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Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte
activation. Though the activated astrocyte phenotype is complex, cell-type targeting
approaches have revealed a number of detrimental roles of activated astrocytes
involving neuroinflammation, release of synaptotoxic factors and loss of glutamate
regulation. Work from our lab and others has suggested that the Ca2+/calmodulin
dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+

dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated
form of CN appears at high levels in activated astrocytes in both human tissue
and rodent tissue around regions of amyloid and vascular pathology. Similar
upregulation of the CN-dependent transcription factor nuclear factor of activated T
cells (NFAT4) also appears in activated astrocytes in mouse models of Alzheimer’s
disease (ADs) and traumatic brain injury (TBI). Major consequences of hyperactivated
CN/NFAT4 signaling in astrocytes are neuroinflammation, synapse dysfunction and
glutamate dysregulation/excitotoxicity, which will be covered in this review article.
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INTRODUCTION

The central role of Ca2+ dysregulation in age-related memory deficits and neurodegenerative
disease, proposed more than 30 years ago (Gibson and Peterson, 1987; Khachaturian, 1987;
Landfield, 1987; Abdul et al., 2009), has been supported time and again by molecular,
electrophysiological, biochemical and behavioral studies and is the subject of many excellent
reviews (Alzheimer’s Association Calcium Hypothesis Workgroup, 2017; Frazier et al., 2017;
Gibson and Thakkar, 2017; Pchitskaya et al., 2018). Neurons are often the focus of studies on
Ca2+ dysregulation, and for good reason. Ca2+ signaling is an absolutely essential mechanism
for both intra- and interneuronal communication. Moreover, disruption of any of the many
neuronal Ca2+ regulatory checkpoints can lead to the structural deterioration of neurons and
neuronal death, which are defining features of most neurodegenerative diseases. Nonetheless, it
is becoming increasingly clear that Ca2+ dysregulation underlies altered function and viability of
other non-neuronal cells during aging and disease, especially astrocytes. Several recent articles
have provided comprehensive reviews of Ca2+ signaling mechanisms and Ca2+ dyregulation in
astrocytes as a function of disease (Vardjan et al., 2017; Verkhratsky et al., 2017; Zorec et al.,
2018). The following review will instead focus on the protein phosphatase calcineurin (CN) as an
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emerging mechanism for linking astrocytic Ca2+ dysregulation
to neuroinflammation, glutamate dysregulation, amyloid
pathology and synaptotoxicity. Particular emphasis will be
placed on CN interactions with the nuclear factor of activated T
cells (NFATs), though other CN-sensitive transcription factors
such as nuclear factor κB (NFκB) and forkhead O3 (FOXO3) will
also be considered.

Ca2+ DYSREGULATION IN ACTIVATED
ASTROCYTES

Astrocytes are abundant and versatile cells that play critical
roles in brain metabolism, vascular regulation, interneuronal
signaling and defense. Fundamental to many of these duties are
Ca2+ ions, which are handled by a sophisticated network of
plasmamembrane channels, Ca2+ pumps, Ca2+ binding proteins
and intracellular stores (for recent comprehensive reviews
see; Rusakov, 2015; Bazargani and Attwell, 2016; Shigetomi
et al., 2016; Guerra-Gomes et al., 2017). Together, these
mechanisms, and others, coordinate dynamic Ca2+ responses
(e.g., Ca2+ waves and sparks) that can be propagated within
the confines of individual astrocytes and also across large
astrocyte syncytia via interconnecting gap junction channels
(De Bock et al., 2014; Zheng et al., 2015; Fujii et al.,
2017). The recent application of three-dimensional multiphoton
imaging to astrocyte Ca2+ transients has highlighted the
complexity and heterogeneity of Ca2+ signaling within different
astrocyte compartments (e.g., soma, processes and endfeet)
and perhaps points to an approaching renaissance in our
understanding of the role of astrocytes in brain function
and disease. Astrocytic Ca2+ dysregulation appears to be
indelibly linked to morphologic transformations (i.e., astrocyte
‘‘activation’’ or ‘‘reactivity’’) characterized by hypertrophic
somata and processes and upregulation of the intermediate
filament protein, GFAP (Pekny and Nilsson, 2005; Sofroniew,
2009; Rodríguez-Arellano et al., 2016; Bindocci et al., 2017).
Astrocyte activation is triggered by a diverse range of
injurious stimuli and is frequently localized to regions of frank
pathology (e.g., damaged blood vessels, necrotic tissues and
protein aggregates). Along with activated microglia, activated
astrocytes provide one of the best neuroanatomical hallmarks of
neuroinflammation.

Immunohistochemical studies have revealed the upregulation
of numerous Ca2+ signaling mediators in activated astrocytes
including: Ca2+ related proteases (Shields et al., 1998, 2000;
Feng et al., 2011), L-type voltage-sensitive Ca2+ channels (Xu
et al., 2007, 2010; Willis et al., 2010; Daschil et al., 2013; Wang
et al., 2015), transient receptor potential vanilloid channels
(Shirakawa et al., 2010; Butenko et al., 2012), endoplasmic
reticulum Ca2+-release channels and Ca2+ pumps (Grolla
et al., 2013), Ca2+-dependent K+ channels (Yi et al., 2016),
and Ca2+ binding proteins (McAdory et al., 1998). Most
extracellular factors that promote robust astrocyte activation
in vivo (e.g., cytokines, reactive oxygen species, protein
aggregates, excitotoxins, . . .etc) also trigger Ca2+ dysregulation
(e.g., elevated Ca2+ levels, augmented Ca2+ transients) in
primary culture and brain slices (Sama and Norris, 2013).

