFR (1068), anti-p-extracellular signal-regulated kinase
1/2 (Erk1/2) (Thr202/Tyr204), anti-p-Akt (Ser473), anti-Erk1/2,
anti-Akt, anti-PERK, and anti-EGFR were purchased from
Cell Signaling Technology (Beverly, MA, United States).
Anti-GAPDH was purchased from Santa Cruz (Dallas, TX,
United States).

Cell Culture
The human NSCLC cell line H1975 was purchased from the
American Type Culture Collection (ATCC) (Manassas, VA,
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FIGURE 5 | Immunoblot analysis of p-EGFR, EGFR, p-AKT, AKT, p-ERK, and
ERK in H1975 cell after treatment with gossypol for 24 h. GAPDH was used
as a loading control.

United States). Cells were cultured in RPMI1640 medium
supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml
streptomycin. All the cells were cultured at 37◦C in a humidified
atmosphere containing 5% CO2.

Cell Proliferation Assay
Cell viability was evaluated by using the standard 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT
assay. Briefly, 3 × 103 cells per well were plated in 96-well
plates and cultured overnight for cell adhesion. The cells were
treated with DMSO or various concentrations of gossypol for
72 h. Subsequently, 10 µL MTT was added into each well and
incubated for 4 h, and then the dark blue crystals were dissolved
with 100 µl of the resolved solution (99% DMSO). Finally,
the absorbance at 570 nm was measured by microplate reader
(Tecan, Morrisville, NC, United States). The cell viability was
calculated relative to controls, with results based on at least three
independent experiments. Cells treated with the vehicle (DMSO)
alone served as a control.

Colony Formation Assay
Briefly, H1975 cells were seeded in 6-well plates (1000 cells/well),
after attachment overnight, cells were exposed to various
concentration of gossypol with medium changes every 3 days
until visible colonies formed. The colonies were washed with cold
PBS, then fixed in 4% paraformaldehyde (PFA) for 15 min, and
then stained with 0.5% crystal violet (1% PFA, 0.5% crystal violet,
and 20% methanol in ddH2O) for 20 min. The colonies were
photographed.

Apoptosis Analysis Assay
NSCLC cells were plated on 6-well plate with cell density of
2 × 105 cells per well and cultured overnight for adhesion.
Subsequently, the cells were treated with different concentrations
of gossypol for 24 h. After treatment, the cells were harvested
by trypsin digestion and washed twice with ice-cold PBS, and
resuspended in 100 µl 1 × binding buffer. Next, 4 µl of
propidium iodide (PI, 1 mg/ml) and 1 µl Annexin-V fluorescein

dye were added to the solution and mixed well at room
temperature in the dark for 15 min. After that, the cells were
resuspended in 300 µl of 1× binding buffer from BD Biosciences
(San Jose, CA, United States). The percentage of apoptotic cells
was quantitatively measured using a BD FACSAria III flow
cytometer from BD Bioscience (San Jose, CA, United States).

Enzyme-Linked Immunosorbent Assay
(ELISA)
The kinase activity was evaluated with ELISA assay based on
the kinase domain of dual-mutant EGFR (EGFRL858R/T790M)
recombinant human protein (Peng et al., 2014). Briefly, 20 µg/mL
Poly (Glu, Tyr) 4:1 (Sigma, St. Louis, MO, United States) was
precoated in 96-well plates as substrate. Active kinases were
added and incubated with indicated gossypol in 1 × reaction
buffer containing 5 µmol/L ATP at 37◦C for 1 h. Then, the
wells were washed with PBS and then incubated with an anti-
phosphotyrosine (PY99) antibody (Santa Cruz Biotechnology,
Santa Cruz, CA, United States) followed by a horseradish
peroxidase (HRP)-conjugated secondary antibody. The wells
were read with a multiwell spectrophotometer (VERSAmaxTM,
Molecular Devices, Sunnyvale, CA, United States) at 492 nm. The
inhibitory rate (%) was calculated with the following formula:
[1–(A492 treated/A492 control)] × 100%, and responding EC50
values were calculated from the fitting inhibitory curves.

Molecular Docking
The X-ray structure of EGFRL858R/T790M with a resolution
of 2.5 Å complexed with diaminopyrimidine derivative was
retrieved from the Protein Data Bank [PDB ID code 4RJ8
(Hanan et al., 2014)] for docking with gossypol. Molecular
structures were prepared using the standard procedure from
the Protein Preparation Wizard module in Schrödinger 2015.
The docking grid box was defined using the Receptor Grid
Generation tool in Glide by centering on native ligand in
the EGFRL858R/T790M structure. The structure of gossypol was
derived from the PubChem database1, which was imported to the
LigPrep module (Version 2.3, Schrödinger, LLC, New York, NY,
United States) based on OPLS-2005 force field (Kaminski et al.,
2001). The ionized state was assigned by using Epik (Version 2.0,
Schrödinger, LLC, New York, NY, United States) at a pH value
of 7.0 ± 2.0. Gossypol was docked into the kinase domain of
the EGFRL858R/T790M using the Glide (Version 5.5, Schrödinger,
LLC, New York, NY, United States) with the extra precision (XP)
scoring mode. In the process of molecular docking, 5000 poses
were generated during the initial phase of the docking calculation.
The best binding pose for Gossypol was conserved for the further
analysis.

Western Blot Analysis
Preparation of whole-cell protein lysates for western blot analysis
was conducted as follows. After treatment, cells were lysed in
RIPA lysis buffer (150 mmol/L NaCl, 50 mmol/L Tris–HCl,
pH 8.0,1% Triton X-100, 0.1% SDS, and 1% deoxycholate)

1http://pubchem.ncbi.nlm.nih.gov

Frontiers in Pharmacology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 728

http://pubchem.ncbi.nlm.nih.gov
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00728 July 5, 2018 Time: 19:55 # 7

Wang et al. Gossypol Inhibits NSCLC Cells Growth

containing protease inhibitor cocktail from Roche (Basel, Lewes,
United Kingdom) for 15 min on ice and then boiled for
10 min. The concentration of total protein was determined with
a Bio-Rad DCTM Protein Assay Kit (Bio-Rad, Hercules, CA,
United States). Equal amounts of total protein (30 µg) protein
lysate were loaded and separated by 10% SDS–polyacrylamide
gel electrophoresis and then transferred to a nitrocellulose (NC)
membrane from Millipore (Billerica, MA, United States). The
membranes were blocked with 5% milk without fat in 1 ×
TBST for 2 h at room temperature, and then incubated with
various primary antibodies, including phospho-AKT, phospho-
ERK, t-AKT, t-ERK, phospho-EGFR (Tyr1068), t-EGFR at 1:1000
dilutions and anti-GADPH antibody at a 1:800 dilution overnight
at 4◦C. After washing the membranes in TBST three times (5 min
per time), secondary fluorescent antibodies, either anti-rabbit or
anti-mouse secondary antibodies depending on the source of the
primary anti-bodies, were added to the membrane at 1:10,000
dilutions at room temperature for 2 h. GAPDH was used as the
loading control and for normalization. The signal intensity of
the membranes was detected using an LI-COR Odessy scanner
(Belfast, ME, United States).

Statistical Analysis
The results were expressed as mean values ± standard error
(mean ± SE). Statistical analysis was performed using one-way

ANOVA followed by Bonferroni’s post-tests. Significance was
accepted at P < 0.05.
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