Similar functional indices of Ca2+ dysregulation have been noted
in animal models of AD (Takano et al., 2007; Kuchibhotla
et al., 2009; Delekate et al., 2014), brain edema (Thrane
et al., 2011), stroke (Ding et al., 2009; Rakers and Petzold,
2017) and epilepsy (Ding et al., 2007; Tian et al., 2010).
The relationship between Ca2+ dysregulation and astrocyte
activation is very likely to be bi-directional in nature. Indeed,
Ca2+ modulates the activity of numerous transcription factor
pathways (Mellstrom et al., 2008), several of which (e.g., NFκB,
JAK/STAT, FOX proteins, peroxisome proliferator-activated
receptors (PPARs) and activator protein-1 (AP-1), among
others) have been implicated in shaping gene expression
programs involved in astrocyte activation (Perez-Nievas and
Serrano-Pozo, 2018). So, once astrocytic Ca2+ dysregulation
is set in motion by injurious and/or neuroinflammatory
factors, there are multiple routes through which Ca2+ could
maintain astrocytes in an activated state. Perhaps the most
direct link between Ca2+ and the gene regulatory machinery
in astrocytes (and most other cell types) is provided by
NFAT transcription factors, which are directly activated by the
Ca2+-dependent protein phosphatase, CN. Mounting evidence,
discussed below, shows that CN/NFATs exhibit clear signs
of hyperactivation, and/or increased expression, in subsets of
activated astrocytes, while cell-specific targeting approaches
suggest that CN/NFAT signaling drives or exacerbates multiple
forms of neuropathology.

CN DYSREGULATION AND
NEURODEGENERATIVE DISEASE

CN is a highly abundant protein found throughout the
brain, appearing at high levels in neurons and low levels
in glia in healthy adult animals (Goto et al., 1986a,b; Polli
et al., 1991; Kuno et al., 1992). Hyperactive CN signaling is
observed in human postmortem brain tissue at early stages
of cognitive decline associated with AD, ramping up in later
disease stages in parallel with worsening amyloid pathology,
neurofibrillary pathology and/or cognitive decline (Liu et al.,
2005; Abdul et al., 2009; Wu et al., 2010; Mohmmad Abdul
et al., 2011; Qian et al., 2011; Watanabe et al., 2015; Pleiss
et al., 2016b). Other human neurodegenerative conditions
associated with increased CN signaling include Parkinson’s
disease (Caraveo et al., 2014), dementia with Lewy bodies
(Martin et al., 2012; Caraveo et al., 2014) and vascular pathology
(Pleiss et al., 2016b). Similar changes are often recapitulated
to a significant degree in corresponding animal models of
aging and neurodegeneration (Foster et al., 2001; Huang et al.,
2005; Norris et al., 2005; Shioda et al., 2006; Reese et al., 2008;
Mukherjee et al., 2010; Wu et al., 2010; D’Amelio et al., 2011;
Martin et al., 2012; Rosenkranz et al., 2012; Furman et al., 2016;
Sompol et al., 2017). Moreover, inhibition of CN signaling
with the commercial immunosuppressant drugs, tacrolimus
and cyclosporine, commonly imparts neuroprotection in
experimental models of injury and disease (Kuchibhotla
et al., 2008; Wu et al., 2010; Rozkalne et al., 2011; O’Donnell
et al., 2016; Xiong et al., 2018), reduces neuroinflammation
(Yoshiyama et al., 2007; Rojanathammanee et al., 2015;
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Fields et al., 2016; Manocha et al., 2017a; Shah et al., 2017),
improves synapse function (Chen et al., 2002; Dineley et al.,
2010; Cavallucci et al., 2013; Kim et al., 2015), inhibits
cognitive loss (Taglialatela et al., 2009; Dineley et al., 2010;
Kumar and Singh, 2017; Liu et al., 2017), and may even
extend lifespan (Yoshiyama et al., 2007). Consistent with
the animal literature, an epidemiological investigation found
that daily tacrolimus use reduced the risk of dementia in
kidney transplant patients relative to age-matched healthy
individuals in the general population (Taglialatela et al.,
2015).

The CN holoenzyme consists of a catalytic subunit and a
Ca2+-binding regulatory subunit (Norris, 2014). The catalytic
subunit contains a critical autoinhibitory domain (AID) and
a calmodulin binding site. Ca2+/calmodulin binding to CN
is the primary stimulus for driving maximal CN phosphatase
activity (Figure 1). When cellular Ca2+ levels are low, the AID
masks the catalytic core and maintains CN in an inactive state.
Cooperative binding of Ca2+ to the CN regulatory subunit and
to calmodulin lead to the rapid displacement of the AID and
robust activation of CN.When Ca2+ levels fall, Ca2+/calmodulin
rapidly dissociates from CN, reinstating inhibition by the AID.
CN is highly sensitive to Ca2+, with a Kd to Ca2+-saturated
calmodulin in the picomolar range (Quintana et al., 2005).
Thus, even small perturbations in cellular Ca2+ can lead to
hyperactivation of CN. Under these conditions, CN activity can
still be normalized if Ca2+ levels recover. However, large surges
in Ca2+ can trigger the calpain-mediated proteolytic removal
or disruption of the CN AID. Without the AID, CN becomes
partially (but permanently) uncoupled from local Ca2+ changes
and exhibits constitutively high levels of activity (i.e., in the
presence or absence of Ca2+). Appearance of the CN proteolytic
fragment (∆CN) is one of the most clear-cut indicators of
hyperactive CN signaling (Figure 1). Many commercial CN
antibodies (directed to the CN carboxyl terminus) do not detect
∆CN in Western blot applications, which may explain why
earlier studies failed to observe elevated CN in neurodegenerative
conditions like AD (Gong et al., 1993; Ladner et al., 1996; Lian
et al., 2001). In contrast, more recent work (using N terminus
antibodies) has found that ∆CN is increased in human AD
tissue (Liu et al., 2005; Wu et al., 2010; Mohmmad Abdul
et al., 2011; Watanabe et al., 2015), in parallel with calpain
activation (Liu et al., 2005; Mohmmad Abdul et al., 2011).
The ∆CN fragment has been reported in numerous other
experimental models of brain injury and disease including
traumatic brain injury (TBI), ischemia and glaucoma (Norris,
2014).

CN EXPRESSION IS INCREASED IN
ACTIVATED ASTROCYTES IN HUMANS
AND ANIMAL MODELS

Cell-specific expression patterns of CN in both humans and
animal models can exhibit striking changes characterized
by intense upregulation in subsets of activated astrocytes
(Hashimoto et al., 1998; Celsi et al., 2007; Abdul et al., 2009; Lim
et al., 2013; Liu et al., 2015; Watanabe et al., 2015; Pleiss et al.,

FIGURE 1 | Calcineurin (CN)/nuclear factor of activated T cells (NFATs)
signaling in astrocytes and bidirectional interactions with cytokines. Cytokines
and other inflammatory factors lead to Ca2+ elevations in astrocytes. Ca2+

binds to calmodulin (CaM), which in turn, binds to and activates CN. CN
dephosphorylates NFAT transcription factors, leading to nuclear translocation
and induction of cytokine genes. CN activity can be inhibited using the
commercially available immunosuppressants, tacrolimus and cyclosporine.
Physical interactions between CN and NFATs can be blocked using peptide
based reagents like VIVIT. Many cytokines that are induced by the CN/NFAT
pathway can stimulate astrocytes in an autocrine or paracrine manner,
triggering elevations in intracellular Ca2+, which can lead to further CN
activation. Severe Ca2+ dysregulation can convert CN into a constitutively
active proteolytic fragment (∆CN) via calpain dependent proteolysis.
Hyperactivation of CN/NFAT maintains chronic neuroinflammation (and
astrocyte activation) through continued induction (i.e., a positive feedback
loop) of pro-inflammatory cytokine genes.

2016b; Sompol et al., 2017). Recent work using custom antibodies
generated toward calpain-dependent proteolysis sites in the CN
catalytic subunit, observed extensive labeling for a 45–48 kDa
∆CN proteolytic fragment in astrocytes and, to a seemingly
lesser extent, neurons (Pleiss et al., 2016b). ∆CN was especially
prominent in activated astrocytes bordering amyloid deposits
and microinfarcts in human specimens (Pleiss et al., 2016b).
Interestingly, ∆CN-positive and ∆CN-negative astrocytes were
often found in the same regions (sometimes side-by-side) and
appeared morphologically similar, highlighting the biochemical
heterogeneity of activated astrocytes. In an aggressive mouse
model of AD (i.e., 5xFAD mice), ∆CN was similarly observed
in activated astrocytes in the hippocampus, increasing in direct
proportion to elevated GFAP levels (Sompol et al., 2017). These
observations are consistent with previous reports that found
high levels of calpain activity in activated astrocytes (Shields
et al., 1998, 2000; Feng et al., 2011) and suggest that Ca2+

dependent proteolysis of CN is a major outcome of astrocytic
Ca2+ dysregulation.
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NFATs

There are five primary NFAT family members: NFAT1 (or
NFATp, NFATc2), NFAT2 (or NFATc, NFATc1), NFAT3 (or
NFATc4), NFAT4 (or NFATc3) and NFAT5, all of which
exhibit DNA-binding domains that are structurally similar
to the Rel/NFκB family of transcription factors (Rao et al.,
1997). Elevations in Ca2+ activate CN, which binds to and
dephosphorylates NFATs 1–4 in the cytosol (Figure 1).
NFAT5 is activated by osmotic stress and does not interact
with CN. Dephosphorylation of NFATs exposes a nuclear
localization signal, leading to transport into the nucleus and
interaction with specific DNA binding elements. Similar to CN,
NFAT activation is typically elevated under neurodegenerative
conditions like AD (Abdul et al., 2009; Wu et al., 2010),
Parkinson’s disease (Caraveo et al., 2014), and acute brain
injury (Serrano-Pérez et al., 2011; Furman et al., 2016).
As with other previously mentioned transcription factors
(e.g., NFkB, JAK-STAT, AP-1,. . .etc), NFATs exert broad
control over several transcriptional programs via the up- and
downregulation of numerous genes, many of which involve
cytokines and other classic inflammatory mediators (Im and
Rao, 2004; Figure 1). NFATs are very strongly inhibited by
the CN-inhibiting drugs tacrolimus and cyclosporine, but can
be specifically targeted by a variety of peptide-based reagents.
The VIVIT peptide, based on the endogenous CN docking
sequence (PxIxIT) located in the N terminus of the regulatory
region of NFATs 1–4, prevents CN from binding to and
dephosphorylating NFATs (Aramburu et al., 1999). Thus,
unlike commercial CN inhibitors, VIVIT impairs CN-mediated
activation of NFATs without inhibiting CN activity per se,
providing a powerful reagent for teasing apart NFAT-dependent
signaling from the broader NFAT-independent actions of CN
(Figure 1).

In peripheral tissues, NFATs play key roles in phenotype
switching. Activation/anergy of T lymphocytes (Hogan, 2017),
myotube formation and fiber-type commitment (Horsley and
Pavlath, 2002; McCullagh et al., 2004; Rana et al., 2008),
cardiomyocyte hypertrophy (Molkentin, 2004), vascular smooth
muscle cell migration and proliferation (Liu et al., 2004;
Karpurapu et al., 2010; Kundumani-Sridharan et al., 2013),
and bone and joint remodeling (Sitara and Aliprantis, 2010)
all depend critically on the NFAT pathway. Though not as
extensively investigated in the CNS, several studies suggest that
NFATs play a key role in the activation of astrocytes and
microglia, as well (Nagamoto-Combs and Combs, 2010; Furman
and Norris, 2014). All four CN-dependent NFATs have been
identified in primary astrocytes at the mRNA and protein levels
(Canellada et al., 2008). NFAT1 was found at higher levels
in astrocyte nuclei in postmortem brain sections taken from
human subjects with mild cognitive impairment (Abdul et al.,
2009). NFAT1 has also been identified in microglia of AD
mouse models (Manocha et al., 2017b). However, relative to
all other NFAT isoforms, NFAT4 appears to show the greatest
association with astrocytes in intact animals, with comparatively
much less expression in neurons (Filosa et al., 2007; Serrano-
Pérez et al., 2011; Neria et al., 2013; Caraveo et al., 2014;

Yan et al., 2014; Furman et al., 2016; Sompol et al., 2017).
While one study observed a reduction in NFAT4 protein
levels in rats exposed to TBI (Yan et al., 2014), several other
studies found that NFAT4 is strongly induced in activated
astrocytes as a result of acute injury or progressive amyloid
or synuclein pathology (Serrano-Pérez et al., 2011; Neria et al.,
2013; Caraveo et al., 2014; Furman et al., 2016; Sompol et al.,
2017).

GLIAL CN/NFAT PATHWAY AND
NEUROINFLAMMATORY SIGNALING

Similar to actions in lymphocytes, glial CN/NFAT activity
appears to play a critical role in regulating immune/inflammatory
responses. In primary astrocytes and microglia, the CN/NFAT
pathway is robustly activated by many key inflammatory
mediators, including cytokines, Aβ, glutamate and vascular
injury-associated factors (Fernandez et al., 2007; Canellada
et al., 2008; Pérez-Ortiz et al., 2008; Sama et al., 2008;
Abdul et al., 2009; Furman et al., 2010; Nagamoto-Combs
and Combs, 2010; Rojanathammanee et al., 2015). Little is
known about the Ca2+ sources that are responsible for glial
CN activation but L-type voltage sensitive Ca2+ channels have
been specifically implicated in astrocytes (Canellada et al.,
2008; Sama et al., 2008). Overexpression of the hyperactive
∆CN fragment in astrocytes leads to the upregulation of
numerous immune/inflammatory related genes (Norris et al.,
2005; Fernandez et al., 2007) and functional gene categories
linked to the activated astrocyte phenotype (i.e., morphogenesis,
cell adhesion and immune response; Norris et al., 2005).
Interestingly, many of the genes identified in Norris et al.
(2005) are part of the A1 ‘‘neurotoxic’’ astrocyte transcriptional
signature described by the Barres lab (Zamanian et al., 2012;
Liddelow et al., 2017). Of note, ∆CN triggered a two-to-three
fold increase in the A1-associated complement component C3,
found recently to drive microglia-mediated synapse loss in
mouse models of AD (Hong et al., 2016; Shi et al., 2017).
In addition to CN-activation studies, inhibitory approaches in
primary cultures have revealed similar roles for CN/NFATs
in neuroinflammation. Immune/inflammatory factors sensitive
to CN/NFAT inhibition in glial cells include TNFα, GM-
CSF, IL-6, CCL2 and Cox2, among others (Canellada et al.,
2008; Sama et al., 2008; Nagamoto-Combs and Combs, 2010;
Kim et al., 2011; Watanabe et al., 2015; Manocha et al.,
2017b).

Bidirectional interactions between CN/NFAT and cytokine
factors suggest that the CN/NFAT pathway is ideally suited
to maintain positive feedback cycles underlying chronic
neuroinflammation (Griffin et al., 1998; Figure 1). Consistent
with this possibility, hyperactive CN/NFAT activity has
been shown to propagate across local astrocyte networks
through a paracrine signaling mechanism (Sama et al., 2008).
A significant question remains about the mechanisms that
keep these feedback cycles in check. One possibility is that
CN/NFAT activity is limited by the expression of endogenous
CN inhibitors. Regulator of CN 1 (RCAN1), for instance,
is strongly induced by NFAT activity in multiple cell types
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including astrocytes (Canellada et al., 2008; Sobrado et al.,
2012). RCANs are widely considered as CN inhibitors, though,
it deserves noting that several studies have revealed permissive
effects of RCAN on CN, depending on the presence of key
accessory proteins (Liu et al., 2009). Whether RCANs provide a
negative feedback mechanism for guarding against progressive
Ca2+ dysregulation and neuroinflammation in astrocytes,
in the context of neurodegeneration, will require further
investigation.

Finally, caution should be taken when interpreting
immune/inflammatory actions of CN/NFATs in primary
glia which are very sensitive to culturing conditions. When
investigated in serum-containing media, primary astrocytes
may exhibit a quasi-activated state characterized by elevated
basal levels of CN/NFAT activity (Furman et al., 2010). Indeed,
addition of standard (10% fetal calf) serum alone induces robust
CN/NFAT activity in primary astrocytes previously maintained
in serum-free media (Furman et al., 2010). Moreover, treatment
with IL1-β, IF-γ, or TNFα, which strongly induce NFAT activity
in the absence of sera, elicited significantly muted responses
when delivered in the presence of sera. Similar caution is also
warranted in studies on intact animals, where the effects of
CN/NFAT inhibition may have very different effects on glial
activity and neuroinflammation, depending on the nature of
the insult. For instance, intracerebroventricular delivery of the
VIVIT peptide, or astrocyte-specific expression of VIVIT using
adeno-associated virus (AAV), reduced signs of astrocyte and
microglial activation in mouse models of AD characterized
by progressive amyloid pathology (Abdul et al., 2010; Furman
et al., 2012; Rojanathammanee et al., 2015; Sompol et al.,
2017), but not in a rat model of TBI characterized by acute
trauma (Furman et al., 2016). The reason for these discrepancies
is unclear, but could involve CN/NFAT interactions with
multiple other transcription factors and signaling pathways (as
discussed further below). In any case, the results highlight the
importance of context in understanding astrocytic CN/NFAT
signaling.

ASTROCYTIC CN/NFAT PATHWAY IN
GLUTAMATE DYSREGULATION

Mounting evidence suggest that activated astrocytes may
lose protective glutamate buffering properties in some
forms of injury and disease. Astrocytes control extracellular
glutamate levels, in part, through the use of several excitatory
amino acid transporters (EAATs) located in the astrocyte
plasmalemma. The EAAT2/GLT-1 protein is responsible
for the bulk of glutamate uptake in several brain regions,
including hippocampus (Robinson and Jackson, 2016). Loss of
EAAT2 has been observed in several human neurodegenerative
conditions including AD (Masliah et al., 1996; Abdul et al.,
2009; Simpson et al., 2010), Alexander disease (Tian et al.,
2010), epilepsy with hippocampal sclerosis (Mathern et al.,
1999; Proper et al., 2002), and TBI (van Landeghem et al.,
2006). Similar changes have been reported in corresponding
animal models (Masliah et al., 2000; Mookherjee et al., 2011;
Schallier et al., 2011; Hefendehl et al., 2016; Sompol et al.,

2017). Functional knockdown of EAAT2/GLT-1 very typically
causes synaptic hyperexcitability, altered synaptic plasticity,
excitotoxicity and a variety of functional deficits depending
on the brain region affected (Rothstein et al., 1996; Rao
et al., 2001; Selkirk et al., 2005; Petr et al., 2015; Moidunny
et al., 2016). In contrast, increased expression/function
of EAAT2/GLT-1 provides strong neuroprotection from
exogenously delivered excitotoxins as well as from acute and
chronic CNS injury and disease (Harvey et al., 2011; Rozkalne
et al., 2011; Zumkehr et al., 2015; Karklin Fontana et al.,
2016).

The human EAAT2 promoter has putative binding sites for
numerous transcription factors linked to neuroinflammation,
including NFATs (Kim et al., 2003; Su et al., 2003; Mallolas
et al., 2006), and is activated (and in some cases, inhibited)
by a number of cytokine factors. Several studies suggest that
the CN/NFAT pathway provides a putative link between Ca2+

dysregulation, neuroinflammation and glutamate dysregulation
in activated astrocytes through modulation of EAAT/GLT-1
expression. Recent work found that overexpression of the ∆CN
fragment significantly reduced EAAT-mediated glutamate
uptake in primary astrocytes (Sompol et al., 2017). In
contrast, inhibition of CN/NFAT activity with the VIVIT
peptide protected EAAT2-GLT-1 protein levels and reduced
extracellular glutamate and/or neuronal hyperexcitability
in primary cultures following treatment with either IL1-β
or oligomeric Aβ (Sama et al., 2008; Abdul et al., 2009).
Under the same treatment conditions, significantly greater
neuronal survival was observed when astrocytic CN/NFAT
activity was inhibited with VIVIT. Similar effects were found
following VIVIT treatment in an intact mouse model of
AD (Sompol et al., 2017). Specifically, VIVIT increased
protein levels of the astrocytic glutamate transporter, GLT-1,
especially around Aβ deposits, and reduced the frequency and
duration of spontaneous glutamate transients in intact 5xFAD
mice. VIVIT also quelled hyperactive synaptic transients
in in situ brain slices from 5xFAD mice and reduced
the augmented NMDA receptor-mediated component of
basal synaptic transmission. The reduction in glutamate
hyperexcitability in 5xFAD mice was accompanied by
the normalization of dendrite morphology and integrity,
suggesting that astrocyte activation and astrocytic CN/NFAT
signaling can drive excitotoxic damage in some disease states,
like AD.

ASTROCYTIC CN/NFAT PATHWAY IN
AMYLOID PATHOLOGY

Amyloid pathology has long been recognized as a potent stimulus
for CN and/or NFAT activity in multiple neural cell types
(Agostinho et al., 2008; Reese et al., 2008; Abdul et al., 2009; Li
et al., 2010; Wu et al., 2010, 2012; Mohmmad Abdul et al., 2011;
Fang et al., 2016). Mice with parenchymal amyloid pathology
show clear Ca2+ dysregulation in astrocytes: i.e., higher basal
Ca2+ levels and bigger and more frequent Ca2+ transients
(Kuchibhotla et al., 2009), providing a permissive environment
for CN/NFAT activity. In human postmortem tissue, elevations
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in CN/NFAT activity increase in direct proportion with
soluble Aβ levels, within the same subjects (Abdul et al.,
2009). In primary neuron/astrocyte cultures, Aβ stimulates
CN/NFAT activity and generates ∆CN proteolytic fragments
(Mohmmad Abdul et al., 2011). Moreover, CN/∆CN is found
at especially high levels in activated astrocytes surrounding
amyloid deposits in both mouse and human tissue (Norris
et al., 2005; Celsi et al., 2007; Abdul et al., 2009; Jin et al.,
2012; Lim et al., 2013; Watanabe et al., 2015; Pleiss et al.,
2016b).

In addition to responding to Aβ, several studies have
suggested that astrocytic CN/NFAT activity stimulates the
generation of Aβ peptides (Hong et al., 2010; Furman
et al., 2012; Jin et al., 2012; Sompol et al., 2017). Peripheral
administration of the CN inhibitor, tacrolimus, to 8-month-old
APP/PS1 transgenic mice over a period of 2 months led to a
large (>75%) significant reduction in amyloid plaque burden
in both the hippocampus and cortex (Hong et al., 2010). A
smaller (20%–30%), but statistically significant decrease in
amyloid plaque load and soluble Aβ peptide levels was also
observed when CN/NFAT activity was specifically inhibited
in hippocampal astrocytes of 2x and 5xAPP/PS1 mice using
AAV-mediated delivery of VIVIT (Furman et al., 2012;
Sompol et al., 2017). Though reductions in Aβ could have
simply stemmed from the increased viability of neurons
in tacrolimus/VIVIT treated mice, an additional report
by Sompol et al. (2017) demonstrated that Ca2+ overload
can lead to elevated Aβ production—specifically within
astrocytes—through a CN/NFAT4-dependent mechanism.
In this study, NFAT4 was shown to bind to the promoter
of BACE1 (the rate limiting enzyme for Aβ generation)
and induce BACE1 transcription. These results suggest that
astrocytic CN/NFATs may help to drive parenchymal Aβ

plaque pathology in AD. Given the intimate association
between astrocytes and the cerebrovasculature, it would
be interesting to determine if astrocytic CN/NFATs
play a particularly important role in cerebral amyloid
angiopathy.

ASTROCYTIC CN/NFAT PATHWAY IN
SYNAPSE DYSFUNCTION

As discussed, commercial CN inhibitors are commonly
associated with neuroprotective, anti-inflammatory and
nootropic properties across a wide-range of experimental models
of neural injury and disease. Within our lab, synaptoprotection
has emerged as the single most consistent functional outcome
of inhibiting CN/NFAT activity in astrocytes. To inhibit
CN/NFATs, we have relied heavily on AAV vectors expressing
the NFAT inhibitor, VIVIT, under the control of the human
GFAP promoter (Gfa2). Delivery of AAVGfa2-VIVIT to
the hippocampus of adult rodents results in widespread,
astrocyte-selective transgene expression, coincident with the
inhibition of NFAT4 nuclear translocation (Furman et al.,
2012, 2016; Sompol et al., 2017). AAV-Gfa2-VIVIT improves
basal hippocampal synaptic strength in double transgenic

APP/PS1 transgenic mice (Furman et al., 2012), 5xFAD mice
(Sompol et al., 2017), rats with TBI (Furman et al., 2016),
and mice with hyperhomocysteinemia (HHcy)-associated
vascular pathology (Pleiss et al., 2016a). In regards to synaptic
plasticity, AAV-Gfa2-VIVIT improves long-term potentiation
(LTP) in double transgenic APP/PS1 mice (Furman et al.,
2012) and suppresses the induction of long-term depression
in TBI rats (Furman et al., 2016). Investigations on LTP in
HHcy mice have shown very similar outcomes. In contrast,
hyperactivation of CN in astrocytes of otherwise healthy
adult rats, using AAV-Gfa delivery of the ∆CN fragment,
induces local deficits in CA3-CA1 synaptic strength (Pleiss
et al., 2016b). Though not investigated in every study, we have
also found that delivery of AAV-Gfa2-VIVIT to hippocampal
astrocytes of AD mouse models improves hippocampal-
dependent cognition (Furman et al., 2012; Sompol et al.,
2017).

It is presently unclear how or why astrocytic CN/NFAT
signaling negatively affects synapses. Many of the CN-dependent
cytokines released from astrocytes are known to disrupt synaptic
viability under certain conditions. In fact, several cytokine-
inhibiting drugs appear to have remarkably similar effects to
astrocyte-VIVIT treatment in AD mouse models (Kotilinek
et al., 2008; Bachstetter et al., 2012; MacPherson et al., 2017).
In addition, CN-dependent TGF-β release from astrocytes was
recently found to suppress PSD-95 levels in nearby neurons
(Tapella et al., 2018). In addition to cytokines, gene microarray
studies in primary cells and protein measurements in TBI rats
suggest that CN/NFATs drive the induction of factors involved
in synapse turnover and/or remodeling, including complement
cascade components (e.g., C3) and matricellular factors (e.g.,
SPARC and hevin; Norris et al., 2005; Furman et al., 2016). As
mentioned, C3 was recently identified as a key component of
the ‘‘neurotoxic’’ A1 activated astrocyte phenotype (Liddelow
et al., 2017). During development, C3 release from astrocytes
tags synapses for microglia-mediated phagocytosis, leading to
synapse removal/remodeling (Stevens et al., 2007). C3 levels
drop during maturation, but then reappear under pathological
conditions, like AD (Eikelenboom and Veerhuis, 1996; Zabel
and Kirsch, 2013). Recent work found that C3 upregulation
in activated astrocytes in an APP/PS1 mouse model of AD
guides microglia-mediated synapse loss, similar to that observed
during development (Lian et al., 2015; Hong et al., 2016; Shi
et al., 2017). In the Lian et al.’s (2015) study, C3 induction
in astrocytes was attributable to the activation of NFκB
(which can be activated by CN, see below), though a role
for NFAT was not investigated. The matricellular proteins
SPARC and hevin are also developmentally regulated factors
that become induced in activated astrocytes in mature brain
following injury and/or disease (Jones and Bouvier, 2014;
Blakely et al., 2015; Furman et al., 2016). These factors regulate
adhesion and de-adhesion of astrocytes with the extracellular
matrix where they influence interactions with the vasculature,
with other astrocytes, and also with neurons, especially at
synapses, leading to synaptogenesis and re-modeling (Jones
et al., 2011; Kucukdereli et al., 2011; Jones and Bouvier,
2014; Blakely et al., 2015). Hevin, a pro-synaptogenic factor,
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FIGURE 2 | Hyperactivated CN/NFAT signaling in astrocytes may give rise to a neurotoxic astrocyte phenotype. In healthy tissue, astrocytes fine-tune synaptic
communication and protect neuronal viability through numerous mechanisms, including uptake of excitotoxic glutamate (glu) at synapses, via GLT-1 transporters.
During aging, injury and disease, many astrocytes exhibit an activated phenotype that includes Ca2+ dysregulation, proteolysis of CN to a high activity fragment
(∆CN) and induction of the NFAT4 isoform. Hyperactivation of NFAT4 leads to the downregulation of GLT-1, production and release of numerous pro-inflammatory
cytokines, and induction of BACE1. These changes underlie a neurotoxic astrocyte phenotype associated with glutamate dysregulation/excitotoxicity,
neuroinflammation, synapse dysfunction and amyloid pathology. Neurotoxic astrocytes contribute to or hasten neurodegenerative processes leading to dementia.

is very strongly induced in TBI rats treated with AAV-Gfa2-
VIVIT, suggesting that activated astrocytes and hyperactive
CN/NFAT signaling inhibit the formation of new synapses
by suppressing hevin levels, at least in the context of acute
neural injury (Furman et al., 2016). Finally, it seems likely that
glutamate dysregulation and Aβ pathology play a significant and
non-specific role in synapse dysfunction. Indeed, synapses are
very sensitive to excitotoxic insults and circulating oligomeric
Aβ peptide levels. By contributing to glutamate dysregulation
and amyloid toxicity, activated astrocytes and hyperactive
CN/NFAT signaling may simply promote an inhospitable
working environment for synapses. Of course, all of these
mechanisms could be working in concert as part of a broader
neurotoxic astrocyte phenotype, with Ca2+ dysregulation and
hyperactive CN/NFAT4 activity as central driving features
(Figure 2).

NON-NFAT TARGETS OF CN IN
ASTROCYTES AND CURRENT
CONTROVERSIES

NFATs may be the most studied, but they are certainly
not the only substrates for CN. In fact, CN has been
shown to interact with most transcription factors involved in
immune/inflammatory signaling. NFκB, for instance, is strongly
regulated by CN activity, though in a fairly indirect manner.
CN does not appear to physically bind to or dephosphorylate
NFκB, but instead interacts with upstream targets that drive
NFκB activation (Pons and Torres-Aleman, 2000; Frischbutter
et al., 2011; Palkowitsch et al., 2011). CN-dependent activation of
NFκB in astrocytes has been shown tomodulate the expression of
immune/inflammatory genes (Fernandez et al., 2007) and genes
involved in Ca2+ signaling and homeostasis (e.g., mGluR5 type
glutamate receptors and inositol triphosphate (IP3)-dependent

Ca2+ release channels; Lim et al., 2013). IP3-receptors play an
important role in regulating intracellular Ca2+ transients and
waves in astrocytes (Filosa et al., 2004; Wu et al., 2017) and
have been suggested to mediate neurotoxic actions of activated
astrocytes in Alexander disease (Saito et al., 2018). CN/NFκB-
dependent upregulation of mGluR5 and IP3 receptors occurs
in direct response to pathogenic Aβ peptides and provides
an intriguing CN-based mechanism for driving astrocytic
Ca2+ dysregulation in AD mouse models (Kuchibhotla et al.,
2009).

In addition to NFATs and NFκB, recent work suggests that
CN can exert transcriptional control in astrocytes through novel
interactions with the forkhead transcription factor, FOX03
(Fernandez et al., 2012, 2016). Proinflammatory cytokines,
like TNFα, or Aβ peptides, stimulated the physical association
between CN and FOX03, leading to dephosphorylation of
FOXO3 and association with NFκB. The CN/FOX03/NFκB
complex is thought to drive gene programs underlying
deleterious neuro-immune/inflammatory signaling. Using
an approach similar to the VIVIT strategy for inhibiting
CN-NFAT interactions, Fernandez et al. (2016) developed
a mimetic peptide that selectively disrupts CN-FOXO3
interactions. When delivered to primary astrocytes the
CN-FOX03 interfering peptide reduced Aβ production and
reduced the expression of pro-inflammatory cytokines.
Interestingly, treatment of astrocytes with the neurotrophic
factor, insulin like growth factor 1 (IGF-1), inhibited
CN/FOX03/NFκB interactions and instead promoted
the association of CN with NFκB and the peroxisome
proliferator-activated receptor-γ (PPAR-γ). Formation of
the CN/PPAR-γ/NFκB complex in astrocytes was associated
with reduced amyloid pathology and improved cognitive
function in an AD mouse model (Fernandez et al., 2012).
These results suggest that CN activation in astrocytes can
drive either deleterious or protective processes depending
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on which transcription factors are engaged. This work
is consistent with other studies that find both beneficial
and detrimental actions of activated astrocytes in disease
models (Pekny and Pekna, 2014; Pekny et al., 2016).
Moreover, there is good precedence for divergent actions
of CN on gene expression programs in other non-neural
cell types. For instance, CN activation in T lymphocytes
can drive or inhibit expression of immune/inflammatory
factors by interacting with different transcription factors
in different T cell subtypes or in response to changing
environmental conditions (Im and Rao, 2004; Wu et al.,
2006).

Interestingly, overexpression of a ∆CN proteolytic fragment
in astrocytes using a GFAP promoter was shown to have similar
effects as IGF-1 stimulation, yielding beneficial effects in an
AD mouse model, and in mice exposed to acute stab wound
or LPS insult (Fernandez et al., 2007, 2012). The mechanisms
of ∆CN’s beneficial effects are unclear. It is unknown whether
∆CN interacts with the PPARγ/NFκB complex, or if ∆CN
opposes the interaction of NFκB with FOXO3, or if NFATs
are involved in any of these pathways. The beneficial effects
of ∆CN from the Fernandez et al. (2007, 2012) studies are
especially unusual as this fragment is largely uncoupled from
its normal mode of regulation (Ca2+/calmodulin) and is most
commonly associated with cellular dysfunction and cell death
in many different cell types, though there are some rare
exceptions e.g., (Bousette et al., 2010). These results are also in
apparent contrast to recent work showing that ∆CN expression
in healthy rats drives (rather than prevents) local synapse
dysfunction (Pleiss et al., 2016b). An alternative possibility
for ∆CN-mediated neuroprotection in the Fernandez et al.
(2007, 2012) studies may relate to an interaction between
existing brain pathology and the over-expression system used
(i.e., genetically modified ∆CN under the control of a GFAP
promoter). Preexisting injury or amyloid pathology may be
expected to strongly induce the GFAP promoter, leading
to the intense upregulation of ∆CN in target cells, which
could, possibly, lead to the death/deterioration of the most
reactive and/or the most harmful astrocytes. Loss of harmful
astrocytes may ultimately improve the viability of nearby
neurons. Clearly, further research will be necessary to test this
possibility.

Finally, CN is a versatile enzyme with numerous functions
that are independent of transcriptional regulation. Nonetheless,
very few non-transcription factor substrates of CN have been
investigated in astrocytes. In most cases, CN’s interactions
with other targets has been implied based on sensitivity to
commercial CN inhibitors. For instance, tacrolimus and
cyclosporine partially blocked the dephosphorylation of
GFAP and vimentin in primary astrocytes and in brain
slices from neonatal rat pups (Vinadé et al., 1997; Carvalho
et al., 2016), suggesting that CN may regulate astrocyte
morphology through a posttranscriptional mechanism.
These results are reminiscent of studies in neurons, where
CN has been long-known to regulate rapid cytoskeletal
reorganization in dendritic spines and growth cones (Halpain
et al., 1998; Wen et al., 2004). Given the dynamic nature

of astrocyte processes and endfeet, it seems likely that CN
would play a similar role in cytoskeletal reorganization
in astrocytes. In addition to intermediate filaments, the
astrocyte hemichannel protein, connexin 43, has also been
revealed as a potential CN substrate (Li and Nagy, 2000;
Tence et al., 2012). The cytoplasmic tail of connexin 43 is
dephosphorylated in a tacrolimus/cyclosporine sensitive
manner during hypoxic/ischemic insults. Interestingly,
this dephosphorylation was associated with reduced gap
junction coupling, which could have important implications for
potassium and glutamate buffering during neural injury and
disease. And, as with many other cell types, mitochondria
function in astrocytes appears to be very sensitive to
tacrolimus/cyclosporine (Kahraman et al., 2011; O’Donnell
et al., 2016), though, it should be noted that cyclosporine
can inhibit formation of the mitochondrial transition pore
in a CN-independent manner (Halestrap et al., 1997). In one
recent study, both tacrolimus and cyclosporine prevented
the loss of mitochondria from astrocyte processes during
hypoxic/ischemic insult (O’Donnell et al., 2016). However,
it remains unclear how CN specifically contributed to this
loss.

SUMMARY

Mounting evidence suggests that the CN/NFAT pathway links
astrocytic Ca2+ dysregulation to molecular and phenotypic
changes involved with neuroinflammation, glutamate
dysregulation, amyloid pathology and synapse dysfunction.
We hypothesize that the increased expression and/or
hyperactivation of CN/NFAT in activated astrocytes—found
in human neurodegenerative disease and animal models of
disease—plays a predominantly deleterious role in the brain,
arising early in neurodegenerative diseases, like AD, and
progressing as disease symptoms worsen (Figure 2). The
numerous beneficial effects reported in disease models treated
with CN and/or NFAT inhibitors is largely consistent with
this hypothesis. These observations provide a very important
extension and/or reconceptualization of the Ca2+ hypothesis
of aging and disease to include glial Ca2+ dyshomeostasis
and altered CN signaling as a critical component in the
initiation and progression of neurodegeneration. Further
work will be needed to tease apart the actions of CN on
different transcriptional pathways and how these pathways
interact to modulate neural function in healthy and diseased
brain.
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